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WAVENUMBER-EXPLICIT BOUNDS IN TIME-HARMONIC
ACOUSTIC SCATTERING*

E. A. SPENCET

Abstract. We prove wavenumber-explicit bounds on the Dirichlet-to-Neumann map for the
Helmholtz equation in the exterior of a bounded obstacle when one of the following three conditions
holds: (i) the exterior of the obstacle is smooth and nontrapping, (ii) the obstacle is a nontrapping
polygon, or (iii) the obstacle is star-shaped and Lipschitz. We prove bounds on the Neumann-to-
Dirichlet map when condition (i) and (ii) hold. We also prove bounds on the solutions of the interior
and exterior impedance problems when the obstacle is a general Lipschitz domain. These bounds
are the sharpest yet obtained (for their respective problems) in terms of their dependence on the
wavenumber. One motivation for proving these collection of bounds is that they can then be used
to prove wavenumber-explicit bounds on the inverses of the standard second-kind integral operators
used to solve the exterior Dirichlet, Neumann, and impedance problems for the Helmholtz equation.
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1. Introduction. Proving bounds on solutions of the Helmholtz equation
(1.1) Au+k*u=—f

(where f is a given function and k > 0 is the wavenumber) is a classic problem. When
a Helmholtz boundary value problem (BVP) has a unique solution, the solution can
be bounded in terms of the data using Fredholm theory, since the variational, or weak,
formulations of Helmholtz BVPs satisfy Garding inequalities. The resulting bounds,
however, are not explicit in the wavenumber k.

Obtaining k-explicit bounds on the Helmholtz equation has a long history, and
we discuss some of this previous work in detail below. We mention at this stage the
fundamental k-explicit bounds of Morawetz [44] and Vainberg [58] on the inverse of the
Helmholtz operator in exterior domains that are nontrapping. The former bounds rely
on certain identities for solutions of the Helmholtz equation, and the latter bounds are
proved using much more general arguments that exploit the fact that the Helmholtz
equation arises by taking the Fourier transform in time of the wave equation and then
use the propagation of singularities results of Melrose and Sjéstrand [36], [37]. Since
the inverse of the Helmholtz operator is the resolvent of the Laplacian, these bounds
are often called resolvent estimates.

Given this area’s long history, one might think that there are no more outstanding
problems to solve. However, there has been a revival of interest in k-explicit bounds
on solutions of the Helmholtz equation, largely motivated by the current interest in
the k-explicit numerical analysis of wave propagation problems (see, e.g., the recent
review articles [11], [16], [17], [18]), and this renewed interest has highlighted that
several fundamental problems remain open.
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In particular,

(a) although the classic resolvent estimates of Morawetz and Vainberg in exterior
nontrapping domains are sharp in their k-dependence, there do not yet exist
sharp bounds on the Dirichlet-to-Neumann (DtN) and Neumann-to-Dirichlet
(NtD) maps in these domains;

(b) there are relatively few bounds available for exterior problems in nonsmooth
domains (mainly because the propagation of singularities on these domains
is highly nontrivial);

(c) there do not yet exist sharp bounds on the solution of the interior impedance
problem posed in a general Lipschitz domain.

Regarding (a). Although the classic resolvent estimates can be converted into bounds
on the DtN and NtD maps (and this was done recently by Lakshtanov and Vainberg
in [28]), the bounds obtained so far via this method appear not to be sharp in their
k-dependence (and we prove this in this paper). Although these DtN and NtD bounds
are of interest in their own right, they play an essential role in bounding the inverses
of the integral operators used to solve the exterior Dirichlet and Neumann problems
(see section 1.3).

Regarding (b). The resolvent estimates obtained by Morawetz in smooth domains
can be extended to hold in nonsmooth star-shaped domains, since these estimates rely
on identities that hold in Lipschitz domains. (See section 3.1 and [12, Lemma 3.8]
for more details.) The more general arguments of Vainberg rely on results about
propagation of singularities, and the relevant results for nonsmooth domains have
only recently been obtained (see [40], [38], [59], [39], [8], and section 3.1).

Regarding (c¢). Many investigations of numerical methods for solving the Helmholtz
equation begin by considering the Helmholtz equation in a bounded domain (to avoid
the complications associated with imposing the radiation condition numerically). To
obtain a BVP that is well-posed for every k > 0, an impedance boundary condition

ou .
(1.2) o =g

is applied, where g is a given function and 7 is a real constant. Because this interior
impedance problem is used as a model problem for numerical analysis of the Helmholtz
equation, several authors over the years have obtained bounds on the solution in terms
of the data that are explicit in & and # [20], [33], [15], [18] (with [24], [7], and [30]
considering closely related Helmholtz BVPs and [25], [41] considering the analogous
BVP for the time-harmonic Maxwell equations). However, there do not yet exist
sharp bounds (in terms of k- and 7-dependence) on the solution of this BVP posed
in a general Lipschitz domain.

Aside from its use as a model problem for numerical analysis, the interior impedance
problem plays a fundamental role in the conditioning of the integral operators that
are used to solve exterior problems. Indeed, to bound the inverses of the integral
operators used to solve the exterior Dirichlet, Neumann, and impedance problems,
one needs not only bounds on the exterior DtN, NtD, and impedance-to-Dirichlet
maps but also a bound on the interior impedance problem. (If the reader is not
familiar with boundary integral equations, then this may appear strange; however,
each of the integral operators for the three exterior problems can also be used to
solve the interior impedance problem. Therefore, it is natural that the norms of the
inverses of the integral operators should depend on both the exterior and the interior
problems.)
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In this paper we do the following:

1. We prove bounds on the exterior DtN map, which are sharper in their k-
dependence than any previously obtained bounds, when one of the following
three conditions holds:

(i) the exterior of the obstacle is a C'>® nontrapping domain in two dimen-

sions (2-d) or three dimensions (3-d),

(ii) the obstacle is a nontrapping polygon (in 2-d),

(iii) the obstacle is a star-shaped, Lipschitz domain in 2- or 3-d.
We also prove bounds on the exterior NtD map in cases (i) and (ii), with the
bounds for case (ii) being the first bounds on the NtD map for nonsmooth
domains. (These DtN and NtD bounds therefore partially address the open
problems (a) and (b) above.)

2. We prove bounds on the interior impedance problem in a general Lipschitz
domain that are sharper in their k- and n-dependence than any previously
obtained bounds (thus partially addressing the open problem (c) above). This
method of proof also yields bounds on the exterior impedance problem.

Regarding 1. For the class of domains in (i), Lakshtanov and Vainberg [28]
recently obtained DtN and NtD bounds in the trace spaces using the classic resolvent
estimates. We use the same idea, but we sharpen the DtN bound in the trace spaces
by a factor of k3/2 and also prove DtN and NtD bounds when du/dn € L*(T') and
u € H'(T'), where I' denotes the boundary of the obstacle. (This case is particularly
important for the applications of these bounds to integral equations; see section 1.3.)
For the class of domains in (ii), we obtain the DtN and NtD bounds from the resolvent
estimates in these domains recently obtained by Baskin and Wunsch [8] using results
about the propagation of singularities in this type of domain. For the class of domains
in (iii), a resolvent estimate for the Dirichlet problem was obtained by Chandler-Wilde
and Monk in [12], essentially using the identities of Morawetz (see the discussion in
section 3.1). The same argument used to prove bounds on the DtN map for the class
of domains (ii) can then be used to prove bounds on the DtN map for the class (iii).
By considering the specific cases of the circle and sphere and using results about the
asymptotics of Bessel and Hankel functions, we are able to determine exactly how far
from being sharp (in terms of k-dependence) the bounds for the classes of domains
(i) and (iii) are.

Regarding 2. The impedance boundary condition is somewhat different from the
Dirichlet and Neumann boundary conditions in that, for the time-dependent problem,
it means that energy is either emitted or absorbed by the boundary (depending on
the sign of 1) and thus is not conserved as in the Dirichlet and Neumann cases;!
this means that the concepts of trapping and nontrapping have no meaning under
impedance boundary conditions. A key feature of the interior impedance problem
when f in (1.1) equals zero is that the Cauchy data of the solution can be bounded in
terms of g in (1.2) using Green’s first identity. Since Green’s integral representation
gives the solution in the domain in terms of its Cauchy data on the boundary, k-
explicit bounds on the norms of the integral operators can then be used to bound the
solution in the domain by g. Similar ideas can be used to bound the solution when

!Tndeed, adopting the convention for “outgoing” in the radiation condition (1.4) and letting
U(z,t) be the solution of the wave equation corresponding to u(z; k), we find that, if n = £k, then
the impedance boundary condition (1.2) corresponds to the boundary condition OU/On+0U/dt = g,
under which energy is absorbed or emitted, respectively, by the boundary (assuming that the normal
vector points outwards from the domain of propagation).
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f # 0, with these arguments dating back to at least [20] (although these authors only
considered the case when the domain is a square or cube). We use these ideas again
here, with the main new ingredient being sharper bounds on the norms of the integral
operators. These new bounds are obtained using the classic free resolvent estimates,
and they result in sharper bounds on the solution. With some small modifications,
this argument also yields a bound on the solution of the exterior impedance problem.
Despite this BVP perhaps being less interesting than the others discussed so far, we
also present the bound obtained on its solution.

Although the two parts of the paper (1 and 2 above) consider different problems,
they are linked both by the methods they employ (with Vainberg’s resolvent estimates
and identities related to those of Morawetz playing key roles) and by the fact that
the bounds in 1 and 2 together are then sufficient to obtain k-explicit bounds on the
inverses of the standard second-kind boundary integral operators used to solve the
exterior Dirichlet, Neumann, and impedance problems. (We illustrate this for the
case of the Dirichlet problem in section 1.3.)

1.1. Statement of the main results. Let Q_ C R% d = 2,3, be a bounded,
Lipschitz open set with boundary I' := 9Q_, such that the open complement 2, :=
RY\ Q_ is connected. Let v+ denote the trace operators from Qi to T, let O
denote the normal derivative trace operators, and let Vr denote the surface gradient
operator on I'. (For precise definitions of these operators, see section 2. Note that
we will also call yLu the Dirichlet traces of u and dFu the Neumann traces.) Let
Bpr :={x: |x| < R}.

This paper contains four theorems (Theorems 1.4, 1.5, 1.6, and 1.8). The first two
concern the DtN and NtD maps for the Helmholtz equation in €2, under geometric
restrictions explained in the next three definitions.

DEFINITION 1.1 (nontrapping). We say that Q. C R? d = 2,3 is nontrapping
if T is C*° and, given R > supycq_ |X|, there exists a T(R) < oo such that all the
billiard trajectories that start in Q4 N Br at time zero leave Q4 N Br by time T'(R).

DEFINITION 1.2 (nontrapping polygon). If Q_ C R? is a polygon, we say that
it is a nontrapping polygon if (i) no three vertices are colinear and (i) given R >
SUPycq_ |X|, there exists a T(R) < oo such that all the billiard trajectories that start
in Q4 N Br at time zero and miss the vertices leave Q4 N Br by time T(R). (For a
more precise statement of (ii), see [8, section 5].)

DEFINITION 1.3 (star-shaped). Let Q_ C R? d = 2,3, be a bounded, Lipschitz
open set.

(i) We say that Q) _ is star-shaped if x-n(x) > 0 for every x € T’ for which n(x)

is defined.

(ii) We say that Q_ is star-shaped with respect to a ball if there exists a constant

¢ > 0 such that x -n(x) > ¢ for every x € I' for which n(x) is defined.

THEOREM 1.4 (bounds on the DtN map for the Helmholtz equation in exterior
domains). Let d =2 or 3. Let u € H} () satisfy the Helmholtz equation

(1.3) Au+ku=0 inQy
and the Sommerfeld radiation condition
ou 1
as r:= |x| = oo, uniformly in X := x/r. If either Q0 is nontrapping (in the sense

Definition 1.1) or Q_ is a nontrapping polygon (in the sense of Definition 1.2) or Q_
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is Lipschitz and star-shaped (in the sense of Definition 1.3(i)), then, given ko > 0,
(1.5) ||37J{“||H—1/z(p) S K2 v+l iy

for all k > ko. Furthermore, if vyu € HY(T), then 9;7u € L*(T) and, given ko > 0,
(1.6) 10l oy S K72 sl sy and

(1.7) o ull ooy < & (190 Craw)llagey + ksl pagey)

for all k > k.

How sharp are these bounds? By considering the specific examples of T' the
unit circle (in 2-d) and the unit sphere (in 3-d), we show that the bound (1.5) is at
most k'/? away from being sharp (i.e., for the circle and sphere there exist solutions
of the Helmholtz equation satisfying the Sommerfeld radiation condition such that
[0 ull gr-1/20y 2 Ellvaullgra/2ry ), the bound (1.6) is at most k'/? away from being
sharp, and the bound (1.7) is at most k away; see Lemma 3.10 for the details.

THEOREM 1.5 (bounds on the NtD map for the Helmholtz equation in exterior
domains). Let d =2 or 3. Let u € HL (24) satisfy the Helmholtz equation (1.3) and
the Sommerfeld radiation condition (1.4). If either Q4 is nontrapping (in the sense
Definition 1.1) or Q_ is a nontrapping polygon (in the sense of Definition 1.2), then,
gien ko > 0,

(1.8) ||7+UHH1/2(F) S kH@J{UHH_l/z(F)

for all k > ko. Furthermore, if 0;7u € L*(T"), then v4u € HY(T) and, given ko > 0,

(1.9) (||VF(7+U)HL2(F) +k ||7+U||L2(r)) Sk Ha:uHL%F)

for all k > k.

By again considering the specific examples of I' the unit circle and sphere, we
show that the bound (1.8) is at most k?/3 away from being sharp (i.e., for the circle
and sphere there exist solutions of the Helmholtz equation satisfying the Sommerfeld
radiation condition such that ||y iull g2y 2 k1/3||3,fu||H71/2(p)), and the bound
(1.9) is at most k%/3 away from being sharp.

The third theorem concerns the interior impedance problem for 2_ a general
bounded Lipschitz domain (where we use the word domain to mean a connected open
set).

