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In this article we describe recent progress on the design, analysis and im-
plementation of hybrid numerical-asymptotic boundary integral methods for
boundary value problems for the Helmholtz equation that model time har-
monic acoustic wave scattering in domains exterior to impenetrable obstacles.
These hybrid methods combine conventional piecewise polynomial approxi-
mations with high-frequency asymptotics to build basis functions suitable
for representing the oscillatory solutions. They have the potential to solve
scattering problems accurately in a computation time that is (almost) inde-
pendent of frequency and this has been realized for many model problems.
The design and analysis of this class of methods requires new results on the
analysis and numerical analysis of highly oscillatory boundary integral op-
erators and on the high-frequency asymptotics of scattering problems. The
implementation requires the development of appropriate quadrature rules for
highly oscillatory integrals. This article contains a historical account of the
development of this currently very active field, a detailed account of recent
progress and, in addition, a number of original research results on the design,
analysis and implementation of these methods.
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1. Introduction

Acoustic, elastic and electromagnetic wave scattering problems arise in
many applications of mathematical, physical and engineering interest, in-
cluding the modelling of radar, sonar, noise barrier design and atmospheric
particle scattering. Often the scattering problem comprises the forward map
in the formulation of an inverse problem, for example in non-destructive
testing or in methods for detecting hydrocarbon-bearing deposits under the
sea bed. While in general the scattered wave has to be found in an in-
homogeneous medium, there are a substantial number of applications in
which the material is either homogeneous or piecewise homogeneous, at
least sufficiently far away from the scatterer. In these cases boundary in-
tegral equation (BIE) methods are of considerable interest and form the
basis for several commercial scattering codes; see, for example, Chew et al.
(2004).
This review focuses on the efficient solution of high-frequency acoustic

scattering problems in homogeneous media, using integral equation meth-
ods. Hence we consider the Helmholtz equation,

∆u+ k2u = 0, (1.1)

in a domain Ω+ := R
d\Ω−, d = 2 or 3, where Ω− is some bounded open set

with surface Γ, and (1.1) is to be solved subject to some suitable bound-
ary condition on Γ and radiation condition in the far field. The Helmholtz
equation is of course derived from the linear wave equation under the as-
sumption that all quantities vary harmonically (e−iωt) in time. Here ω is
the angular frequency and k := ω/c > 0 is the wavenumber, where c is the
speed of sound.
The problem (1.1) has solutions which oscillate in space with wavelength

λ = 2π/k. For example the plane waves u(x) = exp(ikx · â), where â ∈ R
d

is a unit vector, are solutions. The number of oscillations grows linearly in
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k and so the application of conventional (piecewise polynomial) boundary
elements to this problem leads to full matrices of dimension at least N =
O(kd−1) and a solution time of this order or worse as k → ∞. (Domain
finite elements lead to sparse matrices but require even larger N .) Since
this lack of robustness with respect to increasing values of k puts high-
frequency problems beyond the reach of many standard algorithms, much
recent research has been devoted to finding more robust methods.
Of course, saying that k, which has dimension 1/length, is large is mean-

ingless without reference to the size of the scatterer. The dimensionless
quantity that can meaningfully be thought of as quantifying the oscillatory
character of our problem is kL, where L is an appropriate characteristic
length of the scattering surface Γ (e.g., the diameter of Γ). Thus a problem
can be highly oscillatory even if k is not large provided that L is sufficiently
large. But without loss of generality, throughout the review we consider
k as the relevant large parameter, equivalently assuming that the unit of
length is chosen so that the surface Γ has characteristic length O(1).
The aim of this review is to describe a currently very active area of re-

search which seeks algorithms for scattering problems which (ideally) have
bounded error for fixed computational effort as k → ∞, and have computa-
tional complexity which is either independent of k, or grows only mildly as k
increases. To achieve this aim, the methods we describe explicitly build into
the numerical method a certain amount of asymptotic information about the
oscillatory nature of the solution as k → ∞, and seek to approximate only
the slowly varying components by (piecewise) polynomials. By now these
methods have been supported by substantial theoretical justification, as we
shall describe.
It is well known that the scattering problem described above is in gen-