THEOREM 1.6 (bounds on the solution to the interior impedance problem). Let
Q_ be a bounded Lipschitz domain in 2- or 3-d. Given f € L*(Q_), g € L*(T"), and
n € R\ {0}, let u € H'(Q2_) be the solution to the interior impedance problem

(1.10) Au+ku=—f Q. and O ,u—inyu=g onT.
Then, given ko > 0,
(1.11)

k Il
IVellsio s + Elelzay 872 (1400 ) [Igllingy + 872 (14 5 ) 1l |

for all k > ko (where the omitted constant is independent of both k and n). In
particular, if |n| ~ k, then

(1.12) IVull g2y +Ellull 2@y S k2 N9l 2y + &Nl 22 ) -
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Furthermore, if T' is piecewise smooth, then the k'/? at the front of the left-hand side
of (1.11) can be replaced by k'/*, and thus if |n| ~ k, then

(1.13) IVull ooy +Fllull 2y S kM lgll L2y + K/ 1Lz y -

In Lemma 4.10 we investigate the sharpness of (1.12) and (1.13). (For simplicity
we restrict attention to the case |n| = k, but the methods we use are applicable for
general 7).) We show that the factor in front of ||g||.2(r) in (1.12) is at most k away
from being sharp, and the factor in front of || f[|z2(o_) in (1.12) is k away from being
sharp. Analogously, the factors in front of ||g||z2(r) and || f||z2(q_) in (1.13) are both
k3/* away from being sharp.

Theorem 1.6 can be used to prove a bound on the solution of the interior impedance
problem with minimal smoothness requirements on the data, and this gives a bound
on the inf-sup constant of the corresponding variational formulation.

COROLLARY 1.7 (corollary to Theorem 1.6). Given ko > 0, the solution of the
interior impedance problem with f € (HY(Q_))', g € H-Y*(T"), satisfies
(1.14)

k Il
IVellsio s + Elelzay 8 (1 ) (150 [lalovnry + Wl o

for all k > ko. Therefore, in the case |n| ~ k, the sesquilinear form of the variational
formulation of the interior impedance problem, a(-,-) defined by (4.2) below, satisfies

1
(1.15) inf sup o, v)] > —,
0FAueH' (Q-) 0£ve HL(Q_) ||U||1k§z_ Hle,k,Q_ k
where [|ull1 k0 = ||Vull 2oy +kl|ull 2 ). IfT is piecewise smooth, then the factor

of k% both on the right-hand side of (1.14) and in the denominator of the right-hand
side of (1.15) can be changed to k7/*.

The final theorem concerns the exterior impedance problem for 2 a general
Lipschitz domain.

THEOREM 1.8 (bounds on the solution to the exterior impedance problem). Let
Q_ be a bounded Lipschitz domain in 2- or 3-d. Given f € L?(Q4) with compact
support, g € L*(T), and n > 0, let w € H} (924) be the solution to the exterior
impedance problem

(1.16) Au+ku=—f mQy and Ofu+inyyu=g onT,

satisfying the Sommerfeld radiation condition (1.4). Then, for any R > supycq_ |X/,
the bound (1.11) holds with the left-hand side replaced by

IVull p2p) + Ellull 2y -

where Qg = Q N{|x| < R}, and with || f||L2_y replaced by || f||12(a, ). Furthermore,
if T is piecewise smooth, then the factor of k*/? on the right-hand side of this bound
can be replaced by k'/*.

Recall that, while the interior impedance problem has a unique solution for all
n € R\ {0}, the exterior impedance problem needs 7 in the boundary condition in
(1.16) to be greater than zero for the solution to be unique (and so this restriction is
in the statement of the theorem); see, e.g., [13, Theorem 3.37], [11, Lemma 2.8].

Regarding sharpness. As in the case of the interior problem, the argument in the
proof of Lemma 4.10 shows that the factor in front of ||g[/z2(ry in the analogue of
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(1.12) is at most k away from being sharp, and the factor in front of || f| 22, ) is k
away from being sharp. A corollary analogous to Corollary 1.7 holds for the exterior
impedance problem, but we omit the details.

1.2. Comparison of the main results to similar existing results.

Bounds on the DtN and NtD maps (Theorems 1.4 and 1.5). In this discussion we
omit results about the high-frequency asymptotics of the solution of the Helmholtz
equation in ;. There has been vast amounts of research on constructing these
asymptotics and justifying them rigorously; for an introduction to this work, see, e.g.,
[4], [5], [11, section 3], and the references therein.

Instead, we focus on results that specifically bound either the DtN or the NtD
map (such as Theorems 1.4 and 1.5). To the author’s knowledge, there exist four
such results. The first of these was obtained by Morawetz and Ludwig in [45]. They
proved that if Q_ is smooth and star-shaped with respect to a ball (in the sense of
Definition 1.3(ii)), then, given ko > 0,

(1.17) 103l ey S 19 ()l agry + vl oy

for all & > kg. This result was obtained using the identity for solutions of the
Helmholtz equation that arises by multiplying the PDE by Mu, where

(1.18) /\/lu:x-Vu—ikr—i—LZl)u.
(For a discussion of why this is possible, see the review [11, section 5.3.1].) With some
additional technical work this method can be applied when €2_ is a Lipschitz, star-
shaped domain, and thus the bound (1.17) also holds in this case. (See Remark 3.8
for more details.)

The second result is a bound on the NtD map obtained by Babich in [3]. Babich
proved that if 2_ is a smooth, convex, two-dimensional domain with strictly positive
curvature, then

1
(1.19) [v+ull ooy © iz Ha?—’ruHLm(F)

for all k£ > 0. This result was obtained using a method introduced by Ursell in [56]
(and then also used in, e.g., [2], [21], [57]). The method approximates the Neumann
Green’s function for Q4 with source at x¢g € I' with the Neumann Green’s function
for the exterior of the osculating circle at xg. This approximate Green’s function is
then used to formulate an integral equation for the solution of the Neumann problem
in Q4. Since the Green’s function for the circle is known explicitly, the bound (1.19)
can then be obtained from the integral equation.

The third and fourth results are the following bounds on the DtN and NtD map
for nontrapping domains (in the sense of Definition 1.1) obtained by Lakshtanov and
Vainberg in [28, Theorem 1]: given ko > 0,

(1.20)
||81eru||H71/2(p) S kB ||7+u||H1/2(F) and H’\/Jru”Hl/?(F) S k ||81eru||H71/2(p)

for all k > kg. As discussed above, these bounds were obtained using the resolvent
estimate for this class of domains obtained by Vainberg in [58] (and we use essentially
the same method in section 3 to prove the bounds in Theorems 1.4 and 1.5).

We now compare these four previous results with the bounds in Theorems 1.4
and 1.5. The Morawetz—Ludwig DtN bound (1.17) is sharper in its k-dependence
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than the bound on the DtN map (1.7), although (1.7) holds for a wider range of
geometries than (1.17). Note that the specific examples of the circle and sphere,
analyzed in Lemma 3.12, show that the Morawetz—Ludwig bound (1.17) is sharp in
its k-dependence.

The DtN bound in the trace spaces (1.5) is sharper than that of Lakshtanov and
Vainberg in (1.20), but the NtD bound in the trace spaces (1.8) is the same as that
of Lakshtanov and Vainberg in (1.20) (although both (1.5) and (1.8) hold for a wider
range of geometries than the bounds in (1.20)). We note that the investigation in [28]
was not focused on obtaining the best possible bounds on the DtN and NtD maps,
since the powers of k in the bounds (1.20) were sufficient for proving the main results
of [28] (sharp bounds on the total cross-sections of scattered waves when either 2 is
nontrapping or _ is a general Lipschitz domain).

The Babich bound (1.19) cannot immediately be compared to the NtD bounds
(1.8) and (1.9), since the spaces in which the bounds are proved are different. Never-
theless, the particular examples of the circle and sphere show that the Babich bound
is at most k'/® away from being sharp (see Remark 3.13), and the NtD bounds (1.8)
and (1.9) are both at most k%/3 away from being sharp.

Before leaving this discussion on bounds on the DtN and NtD maps, we note that
if the domain is trapping, then one cannot expect bounds such as those above to hold.
For example, if 2 is a two-dimensional domain with an elliptical cavity, in the sense
that Q. contains the ellipse {(z1,72) : (z1/a1)? + (22/a2)* < 1} with a1 > az > 0
and I coincides with the boundary of the ellipse in neighborhoods of (0, +a2), then
there exist wavenumbers 0 < k; < ko < --- with k,, — co as m — oo, corresponding
solutions of the Helmholtz equation that satisfy the Sommerfeld radiation condition
U, and a constant v > 0 such that

105 | ey 2 < 195 (s el oy + o ||7+um||p(r>)

for all m > 1. (This can be proved using techniques similar to those in [9, Theo-
rem 2.8]; see also the discussion in [11, section 5.6.1].)

Bounds on the interior and exterior impedance problems (Theorems 1.6 and 1.8).
For simplicity we consider the case that |n| = k. Some of the previous results that
we now discuss only considered this case, although the methods used to prove these
results also work for general 7.

If Q_ is a two- or three-dimensional Lipschitz domain that is star-shaped with
respect to a ball (in the sense of Definition 1.3(ii)) then the identity resulting from
the multiplier

-1
(1.21) Mu=x-Vu+ %u
can be used to prove that, given ky > 0,
(1.22) IVull 2y +Fllull 2y S lgllp2y + 12
(Q-) Q-) (r) Q-)

for all k& > kg. This was done when T' is piecewise smooth in 2-d by Melenk [33,
Proposition 8.1.4] and in 3-d by Cummings and Feng [15, Theorem 1]. The arguments
outlined in Remark 3.8 can then be used to establish the bound when I" is Lipschitz
(similar to the situation with the Morawetz—Ludwig DtN bound discussed above).
Lemma 4.10 shows that, at least when g = 0, the bound (1.22) is sharp in its k-
dependence.
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The argument involving Green’s integral representation and k-explicit bounds on
integral operators that we discussed above was used by Feng and Sheen to prove that
if Q_ is square or cube and g = 0, then, given kg > 0,

(1.23) IVull ooy +Elull oy S K20y

for all & > ko [20, Theorems 3.6 and 4.7]; the same argument can be used to es-
tablish the bound when €_ is a general Lipschitz domain. This argument was used
independently by Esterhazy and Melenk to prove that, with _ a general two- or
three-dimensional Lipschitz domain, given kg > 0,

(1.24) IVull g2y +Ellull 2@y S k? gl p2ry + k2 11220y

for all k > ko [18, Theorem 2.4].

Looking at these previous results, we see that the bound (1.12) of Theorem 1.6
is the sharpest yet obtained in the case that €)_ is a general Lipschitz domain, but
the k-dependence is still worse than that in the bound (1.22) for domains that are
star-shaped with respect to a ball. The bound (1.13) improves the k-dependence in
the case when I' is piecewise smooth, but this improved dependence is still not as
good as that in the star-shaped case.

To the author’s knowledge, there are currently no bounds for the exterior impe-
dance problem stated in the literature (although, as we see in this paper, the method
used to prove the interior bounds (1.11), (1.23), and (1.24) can easily be adapted to
prove exterior bounds).

1.3. Conditioning of boundary integral operators. As discussed above, one
application of the bounds of Theorems 1.4, 1.5, 1.6, and 1.8 is in proving bounds on
the inverses of boundary integral operators (which can then be used in conjunction
with bounds on the norms of these operators to prove bounds on their condition
numbers). We illustrate this for the standard second-kind integral operator used to
solve the exterior Dirichlet problem.

When u is the solution to the exterior Dirichlet problem for the Helmholtz equa-
tion, the Neumann trace of u, 0 u, satisfies the integral equation

(1.25) ko (O w) = f

on I', where the integral operator A§€7 , is the so-called combined-potential or combined-
field integral operator (defined by (1.30) below) and f is given in terms of the known
Dirichlet data v u.

We now briefly derive the integral equation (1.25); for simplicity we do not con-
sider the general exterior Dirichlet problem, only the sound-soft scattering problem
(i.e., the problem in which the Dirichlet data is the restriction of, e.g., a plane wave to
T'). The reason we do this is that the right-hand side f of (1.25) takes a particularly
simple form in this case; for the details of the general case see [11, equations (2.68)
and (2.69)]).

DEFINITION 1.9 (sound-soft scattering problem). Given k > 0 and an incident
plane wave u! (x) = exp(ikx - A) for some a € RY with |a] = 1, find u® € C?(Q4) N
HL (924) such that the total field u := u! +u” satisfies

Au+ku=0 inQ, Yyu=0 onT,

and u® satisfies the Sommerfeld radiation condition (1.4) (i.e., (1.4) holds with u
replaced by u® ).
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Using (i) the fact that u! is a solution of the Helmholtz equation in Q_, and (ii)
Green’s integral representation for v, one can show that

(1.26) u) =)~ [ Bulxy)0fuly) ds(y), x € 0

r
(see, e.g., [11, Theorem 2.43]), where ®4(x,y) is the fundamental solution of the
Helmholtz equation given by

i elklx—yl

3.
4

(127)  Bu(x,y) = -H§V (klx—y]), d=2,  Pu(x,y) =

— d=
Arlx —y]

Taking the Dirichlet and Neumann traces of (1.26) on I' and using the jump
relations for the single-layer potential (given in (5.1) below), one obtains two integral
equations for the unknown Neumann boundary value 9;' u:

1
(1.28) SpOfu = vpul, (EI—FD;)@?J{U:QJ{UI,

where the integral operators Si and D), the single-layer operator and the adjoint-
double-layer operator, respectively, are defined for ¢ € L%(T') by
(1.29)

aq)k Xy
S = [ Bubey)u)asty), Do i [ V)

o) Y(y)ds(y), xel.

(When T is Lipschitz, the integral defining Dj is understood as a Cauchy principal
value integral; see, e.g., [11, section 2.3].)

Both integral equations in (1.28) fail to be uniquely solvable for certain values of
k. (For the first equation in (1.28) these are the k such that k? is a Dirichlet eigenvalue
of the Laplacian in Q_, and for the second equation in (1.28) these are the k such that
k? is a Neumann eigenvalue.) The standard way to resolve this difficulty is to take
a linear combination of the two equations, which yields the integral equation (1.25),
where

1
(1.30) ko = §I—|— D;, — inSk,

the so-called coupling parameter n € R\ {0},2 and
(1.31) f(x) :=0fu! (x) —inyiul(x), xeT.

The integral equation (1.25) is usually considered as an equation in the space
L*(T), since Aj,, is a bounded and invertible operator on L*(T') (when 7 € R\ {0})
[11, Theorem 2.27], and both 9;Fu and f € L?(T) in the case of plane-wave or point-
source scattering [11, Theorems 2.12 and 2.46].

Although integral equations such as (1.25) have long been used to solve scatter-
ing problems, until recently little has been known about how quantities of interest

2 Although denoting the coupling parameter 1 might appear to be a notational clash with the 7
in the impedance boundary condition (1.2), the adjoint of the integral operator A;Cw can be used
to solve the interior impedance problem, and in this case the coupling parameter equals the 7 in
the impedance boundary condition; see [11, Theorem 2.30]. This relationship between the coupling
parameter and the 7 in the impedance boundary condition can also be seen in Lemma 1.10 below.
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(such as the norms of the operators) depend on k and 7. It turns out that bounds
on the norm of A}, L that are explicit in k and 7 can be obtained using standard
techniques for bounding norms of integral operators [11, section 5.5], [53, section 1.2,
section 1.4]. However, to obtain bounds on (A, ) ! that are explicit in k and 7, one
must use results about the exterior DtN map and the interior impedance-to-Dirichlet
map. Indeed, the following lemma is implicit in [12, Proof of Lemma 4.5] and [11,
Theorem 2.33], and proved explicitly in section 5.

LEMMA 1.10 (bounding the inverse of the combined potential operator). Let uy
satisfy Auy + k*uy = 0 in Q4 , the Sommerfeld radiation condition (1.4), and let
yiug € HY(T). Let u_ be the solution of the interior impedance problem (1.10) with
f=0,9g€L*T), andn € R\ {0}. If o, B, and § are such that, given ko > 0,

(1.32) "a+u+||L2(F) al|Vr(y +U+)HL2 )+5k||“/+u+||L2
and
(1.33) IVe(v-u)llzzry S 0119l 2 (ry

for all k > kg, then

(1.34) (A5 1||L2(F%L2(F) <1+a5+ﬁ| |)

for all k > ko and n € R\ {0}.

This lemma implies that if one can bound both the exterior DtN map and the
interior impedance-to-Dirichlet map, then one can bound (A}, n)_ Similarly, if one
can bound the exterior NtD map and the interior impedance-to-Dirichlet map, then
one can bound the inverse of the standard second-kind boundary integral operator
used to solve the exterior Neumann problem, and if one can bound both the exterior
and interior impedance-to-Dirichlet maps, then one can bound the inverse of the
standard second-kind boundary integral operator used to solve the exterior impedance
problem; see [11, Theorem 2.33].

If Q_ is a two- or three-dimensional Lipschitz domain that is star-shaped with
respect to a ball (in the sense of Definition 1.3(ii)), then the Morawetz-Ludwig DtN
bound (1.17) implies that (1.32) holds with a and 5 ~ 1. Furthermore, the bound on
the interior impedance problem (1.22) for this class of domains can be used to show
that (1.33) holds with 6 ~ 1+ k/|n| (see Remark 4.8). Lemma 1.10 then implies that

k
(1.35) I ko) 1||L2(F)—>L2(F) S1+ Inl
when _ is a two- or three-dimensional Lipschitz domain that is star-shaped with
respect to a ball; this result was first proved in [12, Theorem 4.3].

Using the bounds of Theorems 1.4 and 1.6 in Lemma 1.10, we obtain the following
theorem.

THEOREM 1.11 (bound on (14;777)‘1 for smooth nontrapping domains and non-
trapping polygons). If either Q. C RY, d = 2,3, is nontrapping (in the sense of
Definition 1.1) or Q_ is a nontrapping polygon (in the sense of Definition 1.2), then,
gien ko > 0,

) k3/4
(1.36) ||(A;€7n) 1HL2(F)—>L2(F) Sk o (1 - W)

for all k > ko and n € R\ {0}.
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Proof. The bound (1.7) implies that (1.32) holds with o and § ~ k. Corollary 4.7
shows that the analogue of the bound (1.11) when T is piecewise smooth implies
that (1.33) holds with § ~ k'/4(1 + k3/%/|n|). The bound (1.36) then follows from
Lemma 1.10. |

The numerical experiments in [10] indicate that the bound (1.36) is not sharp in its
k-dependence, since they show that ||(A;€7n)_l||L2(F)*>L2(]_") is bounded independently
of k when Q_ is a particular nontrapping and non-star-shaped polygon and n = k
(see [10, Figure 5.9]). This lack of sharpness is to be expected, since both the bounds
used to obtain (1.36), namely, (1.7) and (1.11), are not sharp.

Despite its lack of sharpness, the bound (1.36) is sufficient for the following nu-
merical analysis application: Lohndorf and Melenk have recently performed a k-
explicit convergence analysis of the Galerkin method applied to the integral equa-
tion (1.25) using piecewise-polynomial subspaces (the so-called hp-boundary-element
method) [31], [34]. An underlying assumption in this analysis is that, when || ~ ,
[(A%.) "Lz @y—r2@y S k* for some a > 0. This assumption was known to hold
for Lipschitz star-shaped domains via the bound (1.35), and Theorem 1.11 now es-
tablishes that this assumption holds for nontrapping domains in 2- or 3-d and for
nontrapping polygons.

1.4. Outline of paper. In section 2 we establish some notation and collect some
basic results that are used throughout the paper. In section 3 we prove Theorems 1.4
and 1.5 (the bounds on the DtN and NtD maps). In section 4 we prove Theorems 1.6
and 1.8 (the bounds on the interior and exterior impedance problems). In section 5
we prove Lemma 1.10.

2. Notation and basic results. We use the notation a < b to mean a < Cb
for some constant C' that is independent of k, n, and any other parameters of interest.
(Usually these will be explicitly stated.) @ 2 b means b S a. If a <band b < a, we
write a ~ b.

Let Q_ C R, d = 2,3, be a bounded, Lipschitz open set with boundary I' := 9Q_,
such that the open complement €2, := R\ Q_ is connected. Let n denote the outward-
pointing, unit, normal vector to Q_. Let Br := {x : |x| < R}, letT'r := {x: |x| = R},
and let Qr := Q4 N Bpg.

We denote the interior and exterior traces by v+, so that, for 1/2 < s < 3/2,
vt H3(Q_) — H*Y2(T) and vy : HE () — H*1/2(T"). We have the bound

(21) -l svnry S Nl for 1/2< 5 <3/2
[14, Lemma 3.6], [32, Theorem 3.38], and the multiplicative trace inequality
(2.2) v—ulzaey S lull 2y lellg o

[22, Theorem 1.5.1.10, last formula on p. 41]. If y € O (R%) and y = 1 in a

comp

neighborhood of T', then 4 (xu) = v+ (u) for all w € H (Q4) with 1/2 < s < 3/2
[51, Remark 2.6.10]. Therefore, if u € H .(21) and 1/2 < s < 3/2, then

(2.3) H’Y+U||H871/2(r) S ||XUHHS(Q+)’

and if u € H} _(94), then

2
(2.4) I+ ellz ) S Ixullpz@,) Ixullgq,) -
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Denote the surface gradient on I by Vr; see, e.g., [11, equation (A.14)] for the
definition of this operator in terms of a parametrization of the boundary. Recall that
Vr is a bounded operator from H'(T') to (L?(I"))¢ and, furthermore, if f € H*(T),
then

(2.5) Hf“Hl(F) ~ ||VFf||L2(F) + ||fHL2(F) :

The space H'(Q_, A) is defined to be equal to {u:u € H'(Q_),Au € L?*(Q_)} and
Hll()C(Q+’ A) = {U u e Hlloc(Q+)7Au S Ll200(9+)}'

Let OF denote the normal-derivative traces on Q4 (recalling our convention that
the normal vector points out of Q_). Recall that if u € H?(Q_), then 9, u :=
n-v_(Vu), and for u € HY(Q_, A), 9, u is defined so that Green’s first identity holds
(see, e.g., [11, equation (A.29)]).

LEMMA 2.1 (Green’s first identity). With D a Lipschitz domain, if u € H' (D, A)
and v € HY(D), then

(2.6) (Onu, y0)op = / (Vu - Vv +70Au) dx,
D

where (-,-Yop denotes the duality pairing between H=/2(0D) and H'/?(0D).

Whenever we say that u satisfies Au+ k?u = —f (for a given f), we always mean
that this equation is satisfied in a distributional sense. Note that interior regularity
of the Laplacian then implies that u is C*° outside the support of f and away from
the boundary (see, e.g., [32, Theorem 4.16], [19, section 6.3.1]). Therefore, if the PDE
is posed in €4 and f has compact support, the Sommerfeld radiation condition (1.4)
can legitimately be imposed.

Later in the paper, we consider the modified Helmholtz equation Av — A?v = 0 in
Q. for A > 0 with the condition that v is bounded at infinity. Interior regularity of
the Laplacian, separation of variables, and asymptotics of modified Bessel functions
then imply that v(x) ~ exp (=Ar)r~(@=1/2 as r ;= |x| — oo, and thus both v and Vo
are in L2().

We repeatedly use the inequality

as well as the inequality

b2
(2.7) 2ab < ea® + ~ for a,b, and € > 0.

(Following [19] we refer to (2.7) as the Cauchy inequality.)

We show in the next lemma that the H'-norm of a solution of the Helmholtz
equation in Q0 can be bounded by the L2-norms of the solution and the data. Variants
of this lemma can be found in [44, Lemma 1] and [9, proof of Theorem 2.8].

LEMMA 2.2 (bounding the H! norm via the L? norm and the data). Given
k>0 and f € L*(Q4) with compact support, let u € HE (Q4,A) be a solution of the
Helmholtz equation Au + k*u = —f in Q.

(a) If either y4u =0 or d;fu =0, then for any R > supycq_ |X|, given ko > 0,

(2.8) HV“HL2(QR) Sk HU‘HL2(QR+1) +E HfHL2(Q+)
for all k > k.
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(b) If Ofu+inyru = g on T, where g € L*(T') and n € R, then, for any R >

SUPyecq_ |X|, given ko > 0,

(2.9) IVull 20y S Kl p2ip, ) + 57 120, + K2 g/l 2
for all k > k.

Proof.
(a) Let F € C'[0, R + 1] be such that (i) F =1 on [0, R], (ii) 0 < F(s) < 1 for

s € [R,R+1], (iii) F(R+ 1) =0, and (iv) there exists an M > 0 such that
(F'(s))?/F(s) < M for s € [0, R+ 1]. (This last condition can be achieved
by requiring that F' vanishes quadratically at R + 1.) Let x(x) := F(|x]).
Then yu € H'(Qgy1) with y(xu) = 0 on I'gy1 and 4 (xu) = v+ u. Applying
Green’s identity (2.6) in Qpy; with v = yu, we obtain

(2.10) / x| Vu2dx = / (K*x|ul* —aVu- Vyx + xuf) dx,
Qr41 R+1

where we have used the facts that both (9;fu,vyu)r and (Onu,y(xu))re.,
are zero.
Using the Cauchy inequality (2.7), we have

\Y
/ uVu - Vydx| < X1/2|u||Vu|| 1;2' dx
QR-%—l QR+1 X
1 2
(2.11) < E/ x| Vul? dx + —/ |u|2&dx
2 QRr41 2¢e Qr+1 X
and
_ g 2 1 2
(2.12) Yaf dx| < = xlu? dx + = x| f[7 dx
Qri1 2 Qr+41 26 Qr+1

for any € and § > 0. Choosing e = 1 and 6§ = k? and using (2.11) and (2.12)
in (2.10), we obtain

1 3k2 1 Vx|?
—/ x| Vu? dx < — xlul? dx + —/ |u|2ﬂ dx
2 QR4 2 QRr41 2 QR4 X

1 / 9
+ — x| f]7 dx.
282 Jo.,

Since x > 0 on Q41 and x = 1 on Qpg, the left-hand side of (2.13) is >
HVuHiz(QR) /2. Condition (iv) above on the function F implies that [Vx|?/x
is bounded on Qx41. Using this fact in the right-hand side of (2.13), along
with the fact that x <1 on Qr11, we obtain the result (2.8).

This is very similar to the proof of (a), with the only differences being (i) one
takes the real part of the analogue of (2.10) (to eliminate a term involving
H'YJrUH%z(r))» (ii) at the end one uses the multiplicative trace (2.4) and Cauchy

(2.13)

(2.7) inequalities to obtain

k2
2 2 2
bl S (64 5 )l +€ 190l

and then one must choose € sufficiently small when using this inequality to
obtain the result (2.9). 0
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We now prove an interpolation result that allows us to “move” bounds on the
DtN and NtD maps between Sobolev spaces. To state this result, we denote the
DtN map in Q4 by PDtN and the NtD map by PX,'tD (following the notation in
[11, section 2.7]). Pj, is defined as a map from H'/%(I") to H~'/2(I) by standard
results about the solvability of the exterior Dirichlet problem and the definition of the
normal derivative. A result of Necas [47, sections 5.1.2 and 5.2.1], [32, Theorem 4.24]
(discussed in more detail in section 3.3 below) implies that P}, \; can be extended to a
map from H (') to L?(T'), and then a representation of Pj},, in terms of boundary-
integral operators means that PgtN can be extended to a map from H*t1/2 (T") to
H*=Y2(T) for |s| < 1/2 (see [11, Theorem 2.31]). Analogous arguments show that
Py, can be extended to a map from H*~/2(T) to H*t'/2(T) for |s| < 1/2.