eral a multiscale problem. Figure 1.1 illustrates the resulting total field
u := uI +uS induced by a scatterer Ω− composed of the union of a disk and
a triangle, when the incident field uI is a plane wave uI(x) = exp(ikx · â),
with unit incident direction â. The scattered field uS is found as the so-
lution of the classical ‘sound-soft’ scattering problem, that is, uS satisfies
(1.1) in Ω+, the Dirichlet condition uS = −uI (and so u = 0) on the scat-
tering surface Γ (in this case the union of the circle and the boundary of
the triangle) and, in addition, uS satisfies the usual Sommerfeld radiation
condition (given by (2.9)) in the far field. While the incident field uI oscil-
lates on the single scale k−1, the total field u contains several other scales
coming from the scattered field uS . These include scales of k−1/2 (respec-
tively k−1/3) associated with widths of zones of transition from illuminated
to shadow regions behind diffracting corners (respectively tangency points)
These oscillatory and multiscale properties of scattered fields – known for
many years in the asymptotics literature – are described in a form useful
for numerical analysis in Section 3 of this review.
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Figure 1.1. The total field when the incident field is a plane wave
in the direction â = (cos θ, sin θ), with θ = −π/18, and the
wavelength is λ = 0.2 (so k = 2π/λ = 10π ≈ 31.42). The scatterer
has two components, a disk of unit diameter and a triangle.

To formulate BIEs for (1.1), we introduce the standard fundamental so-
lution of the Helmholtz equation, given, in the two-dimensional (2D) and
three-dimensional (3D) cases, by

Φk(x, y) :=


i

4
H

(1)
0 (k|x− y|), d = 2,

exp(ik|x− y|)
4π|x− y| , d = 3,

(1.2)

for x, y ∈ R
d, x �= y, whereH

(1)
ν denotes the Hankel function of the first kind

of order ν. Using Φk, we can build layer potentials that provide solutions
to (1.1) in the exterior domain Ω+, and automatically satisfy the radiation
condition at infinity. These potentials conveniently also provide solutions
to (1.1) in the interior domain Ω−. In general all the standard boundary
value problems (BVPs) for the Helmholtz equation (1.1) can be formulated
as integral equations on Γ using these layer potentials.
For example, in the case of sound-soft scattering, the solution u is fully

determined on Ω+ by its Neumann data ∂u/∂n on Γ; see Section 2 for de-
tails. Moreover the ‘far-field’ behaviour of u (often of interest in the solution
of inverse scattering problems) can be determined by the action of a simple
oscillatory linear operator applied to the Neumann data. The required Neu-
mann data can be obtained, for example, by solving the combined potential
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integral equation

1

2

∂u

∂n
(x) +

∫
Γ

(
∂Φk(x, y)

∂n(x)
− iηΦk(x, y)

)
∂u

∂n
(y) ds(y) = fk,η(x), x ∈ Γ,

(1.3)
where, throughout the review, we adopt the convention that the normal
derivative is taken outward from Ω−, and the source term is given by

fk,η(x) :=
∂uI

∂n
(x)− iηuI(x), x ∈ Γ. (1.4)

The problem (1.3) is well-posed for any fixed choice of the coupling pa-
rameter η ∈ R\{0} (see Theorem 2.46). We write (1.3) more compactly
as

A′k,ηv :=

(
1

2
I +D′k − iηSk

)
v = fk,η, where v := ∂u/∂n. (1.5)

The operators Sk, D
′
k and A′k,η will be discussed in detail in Section 2.

Turning to numerical methods, for an operator equation of the general
form Av = f posed in L2(Γ), the Galerkin method consists of choosing a
finite-dimensional approximating space VN and then seeking an approximate
solution vN ∈ VN such that

(AvN , wN )L2(Γ) = (f, wN )L2(Γ), for all wN ∈ VN . (1.6)

For the discretization of the second-kind integral equation (1.5) there is
a classical theory, which holds at least when Γ is sufficiently smooth and
when the approximating space consists of piecewise polynomials. Suppose
that we solve (1.5) using the Galerkin method (1.6) on a family of N -
dimensional spaces VN of piecewise polynomial functions of fixed degree on
a quasi-uniform sequence of meshes on Γ with diameter h → 0 (so that
N is proportional to h1−d). Then it can be shown, using the methods in
Atkinson (1997), for example, that there exist constants C > 0 and N0 > 0
such that the Galerkin solution vN satisfies the quasi-optimal error estimate