LemMmA 2.3. With Q4, P DtN, and PNtD defined above,

||P[J)rtNHL2(I‘)—>H*1(F) = ||P£)rtN||H1(I‘)—>L2(F) )

(2.15) HpgtN||H1/2(F)—>H—1/2(F) < ||P£thN||H1(F)—>L2(F) ’

(2.16) ||P]J\?tDHH YD) L2(T) ||P]J\?tD||L2(F)—>H1(F) ’

(2.17) [PNep - 1/2(1)—H/2(T ||PNtD||L2(F)—>H1(F) :

Proof of Lemma 2.3. By interpolation, the bound (2.15) follows from the bound
(2.14), and similarly (2.17) follows from (2.16); see, e.g., [32, Theorems B.2 and B.11].
We now prove (2.14); the proof of (2.16) is very similar. To prove (2.14), first note
that, for ¢ € L*(T),

Pino ¥)r|
) 15 pt ) _ |<DW7’,
( ) || DtN¢||H ) wEHsll(lg\{O} ||¢HH1(F)

where, in this proof, (-, -)r denotes the real duality pairing between H ~*(I") and H*(T")
for |s| <1 (ie., (¢, ¢)r = [ p1pds when ¢, € L*(I)).

Using the radiation condition (1.4) and Green’s second identity (which can be
obtained from two copies of Green’s first identity (2.6) with the roles of w and v
interchanged in the second one), one can show that

(2'19) <P£>rtN¢a ¢>F = <P5rtN¢a ¢>F

for ¢ € H'/2(I') and o) € H'/?(T'). (Note that the fact that (-,-)r is the real duality
pairing is crucial; see [54, Lemma 4.10].) By the density of H'/2(T") in L3(I), (2.19)
holds for ¢ € L*(T) and ¢ € HY(T'). Therefore, (2.18) and (2.19) imply that, for
¢ € L*(T),

+ _ |<P1J7rtN¢’¢>F| +
HPDtN¢||H_1(F) - weHsl]&l]_P)\{Q} W =~ HPDtNHHl(]_")A)[P(F) |‘¢HL2(F)7

and thus ||P tNHL2(F)—>H ry < HP tNHHl(F)_)LQ(F) . A similar argument shows the

reverse inequality, and thus we have proved (2.14). a
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3. Exterior DtN and NtD bounds for Helmholtz (Theorems 1.4 and
1.5).

Overview of the proofs of Theorems 1.4 and 1.5. Following [28], we reduce the
problem of bounding the DtN and NtD maps for solutions of Au + k?u = 0 in € to

1. bounding the solution of Au + k?u = —f in Q, with zero Dirichlet or Neu-
mann boundary conditions, and
2. bounding solutions of Av — A?v = 0 in Q, in terms of their Dirichlet and
Neumann traces.
The bounds for the first task are given by the resolvent estimates summarized in
section 3.1. The bounds for the second task are given in section 3.2.

For the bounds on the DtN and NtD maps when v, u € HY (') and 9,fu € L?(T),
we need to use bounds originally proven by Necas on the solutions of second order
strongly elliptic systems. Proofs of these bounds in the general case can be found in
[47, sections 5.1.2 and 5.2.1] and [32, Theorem 4.24]. We prove them for the Helmholtz
equation in section 3.3, however, since we need to keep track of how the constants
depend on k (and this is not done in [47, section 5] and [32, Theorem 4.24]).

3.1. Summary of resolvent estimates. The following resolvent estimates are
key components in the proofs of Theorems 1.4 and 1.5.

THEOREM 3.1 (resolvent estimates). Let f € L%(Qy) have compact support, and
let u € HL (4) be a solution to the Helmholtz equation Au+ k?*u = —f in Q4 that
satisfies the Sommerfeld radiation condition (1.4). If either

(a) Q4 is a two- or three-dimensional nontrapping domain (in the sense of Defi-

nition 1.1) and one of y+u and 9, u equals zero, or

(b) Q_ is a nontrapping polygon (in the sense of Definition 1.2) and one of yiu

and O u equals zero, or

(¢) Q_ is a two- or three-dimensional Lipschitz domain that is star-shaped (in

the sense of Definition 1.3(1)) and vyu =0,
then, given ko >0 and R > sup,cq_ [X|,

(3.1) IVull 2,y + Ellull 20 S 120y

for all k > ko (where the omitted constant depends on ko and R).

References for the proof of Theorem 3.1.

(a) The bound (3.1) was proved in [58, Theorem 7] under a condition [58, Con-
dition D’] about the propagation of singularities that was later proved to
hold when €. is nontrapping in [36], [37]. (Note that for these geometries,
we also have that u € H?(Qg), and then lull 20y < K Nfllp2(o,) bY: €8,
combining the bound (3.1) with [22, Theorem 2.3.3.2].) The bound (3.1) in
the case of zero Dirichlet boundary conditions was also proved in [44, Theo-
rem 1.2D] (using the vector field constructed in [46, section 4]) when Q. is a
two-dimensional nontrapping domain and the curvature of I' does not change
sign infinitely often.

(b) The bound (3.1) was proved when §2_ is a nontrapping polygon in [8, Corol-
lary 3] using Vainberg’s argument and the propagation of singularities results
in [40]. (Note that [8, Corollary 3] proves that kllulr2.) S [1fllz2(0,), but
then the bound (3.1) follows by using part (a) of Lemma 2.2.)

(¢) The bound (3.1) was proved when Q_ is a star-shaped Lipschitz domain in
2- or 3-d in [12, Lemma 3.5]. (Actually [12, Lemma 3.5] only proved the
result for C° star-shaped domains, but the density result in [42, Appendix
A] means that the proof works for Lipschitz star-shaped domains; see Re-
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mark 3.8). To obtain this result, Chandler-Wilde and Monk used the identity
that arises from the multiplier (1.21) and then used a certain inequality [12,
Lemma 2.1] (proved using the asymptotics of Bessel and Hankel functions) to
deal with the contribution from infinity; in [55, Lemma 2.4] it is shown that
this inequality can also be proved using the identity arising from Morawetz—
Ludwig multiplier (1.18). We note that, using a limiting argument, the bound
(3.1) was then established for star-shaped domains with no assumption on the
smoothness of I', only the assumption that if x € 4, then sx € Q4 for ev-
ery s > 1 [12, Lemma 3.8] (and thus this second result contains the result
for Lipschitz star-shaped domains as a special case). For our DtN and NtD
bounds, we need I' to be Lipschitz (so that 9, u is well-defined), and thus we
cannot use this more general result. d
Remark 3.2 (bounds on the inf-sup constant). It is a standard result that, given
a variational problem, a bound on the solution in terms of the data is equivalent
to a lower bound on the inf-sup constant; see, e.g., [51, Theorem 2.1.44] or [26,
Theorem 2.15 and Remark 2.20]. Therefore, a corollary of Theorem 3.1 is that,
under the geometric conditions in the theorem, the inf-sup constants of the standard
variational formulations of the exterior Dirichlet and Neumann problems are > 1/k.
(The standard variational formulation of the Dirichlet problem is given by, e.g., [12,
equations (3.3) and (3.4)] or [48, equation (2.6.146)], and the standard variational
formulation of the Neumann problem is given by, e.g., [48, equation (2.6.147)] or [26,
equation (3.1.5)]). The proof of this result for the Dirichlet problem is given in [12,
Lemmas 3.3 and 3.4]; the proof for the Neumann problem is identical.

3.2. Bounds on the solutions of the modified Helmholtz equation.
LEMMA 3.3 (bounds on the solutions of modified Helmholtz in terms of their
Dirichlet and Neumann traces). Let Qi be as in section 2. If v € H () satisfies
Av — \2v =0, then, given Ao > 0,
(32) HVUHL2(Q+) +A ||UHL2(Q+) S AV ||7+U|\H1/2(r)
for all X\ > \o. Furthermore, if 0;7v € L*(T), then, given \g > 0,
(3'3) ”VUHL2(Q+) +A HU”L2(Q+) 5 /\71/2 ||81J{UHL2(F)

for all X > \g.

Proof of (3.3) and references for the proof of (3.2). The bound (3.2) is proved in
[6, Proposition 1] (see also [52, Proposition 2.5.1]).

The inequality (3.3) can be proved using Green’s first identity (2.6) as follows.
Since v and Vo are in L?(€4 ), we can apply Green’s first identity (2.6) in €2, and
this yields

/ (IVo]* + N o[*)dx = —(8;f v, v4v)r.

Q4

If 9;fv € L3(T), then

(3.4) vaHiz(m) + A2 ||UH§/2(Q+) = ||8:{UHL2(F) H7+U||L2(r) .

The multiplicative trace inequality (2.4) and Cauchy’s inequality (2.7) imply that
2 _

(3.5) Iv+oliamy S A7 (1901320, + X0l )

and then using (3.5) in the right-hand side of (3.4), we obtain (3.3). O
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Remark 3.4 (sharpness of the bounds in Lemma 3.3). The bounds (3.2) and (3.3)
are sharp in their A-dependence in both 2- and 3-d.
Indeed, when Q_ is the unit ball there exists a v(!) € H'(Q) satisfying Av(}) —
A2y =0 and
1 1
(3.6) [l )HHS(F) ~ |y )HHt(r)
for any s and ¢t. (This can be shown using almost identical arguments to those in

Lemma 3.12.) Using the definition of the normal derivative, one can show that the
bound (3.2) implies the bound

(37) Ha:UHHfl/z(F) /S A ||’Y+UHH1/2(F) )

see [29, Lemma 15] and [52, Proposition 2.5.2]. The asymptotics (3.6) then show that
(3.7) is sharp, and thus so is (3.2). Finally, using (3.5) we see that (3.3) implies that
Mvsvllee@y S 10 ]l L2ry, and thus the asymptotics (3.6) show that (3.3) is sharp.

3.3. DtN and NtD bounds modulo terms in the domain. In this section
we prove the k-explicit version of Ne€as’ result [47, sections 5.1.2 and 5.2.1], [32,
Theorem 4.24] applied to solutions of Au+ k*u = —f in Q, i.e., bounds on the DtN
and NtD maps in H(T')-L?(T") with the H'-norm of u in 0, and the L?-norm of f
in Q4 appearing on the right-hand sides.

LEMMA 3.5 (DtN and NtD bounds in H*(I')-L?*(T') modulo terms in the do-
main). Let Q4 be as in section 2. Given f € L*(Q) with compact support, let
u € HL . (Q4,A) be a solution to Au+ k*u= —f, and let R > supycq_ |X|.

(i) If yvyu € HY(T), then 8;fu € L*(T) and

(3.8)

2
H@J{UHLz(F) S HVF(7+U)HQL2(F) + Hqui?(QR) +k° HUHQL2(QR) + ||fH2L2(Q+) :
(i) If 0w € L*(T), then yyu € HY(T) and

2 2 2
||VF(“/+U)||L2(F) S ||8:u||L2(]_") + K ||A/+U||L2(F)

(3.9) +1Vullf 20 + B [ullza, + 11720y

To prove Lemma 3.5, we use a Rellich-type identity and its integrated form (Lem-
mas 3.6 and 3.7, respectively).

LEMMA 3.6 (a Rellich-type identity). Let v be a complexz-valued C? function on
some set D C R?, let Lv := Av + k?v, and let Z € (CY(D))? be real-valued. Then,
with the summation convention,

WR(Z - VoLlv) =V - [23%(2 Vo) + (Ko — |vu|2)z}
(3.10) + (V- Z)(|Vo]* = k*|[v|*) — 2R(9;Z;0,00,v).

Proof. Expand the divergence on the right-hand side. (See, e.g., [55, Lemma 2.1]
for more details.) O

Identities of the form MuvLv, where Muv is a derivative of v, are associated with
the name of Rellich due to Rellich’s introduction of the multiplier Mv = x - Vv in
[50]. Multipliers consisting of linear combinations of derivatives of v and v itself were
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introduced by Morawetz for the wave equation in [43] and the Helmholtz equation in
[45], [44]. (See [55, Remark 2.7] for more bibliographic details.)

LEMMA 3.7 (integrated version of the Rellich-type identity). For D a Lipschitz
domain, define the space V' by

(3.11) V= {v v e HY(D), Av € L3(D), v € HY(OD), dv € L2(8D)}.
If Z € (CY(D))? is real-valued and v € V, then

/ (2%(2 Vv L) — (V- Z)(|Vo]* = *|v]?) + 2%(aizjaivm)>dx
D

(3.12) = /8D [23?(Z Vv 0v) + (K |y]? = [Vo|*) (Z - n)}ds,

where the expression Vv in the integral on 0D is understood as Vr(vyv) + no,v, and
n is the outward-pointing, unit, normal vector to D.

Proof. This is a consequence of the divergence theorem applied to the identity
(3.10). The divergence theorem [, V-Fdx = [, F-nds is valid when Q is Lipschitz
and F € (C1(D))? [32, Theorem 3.34]. In [42, Appendix A] it is proved that D(D) :=
{U|p : U € C>®(R%)} is dense in V, and thus (3.12) holds for any v € V. O

Proof of Lemma 3.5. The fact that v, u € HY(T') implies that 9;7u € L?(T'), and
vice versa, was proved by Necas in [47, sections 5.1.2 and 5.2.1] (see also [32, Theorem
4.24]) using the identity (3.10). Instead of repeating Necas’ proof keeping track of
the dependence on k, we use his regularity result to justify applying the integrated
identity (3.12) in Q.

If R > supycq_|x|, then u € Vg, where the space Vg is defined by (3.11) with
D replaced by Qp. Indeed, (i) u € H} (Q4,A) implies that v € H'(Vg, A), (i) if
yiu € HY(T), then 9;7u € L?(T') by Necas’ regularity result and vice versa, and (iii)
interior H?-regularity of the Laplacian (see, e.g., [19, section 6.3.1, Theorem 1] or [32,
Theorem 4.16]) implies that yu € H*(I'g) and du/0n € L*(Tr).

Since u € Vg, the identity (3.12) holds with D replaced by Qg, v replaced by u,
and Z any real-valued, C"' vector field, i.e.,

/ (Z-0) (|0 ul* + K2yl = [Ve(r) ) + 2R (2 Vel w)ou) ds

Tul'g

(3.13) +/ 2R(Z-Vu f) + (V- Z) (|Vul> = K*[u]*) — 2R(8;Z;0;ud;u) dx = 0.
Qr

We now choose Z to be such that (a) there exists a ¢ > 0 such that essinfxer Z(x) -
n(x) > ¢, and (b) supp(Z) C Bg (and thus Z = 0 on I'g); such a Z exists by, e.g.,
[22, Lemma 1.5.1.9].