‖v − vN‖ ≤ C inf
wN∈VN

‖v − wN‖, (1.7)

for all N ≥ N0, where here and throughout this review ‖ · ‖ represents
‖ · ‖L2(Γ), unless otherwise specified. (This theory also extends to some
collocation and, with the addition of quadrature, Nyström-like methods.)
However, the classical theory does not tell us how C and N0 depend on k.
These subtle questions are discussed in some detail in Section 6.1 of this

review, but we can easily see that the error ‖v − vN‖ will be highly k-
dependent. This is because v is in general oscillatory, and the jth derivative
of v will, roughly speaking, be O(kj) times bigger than v itself. Thus, using
standard estimates for piecewise polynomial approximation of degree p, the
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error in best approximation appearing on the right-hand side of (1.7) will
have an estimate of the form

inf
wN∈VN

‖v − wN‖ ≤ C ′(hk)p+1, (1.8)

for some constant C ′ (which may itself grow with k). Thus h will need
to decrease with O(k−1), and possibly faster, in order to keep the error
bounded as k → ∞. Hence, standard (piecewise) polynomial BEMs applied
directly to approximate the oscillatory solution v of (1.5) on a surface in R

d

will have complexity at least O(h1−d) = O(kd−1) as k → ∞.
By contrast, the hybrid numerical-asymptotic methods which are the main

subject of this review article exploit more detailed information about the
oscillations in v (obtained via asymptotic analysis or exact integral rep-
resentations) directly in the numerical method. Known highly oscillatory
components of v are treated exactly in the algorithm, leaving only more
slowly varying components to be approximated by piecewise polynomials.
This yields a method which is much more ‘robust’ as k → ∞.
One of the simplest hybrid numerical-asymptotic methods, and one which

we shall discuss at length in Section 3, can be seen as an extension of the
‘physical optics’ (also called the ‘Kirchhoff’) approximation. This method
assumes that the scattered wave uS oscillates on the same scale as the
incoming plane wave, leading to the ansatz

v(x) = kV (x, k) exp(ikx · â), x ∈ Γ. (1.9)

For some geometries (e.g., smooth convex scatterers), V (·, k) is much less
oscillatory than v, and methods based on approximating V (·, k) using piece-
wise polynomials have been proposed by a number of authors. This pro-
cedure is equivalent to approximating v using a hybrid space VN with a
basis consisting of products of the plane wave exp(ikx · â) and appropriate
piecewise polynomial basis functions. Using such a hybrid space VN , it is
possible to show that the best approximation error on the left-hand side
of (1.8) increases much more slowly as k → ∞ than the estimate on the
right-hand side of (1.8) (which holds for conventional piecewise polynomial
spaces). Thus good approximation for large k on relatively coarse meshes
(and with relatively few degrees of freedom) can potentially be achieved by
hybrid methods.
Unfortunately the benefits of these hybrid methods do not come without

cost. When the mesh is fairly coarse and k is large, integration of the ker-
nel of Sk or D′k over the support of a basis function requires computing an
oscillatory integral. The additional oscillations arising via the basis func-
tions further complicate these integrals, which have to be evaluated with a
work count growing at worst modestly in k if the overall algorithm is to be
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successful. Hence this field requires a substantial investment in research
into numerical methods for oscillatory integrals; see Section 4 for details.
To do a full numerical analysis of hybrid methods, not only do we require

good estimates for the best approximation error (on the right-hand side of
(1.7)), but also we need k-explicit estimates for the constants N0 and C in
(1.7). This issue is discussed in Sections 5 and 6.
Summarizing these points, one can think of the numerical analysis of

hybrid methods as requiring research on three related questions.

Q1 The design of k-dependent finite-dimensional approximation spaces
VN , with the property that the best approximation error, that is,
infwN∈VN ‖v − wN‖, remains within a given tolerance as k → ∞, with
N fixed or growing only slowly with k.

Q2 The design of k-robust methods for computing the oscillatory integrals
arising in implementation.