Rearranging the identity (3.13) and then using the facts (a) and (b) above along
with the Cauchy—Schwarz inequality, we obtain that

2
‘|8:{U‘|L2(F) 5 HVF(PYJru)Hi?(F) + HVF(PYJru)HL?(F) Ha:{uHLz(l—‘)
+IVull 2o 122 + HVU”;(QR) + kK ||UH2L2(QR) :

Using the Cauchy inequality (2.7) on the second and third terms on the right-hand
side, we obtain the DtN bound (3.8). The NtD bound (3.9) follows from the identity
(3.13) in a similar way. O

Remark 3.8 (bounds in Lipschitz star-shaped domains). The density result in [42,
Appendix A] that was used in the proof of Lemma 3.7 shows that the identities arising
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from the multipliers (1.18) and (1.21) hold when the domains are Lipschitz. Therefore,
the DtN bound (1.17) obtained by Morawetz and Ludwig in [45] and the bound on the
interior impedance problem (1.22) obtained by Melenk in [33, Proposition 8.1.4] and
Cummings and Feng in [15, Theorem 1] hold when Q_ is Lipschitz and star-shaped
with respect to a ball (in the sense of Definition 1.3(ii)).

3.4. Proofs of Theorems 1.4 and 1.5.
Proof of Theorem 1.4. Let a be such that a > sup,. [x| and let { € C>(Q4)
be such that

(x)=0 for |x|>a+1 and ((x)=1 for [|x|<a.
We consider v4u as known and define v € H*(Q4) as the solution of
Av—Xv=0 inQy and yv=9.u onT
with v(x) — 0 as 7 — co. Given v, we define h € L?(2,) by
(3.14) h:= —(k? + A\?)Cv — vAC — 2V( - Vo

(note that since ¢ has compact support, so does h), and we then define w € H{_(Q4)
as the solution of

Aw+k*w=h inQ, and ~yw=0 onl,

satisfying the Sommerfeld radiation condition (1.4).

The whole point of these definitions is that u := (v 4+ w is then a solution of
the homogeneous Helmholtz equation satisfying the Sommerfeld radiation condition,
and, furthermore, y4u = vy4u. By uniqueness, u = u, and thus we have expressed u
in terms of a solution of the inhomogeneous Helmholtz equation with zero Dirichlet
trace, i.e., w, and a solution of the homogeneous modified Helmholtz equation with
nonzero Dirichlet trace, i.e., v. (This result can therefore be understood as a kind of
“gluing” theorem.)

Using the triangle inequality and the resolvent estimate (3.1) we have that, given
ko >0,

190ll 2 gy + 1l 2y S 1900 22y + K 1ol 2y + Wl 22am)
for all k > ko. The definition of h, (3.14), implies that

(3.15) 1”22,y S VOl 2@,y + (K + %) 1ol 20,y »
and thus
(3.16) IVull 2oy + Ellull 2o S IVl 2@y + (K + %) vl z2(0p) -

Using the bound on the modified Helmholtz equation (3.2) and the fact that v, v =
Yi+u, we have

k4 N
BID IVl + iz A7 (14 552 Il

Choosing A = k minimizes the power of k in the factor in front of |[viul| g1/2(r); thus
we obtain

(3.18) IVull p20y + R llull 20y S F22 vl gasegry -
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We now use Lemma 3.5 (the k-explicit version of Necas’ result) to obtain the
bounds from H'(T') to L?(T") (1.6) and (1.7), and we then use the interpolation result
(2.15) from Lemma 2.3 to obtain the bound (1.5) from (1.6). Indeed, the bounds (3.8)
and (3.18) imply that

2 2 2 2
(3819)  [|0Full7aiy S IVECw i + K2 lrsulllay + 5 veulin s
we use 1 (3. the fact that ||[yiu| g1/2 S Y+ g1y, We obtaln the boun
If in (3.19) the f h H(F)< HY(I) btain the bound
(1.6). Alternatively, the interpolation result
2
||’Y+UHH1/2(F) < ||"/+U||L2(F) ||’Y+UHH1(P) )

[32, Lemma B.1 and Theorem B.11], the norm equivalence (2.5), and the Cauchy
inequality (2.7) imply that

(3.20) H7+U||§{1/2(r) S % (é HVF(7+U)H22(F) + (5k2 + é) ||7+U|2L2(F))
for any £ > 0. Using (3.20) in (3.19) yields

105 w7y S IV Gy + K2 sl Fagry
(3:21) 1 (I9r Gl + (o4 + 2 ) sl )

We now aim to make the right-hand side of (3.21) a multiple of the weighted-H(T")
norm squared. The choice € = 1 minimizes the power of k£ in front of the weighted
norm, and thus (3.21) becomes the result (1.7). 0

Proof of Theorem 1.5. Our goal is again to define v and w so that u = (v + w,
but this time 9, u is considered as known. We therefore define v € H'(€2) as the
solution of

Av—>v=0 inQy and Jfv=0 u onl

with v(x) — 0 as r — co. Given v, we define h again by (3.14), and w € H} (Q4) as
the solution of

Aw+kw=h inQ, and Jfw=0 onT,

satisfying the Sommerfeld radiation condition.
By using the bound on A (3.15) and the resolvent estimate (3.1), we again have
that (3.16) holds.
Using the bound on v (3.3) in (3.16), we obtain
1 K2+ X2\ oy
Vel + el S 5375 (15 ) 10l gy

When A = k£ this bound becomes
(3.22) IVull 2 T E lull p2@p) S k2 H@J{UHLQ(F) ;

and then the multiplicative trace inequality (2.4) and the Cauchy inequality (2.7)
imply that

2 2 2 2
(3:23) B lvulae S E(IVl 20 5 Nuliaqn ) S #1105 -
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Using the bounds (3.22) and (3.23) in (3.9) (the k-explicit version of Necas’ result),
we obtain the bound (1.9). This bound implies that ||y; ul| g1y S k|05 ul|L2r), and
then the interpolation result (2.17) from Lemma 2.3 implies the bound (1.8). O
Remark 3.9 (the difference between the argument here and the argument in [28]).
As discussed in section 1, the paper [28] proves the bounds (1.20) on the DtN and NtD
maps in the trace spaces when Q4 is nontrapping (in the sense of Definition 1.1). The
main differences between our argument for these spaces and theirs are the following:
(i) We use sharper bounds on the solution of the modified Helmholtz equation with
Dirichlet boundary conditions ((3.2) instead of the bound || Vv| 2 )+ Al|v]l 220,y S
M40l grrzry). (i) We use the Necas result (3.8) to bound [|0;f u/|2(r), and then
use interpolation to bound [|0,f ul| gr-1/2(r), whereas [28] effectively uses the fact that

(324) ||8:Lru||H_1/2(F) < ||8:Lru||L2(F) /S ||u||H2(QR)

and then uses the resolvent estimate on the H2-norm. (We say “effectively” because
28] bounds |0, ul| gy-1/2(ry by bounding [|0;f v[| gr-1/2(ry and [0 wl| gr-1/2(r), and the
inequalities (3.24) are used to obtain a bound on ||0;f wl| gr—1/2(r).)

3.5. How sharp are the DtN and NtD bounds? This section is devoted to
proving the following lemma.

LEMMA 3.10 (sharpness of the DtN and NtD maps). Let d = 2 or 3. If the
bounds on the DtN map

Ha:uHH—l/z(p) 5 A ||7+u||H1/2(F) )
||8;_u||L2(F) S B H’Y"I‘uHHl(F) ) and
(3.25) 0wl 2y S CUVEOw)ll 2y + Dk Iysull g2y

hold for all nontrapping domains (in the sense of Definition 1.1) or for all Lipschitz
domains that are star-shaped (in the sense of Definition 1.3(i)), then

Azk, Bzk Cz1, D21
If the bounds on the NtD map
H’HUHHl/z(r) SE H@J{UHH_l/z(F)
and
(Ve sl oy + sl ey ) S F 107 ]l o

hold for all nontrapping domains (in the sense of Definition 1.1), or for all Lipschitz
domains that are star-shaped (in the sense of Definition 1.3(i)), then

E>KY3 and F > k'3

COROLLARY 3.11. The bound on the DtN map from H*(T') to L*(T') for two- and
three-dimensional 2_ that are Lipschitz and star-shaped with respect to a ball given
by Morawetz and Ludwig in [45] (i.e., (3.25) with C ~1,D ~ 1) is sharp.

Lemma 3.10 is proved by considering the specific case of Q_ the unit ball. (Note
that in this section we use the notation that a < b if a/b — 0 as k — oo, and a > b
itb < a.)

LEMMA 3.12. If Q_ = By (the unit ball) in 2- or 3-d, then there exists a u(*) €
HL (Qy) that has 9uV) € L2(T) and satisfies AuV) + k*>uV) = 0, the Sommerfeld
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radiation condition (1.4), and the asymptotics

(326) [0 u ] sy ~ Fllre e e

(3.27) Ha:{u(l)HLz(r) ~ kHA/Jr”(l)HHl(r)’

B8 0 gy ~ ety and [V g =0
as k — oo.

Furthermore, given any increasing function of k, E(k), there exists a u? €
HL (Qy) that has 9 u® € L2(T) and satisfies Au® + k*u®) = 0, the Sommerfeld
radiation condition (1.4), and the asymptotics
(3.29)

||5f{u(2)HL2(F) ~ ||VF('7+U(2))HL2(F) and ||VF(7+U(2))HL2(F) >>5(k)k||7+u(2)HL2(r)7

as k — oo.
Finally there ezists a u®® € H} (Q) that has 9;fu® € L*(T') and satisfies
Au® + k2u® =0, the Sommerfeld radiation condition (1.4), and the asymptotics

(3.30) ||’Y+“(3)HH1/2<F> ~ k1/3‘|agu<3>||H_1/2(F),
(3.31) ||VF(’Y+U(3))||L2(F) + k}|7+u(3)}|p(p) ~ k”‘”’}|3iu<3’||m<ry
as k — oo.

Proof of Lemma 3.10 using Lemma 3.12. The asymptotics (3.26) imply that
A 2 k, the asymptotics (3.27) imply that B = k, and the asymptotics (3.28) imply
that D 2 1. The asymptotics (3.29) then imply that C' = 1. Note that, for this last
implication, the arbitrary increasing function D(k) is needed in (3.29) since, although
(3.28) implies that D in (3.25) must be > 1, we cannot rule out the possibility that
D grows with k. The second bound in (3.29) ensures that C||Vp(v4u®)||p2(r) is the
dominant term on the right-hand side of (3.25), regardless of any potential growth in
D. Finally, the asymptotics (3.30) imply that E > k/3, and the asymptotics (3.31)
imply that F > k'/3. d

Proof of Lemma 3.12. We first consider the two-dimensional case. The functions
Uy, defined by

HY (kr)

imé
,(nl)(k) e mez,

U (1, 0) 1=

L.(Q4) and satisfy Au,, + k*u,, = 0, the Sommerfeld radiation condition,
and 9,7 u,, € L?(T). Furthermore, v, u, () = exp (im#) and

are in Hi

du aY (k) |
+ _ m _ m imé
O um (0) = o (1,6) kir(nl)(k) e,

Define the Fourier transform of a function f : [0,27] — C by f(n) = fozﬂ exp (—inf)

f(0)dd. We then have that u,,(1,0)(n) = 27 dnm, and the definition of Sobolev
spaces on I in terms of the Fourier transform implies that ||y, ||? sy ~ (14 m?)*,

HVF(’YJrUm)||2L2(F) ~m?, and

Nz, (k)
M, (k)

||5,J{umHZS(F) ~ k2 (1+m2)5,
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where

Non(k) i= | HY' (k)

o Mu(k) = D)

and ~ is meant as in section 2 but with the omitted constant independent of k& and
m. As k — oo with m fixed, N, (k) ~ M,,(k) [1, equations (9.2.28) and (9.2.30)].
Therefore, the bounds (3.26)(3.28) hold with u™) := .

To prove that there exists a u(?) satisfying (3.29), first note that ||V (4 um)|| 2
~ m and |4 Uml[z2(r) ~ k. Therefore, to prove that (3.29) holds, we need to show

that, given any D(k), there exists an m (as a function of k) such that

N, (k) 2
M%(k)wm as k — oo.

(3.32) m> D(k)k*> and k>

We now use the uniform asymptotic expansions of Hl(,l)(uz) and Hl(,l)/(uz) as
v — oo (uniform for all z € (0,00)), aiming to ultimately let v = m and z = k/m.
The condition that m > D(k)k? as k — oo for some increasing function D (k) certainly

implies that m > k as k — oo. Therefore, when looking at Hl(,l)(uz) and H,El)/(uz),
we are interested in the case that z — 0. .

Using the uniform asymptotic expansions of H,El)(l/z) and H,gl) (vz) given by,
e.g., [1, equations (9.3.37) and (9.3.45)] or [49, equations (10.20.6) and (10.20.9)], we
find that

. ) . 2
B ¢) + e2mi/3 Aife)

L1/3

as v — 00,

e ()

. . i’ (a :
) aruadtia )

uniformly for z € (0,00), where o := exp (27i/3)1?/3¢,
2 1+v1—22
§C3/2 .= log (#) —V1- 22
z

Co(€) is a function that ~ ¢%/2 when z — 0 and v — oo, and By(() is a function that
~ —("Y2 when z — 0 and v — oco. Since ¢ and v are both real, a € exp (27i/3)R.
If z — 0, then ¢(z) ~ [log(1/2)]*/3, and then a — o0 as v — oo and z — 0. The
asymptotics of Ai(a) and Ai'(«) are then given by

e B

)~ g et

and  Ai'(a) ~ —a/? Ai(a)  as a — oo,

where 3 := 2a%/2 /3 [49, equations (9.7.5) and (9.7.6)]. Using these asymptotics, and
the fact that exp (27i/3)a!/? = —v¥/3¢1/2 we find that

NE(Vz) 1— 22 Co(¢) + V(l/z
(3.33) M2(vz) ™ ( = ) v+ (72Bo(0)

Using the facts that ¢ — oo, Co(¢) ~ ¢'/2, and By({) ~ —¢~? as v — oo and z — 0,
we have that

2

NEwz) 1

M2(vz) 22




WAVENUMBER-EXPLICIT BOUNDS IN ACOUSTIC SCATTERING 3011

as v — oo and z — 0. If we let v = m and z = k/m, then this implies that
JNAR)
M, (k)
as k — oo and m — oo with m > k. Therefore, given any increasing function of £,
D(k), if we choose m to be a function of k such that m > D(k)k? and let u? := u,,,

then the asymptotics (3.32) (and thus also the asymptotics (3.29)) hold.
Finally, we let u(® := u;. The definition of u,, above implies that

[v4vwmll ey Moo (k) (1+m?2)1/?
[ unllsa, ~ Nnl®) R

(3.34)

The asymptotics
(3.35) Ni(k) ~ k722 and My (k) ~ k=173

[1, equations (9.3.31)—(9.3.34)], [49, equations (10.19.9) and (10.19.13)] then imply
(3.30). Similarly, the asymptotics (3.35) also imply (3.31).
In the three-dimensional case the argument proceeds almost exactly as before
with
(1
Upm (1,0, ) = hl(T(kr)
hy (k)
where Y} ,,, (0, ¢) are the spherical harmonics defined by [49, equation (14.30.1)]. (Note
that [ now plays the role that m played in the two-dimensional case.) The asymptotics
(3.26)(3.28) are satisfied if u(") := ug o, the asymptotics (3.29) are satisfied if u(?) :=
uy,0 and [ is taken to be > D(k)k?, and the asymptotics (3.30) and (3.31) are satisfied
with u(® = U0 a
Remark 3.13 (How sharp is Babich’s bound on the NtD map?). We have ||v4
U || Loy = 1 and |0 tm || Loo(ry = ENpm (k) /My, (k). If m = k, then this last quantity
~ k?/3 as k — oo, and therefore the bound (1.19) on the NtD map is at most k/6
away from being sharp.

Yim(0,0), 1€ZT, m=—1,...,1,

4. Bounds on the interior and exterior impedance problems. In this
section we prove Theorems 1.6 and 1.8. We go through the argument for Theorem
1.6 (which concerns the interior problem) in sections 4.1-4.2 and then outline the
necessary modifications to prove Theorem 1.8 (which concerns the exterior problem)
in section 4.3.

We begin by defining precisely what we mean when we say that a function u
satisfies the interior impedance problem.

DEFINITION 4.1 (interior impedance problem). Given a bounded Lipschitz do-
main Q_ C RY d = 2,3, with boundary T, functions f € (HY(Q_)) and g €
H-Y2(T), and n € R\ {0}, we say that u € H'(Q_) satisfies the interior impedance
problem if

(4.1) a(u,v) = F(v) for allv e H'(Q),

where

(4.2)

a(u,v) :z/ (Vu-Vo—k?uv) dx—in/’y_u’y_—vds and F(v):= (f,v)a_+{g,7-v)r,
_ r

where (-, )a_ and (-,-)r denote the duality pairings on Q_ and T, respectively.
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Therefore, the condition that u satisfies the PDE and boundary conditions (1.10)
in Theorem 1.6 is to be understood as u satisfying the variational problem (4.1).

Green’s first identity can be used to show that if n € R, then the solution to the
interior impedance problem is unique; see, e.g., [18, Example 2.1]. The sesquilinear
form a(-, -) satisfies a Garding inequality, and then Fredholm theory gives the existence
of a solution to the variational problem (4.1); see, e.g., [51, Theorem 2.1.60], [32,
Theorem 2.34].

To prove Theorem 1.6, we use the argument that Esterhazy and Melenk used
to prove the bound (1.24) (which is closely related to the argument that Feng and
Sheen used to prove the bound (1.23)—see Remark 4.9). This argument consists of
the following two steps.

Step 1. Bound the solution of the interior impedance problem with f = 0 in
terms of g. To do this, use Green’s integral representation and bounds on the integral
operators to bound u in terms of its Cauchy data (9,, u and y_u), and then bound
the Cauchy data by ¢ using Green’s first identity.

Step 2. Convert the inhomogeneous problem (i.e., with f # 0) into a homogenous
one by using the Newtonian potential. Then use bounds on the Newtonian potential
(also known as free resolvent estimates) along with the bounds obtained in Step 1 to
obtain a bound on the solution of the interior impedance problem with f # 0.

Our improved bounds in Theorem 1.6 are the result of improved layer-potential
bounds in Step 1. For completeness we also give the (short) argument in Step 2,
although it is identical to that appearing in [18, section 2.1]. Before we present these
arguments, we sketch a proof of Corollary 1.7.

References for the proof of Corollary 1.7. The argument that shows that the
bound (1.11) can be used to prove the bound (1.14) can be found in, e.g., [18, Theo-
rem 2.5] or [12, text between Lemmas 3.3 and 3.4]. The result (1.15) about the inf-sup
constant then follows from, e.g., [51, Theorem 2.1.44]. O

4.1. Bounds on the problem with f = 0 (Step 1). We begin by recalling the
fairly well-known result that the Cauchy data of the solution to the interior impedance
problem with f = 0 can be bounded in terms of the impedance data g. (This is given
in [12, equations (4.26) and (4.27)] and [18, Lemma 2.2].)

LEMMA 4.2. Ifu € HY(Q_) satisfies the interior impedance problem of Defini-
tion 4.1 with f =0 and g € L*(T"), then

_ 1
(4.3) Han UHLz(p) < HQHL2(F) and ||’77U||L2(1‘) < m Hg||L2(F)'

Proof. Since u € H*(Q2_, A) we can apply Green’s first identity (2.6) in Q_ with
v = u and take the imaginary part to obtain

(4.4) E‘s/ J-u 0,, uds = 0.
r

Using the impedance boundary condition (which holds as an equation in L?(T) as a
consequence of the variational problem (4.1) and the definition of the normal deriva-
tive) to express 0, u in (4.4) in terms of y_u and g yields

(4.5) nly-ulfem +S [ 7ugds =0.
() .

Then, using the Cauchy—Schwarz inequality on the second term in (4.5), we obtain the
second bound in (4.3). Similarly, using the impedance boundary condition to express
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v—u in (4.4) in terms of J, u and g and then using the Cauchy—Schwarz inequality
yields the first bound in (4.3). O

We now recall some facts about layer potentials. For ¢ € L?(T'), the single- and
double-layer potentials are defined by

(4.6)

5100 i= [ ulxy)oly)dsty), Duol) = [ )

d
T on) p(y)ds(y), x€R\T,

where @ (x,y) is defined by (1.27).
If x € Cp(RY), [s] <1/2, and k > 0, then

XSk : HS7VA) — H*YRY)  and  xDy : HPY2(D) — HL(Qy).

For |s| < 1/2 these mapping properties can be obtained from Green’s integral repre-
sentation and mapping properties of the Newtonian potential; see [14, Theorem 1],
[51, Theorem 3.1.16], or [32, Theorems 6.11 and 6.12]. To establish the properties in
the limit cases of s = £1/2, one needs the harmonic analysis results summarized in,
e.g., [11, Theorems 2.15 and 2.16]. (Note that the mapping properties for |s| < 1/2
can be obtained from those for s = +1/2 by interpolation.)

LEMMA 4.3 (bounds on the single- and double-layer potentials for Lipschitz T').
Let d = 2 or 3. With Sk and Dy defined by (4.6), if x € ngmp(Rd), then, given
ko >0,

1/2 E1/2

(4.7) ||XSk||L2(F)—>L2(Rd) SkT and HXDkHL2(F)—>L2(Rd) S

for all k > k.

While this paper was being written, Han and Tacy [23] also investigated the
wavenumber-dependence of the norms of the single- and double-layer potentials. By
using results about quasimodes and their restrictions to the boundary, Han and Tacy
proved sharper bounds than those in Lemma 4.3 in the case that I' is piecewise smooth.

LEMMA 4.4 (bounds on the single- and double-layer potentials for piecewise
smooth I" [23, Theorems 1.1 and 1.4]). Assume that I' is piecewise smooth. With
Sk and Dy defined by (4.6), if x € C5pp(RY), then, given ko > 0,

(4.8) ||X8k||L2(F)HL2(Rd) S kY and HXDk||L2(F)%L2(Rd) S

for all k > k.

Note that the bound on Sy, in (4.8) is sharp if I' contains a flat piece (in either 2-
or 3-d) [23, section 4.1], and the the bound on Dy, is sharp if Q_ is a two-dimensional
ball [23, section 4.2].

Remark 4.5 (comparison of the bounds in Lemma 4.3 with previously obtained
bounds). In [20, Theorems 3.4 and 4.5 and Lemma 3.5] Feng and Sheen prove that

(4.9) HXSk||L2(F)_>L2(Rd) <1 and ||XDkHL2(r)—>L2(Rd) S1+k

for all & > 0. These bounds are then used to prove the bound on the interior
impedance problem (1.23). A consequence of [34, Theorems 4.1 and 4.2] is that,
given kg > 0,

(4.10) HXSIC||H*1(F)—>L2(Rd) Sk and HXDk||L2(F)—>L2(Rd) Sk
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for all & > ko, and these are the bounds that Esterhazy and Melenk used to ob-
tain (1.24). We note that, first, this involves using the generous estimate that
XSkl L2(r)— L2 Ry < [IXSkIl -1 (1)—> £2(Ray and, second, that the novel decompositions
introduced in [34] that (4.10) are consequences of are not designed to produce sharp
norm bounds. Indeed, the decompositions in [34] split these operators into parts with
finite regularity but k-independent norm bounds and parts that are strongly smooth-
ing with k-explicit bounds for their derivatives; these properties are then key in the
analysis of the hp boundary element method in [31].

Proof of Lemma 4.3. The idea of the proof is to obtain the bounds on Sy and Dy
in (4.7) by using, first, the definition of these operators in terms of the Newtonian
potential and, second, bounds on the Newtonian potential (the so-called free resolvent
estimates). We begin by recalling some facts about the Newtonian potential and these
estimates.

Given f € L%(R?) with compact support, let Ny f be the Newtonian potential of
f defined by

(4.11) Ny f(x) ::/ p(x,y) f(y)dy, xR

Rd

If x1 and x2 are both in Cé’g’mp(Rd)7 then x1Nixe : H*(RY) — H**t2(R9) for any
s € R [32, Theorem 6.1]. We have that (A + k*)N%(f) = —f [32, Theorems 6.1 and
9.4] and N}, f satisfies the Sommerfeld radiation condition (1.4). Furthermore, for any

R >0 and kg > 0,
(4.12) F NG ) + INkF Il @) + EINVES |2y S 1122 ray

for all k > ko, where the omitted constant depends only on R and k. This bound
is known as the free resolvent estimate (“free” in the sense that, compared to the
resolvent estimate in Theorem 3.1, there is no obstacle) and was proved by Vainberg
in [58, Theorems 3 and 4]. (For some discussion on the appearances of this type of
estimate in the literature, see [11, Remark 5.9].)

The adjoint of Ny, N is defined by

pf(x) = /Rd r(y,x) f(y)dy, xeR%

We have that N} f = Ny f, and so the estimate (4.12) holds also for AV}.
The definitions of the single- and double-layer potentials (4.6) imply that, for
€ L) and f € ng’mp(Rd),

(4.13) (Skth, f)ga = (0 ANLF) e and  (Dith, ) e = (8,0 NLS) 1

where (-, -)ga denotes the L2-inner product on RY, and (-,-)r denotes the L2-inner
product on T see [32, p. 202], [51, Definition 3.1.5]. (Note that the Dirichlet and
Neumann traces in (4.13) can be taken to be those from either the interior or the
exterior. This is because N f and its derivative are continuous across I' due to the
mapping properties of N and the fact that f € ngmp(Rd).)

Using the first equation in (4.13), the Cauchy—Schwarz inequality, and the mul-
tiplicative trace inequality (2.2), we obtain that, with ¢» € L?(T') and x and f €
O (RY),

comp

1/2
|OcSkts £pal < 1902y IWNEF 2y S 19002y (”Nl;fHL%QR) ||N12f||H1(QR))
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for any R > supycq_ |x|. Using the resolvent estimate (4.12), this last inequality
becomes

(4.14) |(x31c¢, f)Rd} Sk ||¢||L2(r) ||f||L2(]Rd) :

The inequality (4.14) holds for all f € ngmp(Rd), and thus for all f € L2(R?) by the
density of 0 (R%) in L?(RY). Therefore, we have that

comp
| (X8k¢7 f)Rd|
rer2®dy,f20 1 fll2me

1
||X8kw||L2(]Rd) = SJ k1/2 ||w||L2(]_") )
and the bound on ||xSk||2(r)— L2(re) in (4.7) follows.

Similarly, with ¢ € L*(T") and y and f € ngmp(Rd),

(4.15) |(XDk1/)7f)Rd‘ < ||¢||L2(F) ||8anéf||L2(F) '

Since N} f € H?(R?), we have 0,N|f = n-vV(N]f), and then the multiplicative
trace inequality (2.2) implies that

1/2
(4.16) 10N Flary S (N iy IV 2y )

for any R > sup,cq_|x|. Using (4.16) and the resolvent estimate (4.12) in (4.15) we
obtain that

|(XDrt, f)ga| S K2 191 2y 1f 1| p2(ay »

and then the bound on ||[xDylL2(r)— 12(re) in (4.7) follows. |

To prove the following lemma, we first use Green’s integral representation and the
bounds on the layer potentials given by (4.7) and (4.8) to bound the solution of the
homogeneous Helmholtz equation in terms of its Cauchy data. We then use Lemma
4.2 to bound the Cauchy data by ||gz2(r).