Q3 The proof of sharp estimates for the dependence on k of the ‘stability
constant’ C and the space dimension threshold N0, ideally showing
that these grow only slowly as k → ∞.

This review describes research on these three fundamental issues and re-
lated topics, and we summarize its contents here. In Section 2 we describe
fundamental solvability results on the relevant BVPs for (1.1) and the re-
formulation of these BVPs as BIEs, including new BIE formulations that
have recently been proposed for high-frequency scattering problems. Given
that many scatterers in applications involve corners and edges, we work
on general Lipschitz domains. Background results for this section, some
of which are not easily found in the literature, are given as an appendix.
Section 3 describes the design of good hybrid spaces for a range of scat-
tering problems and the proof of k-robustness of the best approximation
error for these spaces (Q1). While this section is concerned mostly with 2D
problems, hybrid spaces for a class of 3D screen problems are also discussed
later in Section 7.6. In Section 4 the question of robust computation of
oscillatory integrals which arise in hybrid methods is considered (Q2), and
rigorous error estimates for these integration schemes, which have been the
subject of recent research, are described. Section 5 describes the recently
very active field which seeks k-explicit bounds on the conditioning of inte-
gral operators such as that in (1.5) (in particular, bounds on the operator,
bounds on its inverse, coercivity properties, etc.). These results are required
for estimating the constants N0 and C appearing in the formulation of Q3
above. This is done in Section 6, which in fact gives error estimates for
standard as well as hybrid boundary element methods, valid as k → ∞.
Finally, Section 7 presents a series of illustratory numerical examples, sup-
porting the estimates of Section 6 and showing that, for a range of scattering
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problems, arbitrary accuracy is achieved with a computational cost that
grows only very mildly with respect to k.
We finish this introduction with some historical remarks on the devel-

opment of hybrid numerical-asymptotic methods, concluding with some re-
marks on other methods for the accurate solution of high-frequency scat-
tering problems.
Methods that combine numerical and asymptotic approaches in order to

reduce computational cost have been applied within the electromagnetics
community for many years. Two papers dating back to 1975 suggest reduc-
ing the computational cost at high frequencies by splitting the boundary into
different regions, and using numerical methods in some regions and asymp-
totic approximations in others (Thiele and Newhouse 1975, Burnside, Yu
and Marhefka 1975). The BIE method proposed in Burnside et al. (1975),
for an electromagnetic problem equivalent to plane wave scattering by a
sound-hard square, can sensibly be viewed as a prototype of the methods
that we develop for scattering by convex polygons in Section 3.3 (and see
Sections 7.2–7.4). The related method proposed in Thiele and Newhouse
(1975) is a first instance of what has become a popular hybrid BIE-based
methodology, whereby high-frequency physical optics approximations (see
(3.4) below) are employed on part of the scattering surface, and standard
BEM approximations on the remainder, with coupling between these sub-
domains: see Djordjević and Notaros̆ (2005), Zhang et al. (2010) and the
references therein for recent developments.
A hybrid numerical-asymptotic BIE method in exactly the sense of this

article was proposed at almost the same time in the acoustics literature by
Uncles. In a short proof-of-concept paper, Uncles (1976) proposed the use
of essentially the ansatz (1.9), computing scattering by a sound-hard sphere
using a piecewise constant approximation for the unknown V (·, k). This
hybrid BIE idea (approximating the ratio of scattered to incident field rather
than the scattered field itself) was used for the 2D problem of scattering
by an impedance half-plane (which we treat with more sophisticated hybrid
methods in Section 3.2), by Chandler-Wilde (1988), with numerical results
demonstrating the efficiency of this approach at moderate frequencies.
Essentially the same hybrid BIE method to that in Uncles (1976) was