LEMMA 4.6. Let u € HY(2_) be the solution of the interior impedance problem
of Definition 4.1 with f =0 and g € L*(T'). Then, given ko > 0,

k

(4.17) IVl y + lellza y S 172 (1 ) ol

for all k > ko. Furthermore, if I' is piecewise smooth, then, given kg > 0,
k

(4.15) 9l + el y S (8404 25 lallage

for all k > k.
Proof. Green’s integral representation implies that v = S0, u — Dyy_u [32,
Theorem 7.5], and then the bounds (4.7) on S and Dy, imply that, given kg > 0,

(419) ||u||L2(Qi) ,S k71/2 (Harjunlg(p) +k ||’Y—u||L2(F))
for all k > ko. The bounds (4.3) on the Cauchy data then imply that
(420) lull sy < K2 (14 25 ) ol

: L2(Q_) ~ |T]| g L2(T)

which is the bound on [Jul[z2(q_) in (4.17).
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To obtain the bound on [[Vul| 2 ) in (4.17), we apply Green’s first identity
(2.6) in 2_ with v = uw and use the impedance boundary condition to obtain

IVulBao ) — B ey = in -l + / g7ads,

Taking the real part of this equation, using the Cauchy—Schwarz inequality, and then
using the second bound in (4.3), we obtain that
2 2 1 2
||vu||L2(Q,) Sk HUHL2(Q,) + m ||g||L2(r) :

Using the bound (4.20) in the term involving [|ul[z2(q_), we obtain the bound on
[Vul[r2(q_y in (4.17) and hence the result (4.17) itself. The improved result (4.18)
when I' is piecewise smooth follows in a similar way by using the bounds (4.8) instead
of (4.7). O

COROLLARY 4.7. If u satisfies the interior impedance problem of Definition 4.1
with f =0 and g € L*(T), then, given ko > 0,

k
(4.21) Ve (v-w)ll 2y S B2 (1 + W) 91l 22 ry

for all k > kg. Furthermore, if I is piecewise smooth, then, given ky > 0,

k
(4.22) Ve G-l £ (K74 + ) lallixg

for all k > k.
Proof. Repeating the argument in the proof of Lemma 3.5 for )_ instead of 2,
we obtain the bound

2 o2 2 2 2
(4.23) [Vr(v-u)llz2m S 10, U’HL2(F) +k? lv-ullzzmy + IVullpeq )+ k? lullz2)

(recalling that f = 0). The result (4.21) follows from (4.23) using the bounds on
105 ull 2 ry and ||y—u| p2(ry in (4.3) and the bounds on ||Vul[z2(q_) and [Jul| 2 ) in
(4.17). The result (4.22) follows in a similar way by using the bound (4.18) instead
of (4.17). O

Remark 4.8. 1f u satisfies the interior impedance problem with f = 0 and g €
L?(T) and Q_ is star-shaped with respect to a ball (in the sense of Definition 1.3(ii)),
then, given kg > 0,

k
(4.24) 195 (v )l (1 ; m) T

for all k > ko. (Note that our bound for general Lipschitz Q_, (4.21), is a factor of
k2 worse.)

The bound (4.24) can be proved in one of two ways. The first consists of using
the bound on the solution in the domain (1.22) and the bounds on the Cauchy data
(4.3) in the bound (4.23). The second consists of using the fact that, under the star-
shapedness assumption, integrating the identity arising from the multiplier (1.21) over
Q_ shows that, given kg > 0,

HVF(PY*U)HL?(F) < ||5;UHL2(F) +k HV*UHL?(F)

for all k > ko, and then (4.24) follows by using the bounds (4.3). The bound (4.24)
was proved in [12, proof of Lemma 4.5, equation (4.28)] via the second method.
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4.2. Bounds on the problem with nonzero f (Step 2).

Proof of Theorem 1.6 using Lemma 4.6. The strategy is to reduce the problem
with f # 0 into a problem with f = 0 and then use Lemma 4.6.

Given f € L?(Q2_), let ug := N f. The bound (4.12) then holds for uy with the
norms on the left-hand side all on Q_. If g := g — (9, uo — iny—uo), then we have
that w := u — ug satisfies

ATL+ku=0 inQ_ and 9 ,u—inyu=g onl.

Using the triangle inequality, the bound (4.17) for @, and the resolvent estimate (4.12)
for ug, we obtain that

k -
(4.25) IVull 2oy + KNl ooy S K72 (1 + W) 192y + 112y -

Therefore, we only need to bound |[g|[z2ry in terms of ||g||z2ry and || f[|z2(q_). The
definition of g implies that

|‘§|‘L2(F) < HgHL2(F) + ||87:u0HL2(F) + |77| |‘7—u0||L2(F) :

Since ug € H?(2_), we have that 9, u = n-v(Vuy), and then using the multiplicative
trace inequality (2.2) and the resolvent estimate (4.12), we have

_ 1/2 1/
19020y S 19l ey + (Mol gy Muollazaa_y )+ Il (ol oy Nuoll iy )
]
Sl + 872 (14 ) 1l o .

Using this last bound in (4.25) yields the result (1.11). The improved result for piece-
wise smooth I' comes from using the bound (4.18) instead of (4.17) at the beginning
of the proof (to obtain an improved factor in front of ||g||z2(ry in (4.25)). |

Remark 4.9 (Why not just do everything from Green’s integral representation
with f # 07). To prove Theorem 1.6, we first proved bounds on the interior impedance
problem with f = 0 using Green’s integral representation (resulting in the bound
(4.17)) and then used bounds on the Newtonian potential, N, to prove bounds on
the interior impedance problem with f # 0.

Alternatively, we could start from Green’s integral representation with f # 0,

u = Sk@;u — Diy—u —I-Nkf,

and then use the bounds on S, Dy, and N}, given by (4.7) and (4.12), along with the
impedance boundary condition, to obtain

Ul 1 1
(4.26)  Jullp2iq_y S K2 <1 + ) =tllzey + 22z l9llzay + £ 1f L2y -

The argument involving Green’s first identity that led to the bounds (4.33) for the
problem with f =0 can be used to prove that

I 1 € 1
(4.27) > Y-l 72y < % £ 120y + 3 720y + 2l gl 72
for any ¢ > 0, and then this bound can be used in (4.26) to prove a bound on u in
terms of g and f. (This is exactly the method used in [20] with the bounds on Sy, and
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Dy (4.9) used instead of (4.7) and the weaker bound [Ny fl|r2_) S | fll 2o used
instead of (4.12).)

When || Z k, this method results in a bound identical in its k- and n-dependence
to (1.11). When |n| < k, this method yields a bound that is weaker than (1.11) in its
k- and n-dependence.

LEMMA 4.10 (sharpness of the interior impedance bounds). If the bound on the
solution of the interior impedance problem with f € L*(Q_), g € L*(T"), and n = +k

(4.28) IVull 2y +Ellull 2@y S Allgllremy + Bllflz2@ )
holds whenever Q_ is a bounded Lipschitz domain in 2- or 3-d, then
A> kY2 and B>1.

Lemma 4.10 is proved by combining the following two lemmas.
LEMMA 4.11. If Q_ = By (the unit ball) in 2- or 3-d, then there exists a u(*) €
HY(Q_) that has 8;;u™") € L*(T) and satisfies Au™ +k*u™ = 0 and the asymptotics

(4.29) H@ju(l) +tikvy_u ~ kly-u as k — oo.

(1)||L2(F) (1)||L2(F)

LemMMA 4.12. If Q_ is any bounded, Lipschitz domain, then there exists a
f € L3(Q2_) such that, if u is the solution of the interior impedance problem of Defi-
nition 4.1 with g =0 and f = f, there exists a ko > 0 such that

(4.30) kllullzzay 2 172

for all k > k.

Proof of Lemma 4.10 using Lemmas 4.11 and 4.12. The bound B = 1 follows
immediately from the bound (4.30) in Lemma 4.12. To prove the bound A > k~1/2,
we consider the function u(*) of Lemma 4.11 and use the multiplicative trace inequality
(2.2), the Cauchy inequality (2.7), and the bound (4.28) to obtain that

(4.31) kl/ZHV—u(l)Hm(r) S Ao, ult) £ i]W—u(l)HH(F)'

Using the asymptotics (4.29) in (4.31), we obtain that A4 > k—1/2, O
Proof of Lemma 4.11. We first consider the two-dimensional case. The functions
Uy, defined by

U (1,0) := Ty (k) ™0 m € Z,

are in H*(Q_), satisfy Au,, + k*um, = 0, and have 9;fu,, € L?(I"). Furthermore,
[v=tmll L2y ~ [Jm(F)| and

105t = Wyt ey ~ B (0 (8)) 4 (o (R))

as k — oco. When m is fixed, |J), (k)| ~ |Jn (k)| [1, equations (9.2.5) and (9.2.11)],
[49, equations (10.17.3) and (10.17.9)], and thus if u(!) := w,, for any (fixed) m € Z,
then the asymptotics (4.29) hold.

In the three-dimensional case, the argument proceeds almost exactly as before
with

ul,m(r797¢) = ]l(kr) Y—l,m(97¢)a le Z+7 m = _la . '7l'
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We find that the asymptotics (4.29) are satisfied if u(*) := w; ¢ for any (fixed) I €
7. d
Proof of Lemma 4.12. Given Q_, choose a w € C3 . (2_) and define f by

comp

f(x) = —eikm <Aw(x) + 2ikg—;”l(x)) .

This definition implies that %(x) := e**1w(x) satisfies Ali+ k2% = —f in Q_. Since &

has compact support, 0, w — iny—u = 0 on I'. Therefore, by uniqueness, the solution
of the interior impedance problem, u, equals u. The definition of f implies that

ow

Hﬂ|L2(Q_) S HAw”Lz(Q_) +k Ha—xl

b

L)

since both [|[Awl|z2q_y and [[Qw/0x1| 2 ) are
lw]|2(_), the bound (4.30) holds. O

The construction in Lemma 4.12 was used in [12, Lemma 3.10] to essentially prove
that the resolvent estimate (3.1) under zero Dirichlet boundary conditions is sharp.
We say “essentially” because actually [12, Lemma 3.10] proves that the bound o = 1/k
is sharp, where « is the inf-sup constant of the standard variational formulation of
the exterior Dirichlet problem. However, since a lower bound on the inf-sup constant
is equivalent to a resolvent estimate (see Remark 3.2) [12, Lemma 3.10] proves that
the resolvent estimate for the exterior Dirichlet problem is sharp. Note that the
argument as written in Lemma 4.12 can be easily modified to apply to the exterior
Dirichlet, Neumann, or impedance problems (since any function in Cg5,,, (€24 satisfies
the radiation condition (1.4)).

S lwllzzy, and [ullpeo ) =

~

4.3. Modifications needed to prove the bound on the exterior problem.
As in the interior case, we begin by defining precisely what we mean when we say
that u satisfies the exterior impedance problem.

DEFINITION 4.13 (exterior impedance problem). Given a bounded Lipschitz do-
main Q_ C RY d = 2,3, with boundary T, functions f € (H'(Q4)) and g €
H=Y2(T), and n € R\ {0}, fir R > supycq |x| such that suppf C Bpg. Let
Qg = Q, N Br and let T := O0Br. We then say that v € H'(QR) satisfies the
exterior impedance problem if

(4.32) a(u,v) = F(v) for allv € H(QR),

where
a(u,v) := / (Vu - Vv — E*up) dx — in/ v+uFzvds — (Tr(yu), y0)p
Qr r

and

F(v) == (f,v)a_ — (9,7+V)r,

where (-,Ya_, (-,-)r, and (-,-)r, denote the duality pairings on Q_, T, and T'g,
respectively, and T is the DtN operator on I'r. (See, e.g., [12, equations (3.5) and
(3.6)], [48, section 2.6.3], or [35, equations (3.7) and (3.10)] for the definition of Tr.)

Given au € H(QR) satisfying the exterior impedance problem of Definition 4.13,
this u has a natural extension to a function in H} (). Indeed, with Qg° :=
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R\ Qp and hg := yu on I'p, we extend u by setting u|g,c to be the solution of
the Dirichlet problem for the homogeneous Helmholtz equation in Qz€ satisfying the
Sommerfeld radiation condition (1.4), with Dirichlet data on I'r equal to hr. Using
the variational problem (4.32), one can show that the Neumann traces on either
side of I'p of the extended function are equal. The fact that both the Dirichlet and
Neumann traces are continuous across I'p then implies that the extended function
satisfies the homogeneous Helmholtz equation in a neighborhood of T'p (recalling
that supp f C Bg) and thus is C*° in this neighborhood.

Using this extension, one can prove that the solution to the variational prob-
lem (4.32) is unique (see, e.g., [13, Theorem 3.37], [11, Lemma 2.8]). The fact that
R(—(Tro, d)ry,) > 0 for all ¢ € H/2(I'g) [48, Theorem 2.6.4] means that, just as in
the interior case, a(-,-) satisfies a Garding inequality, and then Fredholm theory gives
the existence of a solution to the variational problem (4.32).

To prove Theorem 1.8, we need the following lemma, which is the exterior ana-
logue of Lemma 4.2 above. This result effectively appears in [27, Theorem 1].

LEMMA 4.14. If u € H*(2R) satisfies the exterior impedance problem of Defini-
tion 4.13 with f =0 and g € L*(T"), then

1
(4.33) Ha;i_uH[}(F) < ||g||L2(r) and H'Y+u||L2(F) < ; Hg||L2(F)-

Proof. We extend u to Q2g° as described above. Since u € H (4, A), we can
apply Green’s first identity (2.6) with v = w in Qg for any R’ > sup,cq_ |x| and take
the imaginary part to obtain

(4.34) %/’H—uaj{uds:%/ ’y_u@ds
r r

,or

R

(remembering that n points into Q). Using the fact that u satisfies the radiation
condition, one can show that the right-hand side of (4.34) tends to k |\F||iz(sd_1) as

R' — 0o, where S?~! is the unit sphere in R? and F is the far-field pattern of u (see,
e.g., [11, Lemmas 2.5 and 2.6]); therefore,

(4.35) S/’H—u Ofuds > 0.
r

Using the impedance boundary condition to express 97 u in (4.35) in terms of v, u
and g yields

2 N
=0 v ullp2ry + %‘/ Yrugds > 0,
T

and then using the Cauchy—Schwarz inequality on the second term gives us the second
bound in (4.33). Similarly, using the impedance boundary condition to express vy u
in (4.35) in terms of 9, u and g, and then using the Cauchy—Schwarz inequality, we
obtain the first bound in (4.33). O

Proof of Theorem 1.8. As with the interior problem, we first consider the case
f = 0. If u is the solution to the exterior impedance problem with f = 0, then
Green'’s integral representation, u = —Sgd; u+ Dyy,u, holds; see, e.g., [32, Theorems
7.5 and 9.6]. Similar to the case of the interior problem, the bounds on the single-
and double-layer potentials (4.7) then give

lll ooy < 52 (N0 ull ooy + sl ey )
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for any R > sup,cq_|x|. (Note that, just as in the interior case, the bounds (4.8)
can be used instead of (4.7) when I is piecewise smooth.) The bounds on the Cauchy
data given by (4.33) then imply that

_ k
el 2y S K2 <1 N m) lgllor

and using part (b) of Lemma 2.2 gives the bound on ||Vul[z2(q,). Therefore, the
bound (4.17) holds with the norms on the left-hand side changed to be on L?(Qg).
The case when f # 0 follows in exactly the same way as for the interior problem, but
now with every norm being in Qg. a

5. Proof of the bound on ||(A§cm)_1||L2(p)_,Lz(p), Lemma 1.10. We now
show how bounds on the exterior DtN and interior impedance-to-Dirichlet maps can
be used to bound ||(A;€)n)71”L2(F)_>L2(F) (where A is the combined-field integral
equation used to solve the exterior Dirichlet problem; see section 1.3).

Proof of Lemma 1.10. Since A;wv is a bounded and invertible operator on L?(T")
when 7 € R\ {0} [11, Theorem 2.27], if we can show that [|§| 2y < C||4] , ¢llL2r)
for all ¢ € LZ(].—‘), then ||(A;c777)71|‘L2(F)—>L2(F) <C.

Given ¢ € L?(T"), let u := Sr¢, where the single-layer potential, Sk, is defined by

Seé(x) = / Di(x,y)0(y) ds(y), xeT.

The reason we do this is that the integral equation (1.25) arises from Green’s integral
representation (1.26), in which the solution of the BVP is expressed (modulo the
known term u!) as a single-layer potential with an unknown density. We also let
g = A;)n¢, so that (with this notation) we need to bound ¢ in terms of g.

Now, u is a solution of the Helmholtz equation in 4 and €2_ and satisfies the
Sommerfeld radiation condition in 4 [11, Theorem 2.14]. The jump relations for the
single-layer potential are that

1 /
(5.1) v+8kp = Sk and 0, Sko = (:F§I + Dk) ¢

[32, Chapter 7], where the operators Sy and D), are defined by (1.29). The jump
relations (5.1) and the definition of Aj , (1.30) imply that

(5.2) 0, u—iny_u =g,
v+u =vy-u (and thus Vr(vyu) = Vr(y-u)), and
¢ =0, u— 0 u.

By (5.2), u satisfies the interior impedance problem with data g € L*(T"). By (5.3), u
satisfies the exterior Dirichlet problem with data given by the solution of the interior
impedance problem. Given bounds on the solutions of the interior impedance and
exterior Dirichlet problems, we can then use (5.4) to bound ¢. Indeed, using (5.4),
Lemma 4.2, and the DtN bound (1.32), we obtain that

k

100l 2y < 107 ull oy + 19l o S <1 o

) 190l z2e + o Ve () pagr -
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Then,

which

E. A. SPENCE

using (5.3) and the impedance-to-Dirichlet bound (1.33), we find that

k
16l o < (1 oL +a6) 19l oy

implies (1.34). O

Acknowledgments. The author thanks the following people for useful discus-
sions and comments: Simon Chandler-Wilde (University of Reading), Xiaolong Han

(Austr

alian National University), Ilia Kamotski (University College London), Evgney

Lakshtanov (University of Aveiro), Markus Melenk (TU Vienna), Andrea Moiola
(Reading), Francisco Javier Sayas (University of Delaware), Melissa Tacy (University
of Adelaide), Jared Wunsch (Northwestern University), and Boris Vainberg (Univer-

sity of

North Carolina at Charlotte).

The author also thanks the referees for their constructive comments and sugges-
tions, which helped improve the paper.

[1] M.

=
H 9 Q » <

REFERENCES

ABRAMOWITZ AND 1. A. STEGUN, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover, New York, 1964.

. M. BaBIiCH, On the short-wave asymptotic behaviour of the Green’s function for the

Helmholtz equation, Mat. Sb., 65 (1964), pp. 576-630.

V. M. BABICH, On the asymptotics of the Green’s functions of certain wave problems. 1. Sta-

tionary case, Mat. Sb. (N.S.), 86 (1971), pp. 513-533.

. M. BABICH AND V. S. BULDYREV, Asymptotic Methods in Short-Wavelength Diffraction

Theory, Alpha Science Series on Wave Phenomena, Alpha Science International, Oxford,
2008.

. M. BaBicH AND N. Y. KIRPICHNIKOVA, The Boundary-Layer Method in Diffraction Prob-

lems, Springer-Verlag, Berlin, 1979.

. BAMBERGER AND T. HA DUONG, Formulation vartationnelle espace-temps pour le calcul de

la diffraction d’une onde acoustique (I), Math. Methods Appl. Sci., 8 (1986), pp. 405-435.
. Bao, K. YUN, AND Z. ZHOU, Stability of the scattering from a large electromagnetic cavity
in two dimensions, SIAM J. Math. Anal., 44 (2012), pp. 383-404.

. BASKIN AND J. WUNSCH, Resolvent estimates and local decay of waves on conic manifolds,

J. Differential Geom., 95 (2013), pp. 183-214.

. BETCKE, S. N. CHANDLER-WILDE, I. G. GRAHAM, S. LANGDON, AND M. LINDNER, Condition

number estimates for combined potential boundary integral operators in acoustics and their
boundary element discretisation, Numerical Methods Partial Differential Equations, 27
(2011), pp. 31-69.

. BETCKE AND E. A. SPENCE, Numerical estimation of coercivity constants for boundary

integral operators in acoustic scattering, SIAM J. Numer. Anal., 49 (2011), pp. 1572-1601.

. N. CHANDLER-WILDE, I. G. GRAHAM, S. LANGDON, AND E. A. SPENCE, Numerical-

asymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numer.,
21 (2012), pp. 89-305.

. N. CHANDLER-WILDE AND P. MONK, Wave-number-explicit bounds in time-harmonic scat-

tering, SIAM J. Math. Anal., 39 (2008), pp. 1428-1455.

. L. CorTtoN AND R. KRESS, Integral Equation Methods in Scattering Theory, John Wiley,
New York, 1983.

. COSTABEL, Boundary integral operators on Lipschitz domains: elementary results, SIAM
J. Math. Anal., 19 (1988), pp. 613-626.

. CUMMINGS AND X. FENG, Sharp regularity coefficient estimates for complez-valued acoustic

and elastic Helmholtz equations, Math. Models Meth. Appl. Sci., 16 (2006), pp. 139-160.

. ENGQUIST AND L. YING, Fast algorithms for high frequency wave propagation, in Numerical

Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl,
eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin, 2012, pp. 127-161.

. G. ERNST AND M. J. GANDER, Why it is difficult to solve Helmholtz problems with classical
iterative methods, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou,



[42]
[43]
[44]
[45]
[46]

[47]

WAVENUMBER-EXPLICIT BOUNDS IN ACOUSTIC SCATTERING 3023

O. Lakkis, and R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin,
2012, pp. 325-363.

S. ESTERHAZY AND J. M. MELENK, On stability of discretizations of the Helmholtz equation,
in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and
R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin, 2012, pp. 285—
324.

L. C. EVANS, Partial Differential Equations, AMS, Providence, RI, 1998.

X. FENG AND D. SHEEN, An elliptic reqularity coefficient estimate for a problem arising from a
frequency domain treatment of waves, Trans. Amer. Math. Soc., 346 (1994), pp. 475-488.

R. GrRIMSHAW, High-frequency scattering by finite convex regions, Comm. Pure Appl. Math.,
19 (1966), pp. 167-198.

P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

X. HAN AND M. Tacy, Semiclassical single and double layer potentials: Boundedness and
sharpness, preprint, arXiv:1403.6576, 2014.

U. HETMANIUK, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci, 5
(2007), pp. 665-678.

R. HipTMAIR, A. MoIOLA, AND I. PERUCGIA, Stability results for the time-harmonic Mazwell
equations with impedance boundary conditions, Math. Models Methods Appl. Sci., 21
(2011), pp. 2263-2287.

F. ITHLENBURG, Finite Element Analysis of Acoustic Scattering, Springer-Verlag, Berlin, 1998.

E. LAKSHTANOV, Spectral properties of the Dirichlet-to-Neumann operator for the exterior
Helmholtz problem and its applications to scattering theory, J. Phys. A, 43 (2010), 125204.

E. LAKSHTANOV AND B. VAINBERG, A priori estimates for high frequency scattering by obstacles
of arbitrary shape, Comm. Partial Differential Equations, 37 (2012), pp. 1789-1804.

A. R. LALIENA AND F. J. SAYAS, Theoretical aspects of the application of convolution quadrature
to scattering of acoustic waves, Numer. Math., 112 (2009), pp. 637-678.

H. L1, H. MaA, AND W. SUN, Legendre spectral Galerkin method for electromagnetic scattering
from large cavities, SIAM J. Numer. Anal., 51 (2013), pp. 353-376.

M. LOHNDORF AND J. M. MELENK, Wavenumber-explicit hp-BEM for high frequency scattering,
SIAM J. Numer. Anal., 49 (2011), pp. 2340-2363.

W. C. H. McCLEAN, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge
University Press, Cambridge, 2000.

J. M. MELENK, On Generalized Finite Element Methods, Ph.D. thesis, The University of Mary-
land, College Park, MD, 1995.

J. M. MELENK, Mapping properties of combined field Helmholtz boundary integral operators,
SIAM J. Math. Anal., 44 (2012), pp. 2599-2636.

J. M. MELENK AND S. SAUTER, Convergence analysis for finite element discretizations of
the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp, 79
(2010), pp. 1871-1914.

R. B. MELROSE AND J. SJOSTRAND, Singularities of boundary value problems. I, Comm. Pure
Appl. Math., 31 (1978), pp. 593-617.

R. B. MELROSE AND J. SJOSTRAND, Singularities of boundary value problems. 11, Comm. Pure
Appl. Math., 35 (1982), pp. 129-168.

R. B. MELROSE, A. VASY, AND J. WUNSCH, Propagation of singularities for the wave equation
on edge manifolds, Duke Math. J., 144 (2008), pp. 109-193.

R. B. MELROSE, A. VASY, AND J. WUNSCH, Diffraction of singularities for the wave equation
on manifolds with corners, Astérisque, J. Differential Geom., 351 (2013).

R. B. MELROSE AND J. WUNSCH, Propagation of singularities for the wave equation on conic
manifolds, Invent. Math., 156 (2004), pp. 235-299.

A. MoioLA, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems,
Ph.D. thesis, Seminar for Applied Mathematics, ETH, Ziirich, 2011; also available at
http://e-collection.library.ethz.ch/view/eth:4515.

A. MoioLAa AND E. A. SPENCE, Is the Helmholtz equation really sign-indefinite?, SIAM Rev.,
56 (2014), pp. 274-312.

C. S. MORAWETZ, The decay of solutions of the exterior initial-boundary value problem for the
wave equation, Comm. Pure Appl. Math., 14 (1961), pp. 561-568.

C. S. MORAWETZ, Decay for solutions of the exterior problem for the wave equation, Comm.
Pure Appl. Math., 28 (1975), pp. 229-264.

C. S. MORAWETZ AND D. LUDWIG, An inequality for the reduced wave operator and the justi-
fication of geometrical optics, Comm. Pure Appl. Math., 21 (1968), pp. 187-203.

C. S. MORAWETZ, J. V. RALSTON, AND W. A. STRAUSS, Decay of solutions of the wave equation
outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508.

J. NECAS, Les Méthodes Directes en Théorie des E’quations Elliptiques, Masson, Paris, 1967.


http://e-collection.library.ethz.ch/view/eth:4515

3024

(48]

E. A. SPENCE

J. C. NEDELEC, Acoustic and Electromagnetic Equations: Integral Representations for Har-
monic Problems, Springer-Verlag, Berlin, 2001.

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/ (2013).

F. RELLICH, Darstellung der eigenwerte von Au+ Au = 0 durch ein randintegral, Math. Z., 46

(1940), pp. 635-636.
A. SAUTER AND C. SCHWAB, Boundary Element Methods, Springer-Verlag, Berlin, 2011.

. J. SAYAS, Retarded potentials and time domain boundary integral equations: A road-map,
preprint, (2013).

E. A. SPENCE, Bounding Acoustic Layer Potentials via Oscillatory Integral Techniques,

preprint, 2013.

E. A. SPENCE, “When all else fails, integrate by parts”: An overview of new and old varia-
tional formulations for linear elliptic PDEs, in Unified Transform Method for Boundary
Value Problems: Applications and Advances, A. S. Fokas and B. Pelloni, eds., SIAM,
Philadelphia, 2014, to appear.

E. A. SPENCE, I. V. KAMOTSKI, AND V. P. SMYSHLYAEV, Coercivity of combined boundary-

integral equations in high frequency scattering, Comm. Pure Appl. Math., to appear.

. URSELL, On the short-wave asymptotic theory of the wave equation (V2 + k?)¢ = 0, Proc.
Cambridge Philos. Soc., 53 (1957), pp. 115-133.

. URSELL, On the rigorous foundation of short-wave asymptotics, Proc. Cambridge Philos.
Soc., 62 (1966), pp. 227-244.

B. R. VAINBERG, On the short wave asymptotic behaviour of solutions of stationary problems
and the asymptotic behaviour as t — oo of solutions of non-stationary problems, Russian
Math. Surveys, 30 (1975), pp. 1-58.

. VASY, Propagation of singularities for the wave equation on manifolds with corners, Ann.
of Math., 168 (2008), pp. 749-812.

= o

el

el

>


http://dlmf.nist.gov/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