proposed independently in the electromagnetics literature in James (1990).
Numerical results for the case of a circular scatterer (solving the integral
equations (2.109) and (2.111) below) again demonstrated a significant re-
duction in the number of unknowns required compared to a conventional
BEM. A more elaborate method, using hybrid spaces which are close to
but less sophisticated than those described below in Sections 3.3.1–3.3.2,
was proposed by Wang (1991), whose numerical results demonstrate some
accuracy for a number of 2D geometries. The work of Aberegg and Peterson
(1995) developed the methods of Uncles and Wang. To tackle 2D problems
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of electromagnetic scattering by piecewise smooth convex obstacles, solving
the Helmholtz equation (1.1), they used the same ansatz (1.9) but intro-
duced a number of aspects that are key to the effective implementation of
hybrid methods and which we will study in some detail in Section 3, namely
higher-order basis functions, the treatment of corner singularities (via spe-
cial basis functions in Aberegg and Peterson (1995)), and the use of mesh
grading. They report, for many geometries, reasonably accurate results
(≤ 3.5% relative error) with ten times fewer degrees of freedom compared
to standard BEMs, and note that the method is robust in that, in cases
where the ansatz (1.9) does not capture accurately the oscillation in the
solution, the method should in any case be no less accurate for the same
number of degrees of freedom than conventional BEMs.

Since 1994 there has been significant numerical analysis interest in hy-
brid methods for scattering problems, with the majority of investigations
focusing (either implicitly or explicitly) on the case of a smooth convex ob-
stacle. This started with the contributions of Abboud et al. (1994, 1995),
who considered (1.1) subject to an impedance boundary condition on Γ, and
formulated this as a first-kind BIE, somewhat different to (1.3) (see (3.10)
for details). The ansatz (1.9) was then applied, with the ‘slow variable’
V (·, k) being approximated using the h-version BEM. This analysis and
numerical scheme was subsequently developed by Darrigrand (2002), who
proposed fast multipole-based methods to evaluate the oscillatory integrals
that arise.

A more advanced approach than that taken by Abboud, Nédélec and
Zhou (1995), taking special care to approximate V (·, k) accurately near
the shadow boundary (see Section 3 for details), was proposed by Bruno,
Geuzaine, Monro and Reitich (2004). They developed a high-frequency
Nyström approach, substituting (1.9) directly into (1.5) to obtain a second-
kind integral equation for the slow variable V (·, k) (see (3.11)), and then
devising a frequency-robust, fast quadrature method for discretizing the
corresponding integral operators. This was extended further, with strong
emphasis on integration in 3D problems, by Bruno and Geuzaine (2007).
At around the same time, Giladi and Keller (2004) – see also Giladi (2007)
(following earlier work by Giladi and Keller (2001) on finite element meth-
ods) – solved the same equation considered by Bruno et al. (2004) using a
collocation method, but also took into account the exponentially damped
‘creeping waves’ behind the shadow boundary. Subsequently Huybrechs and
Vandewalle (2006) developed steepest descent-based methods for oscillatory
integration and applied these in the implementation of a collocation-type
scheme for the BIE (2.109), again using the ansatz (1.9) (Huybrechs and
Vandewalle 2007b), with the advantage that their approach leads to a sparse
linear system.



98 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

The same problem of scattering by a sound-soft smooth convex 2D obsta-
cle was considered in Domı́nguez, Graham and Smyshlyaev (2007), where
the ansatz (1.9) was again used. By extending the asymptotic analysis of
Melrose and Taylor (1985), Domı́nguez et al. were able to derive rigorous
estimates demonstrating that their Galerkin method achieved an error that
depended only very mildly on k (see Section 3.1).
For the problem of scattering by an impedance half-plane (see Section 3.2),

Chandler-Wilde, Langdon and Ritter (2004), and then Langdon and Chand-
ler-Wilde (2006), proposed and analysed a hybrid Galerkin BEM, proving
rigorous error estimates independent of k, as k → ∞. These ideas were
extended to scattering by sound-soft convex polygons (Chandler-Wilde and
Langdon 2007, Hewett, Langdon and Melenk 2012), curvilinear polygons
(Langdon, Mokgolele and Chandler-Wilde 2010), convex polygons with im-
pedance boundary conditions (Chandler-Wilde, Langdon and Mokgolele
2012b), and non-convex polygons (Chandler-Wilde, Hewett, Langdon and
Twigger 2012a), and are described in detail in Sections 3.3 and 3.4.
A Galerkin method in the same spirit, utilizing a high-frequency ansatz

similar to those described in Section 3, was applied to the 2D problem of
scattering by a flat strip in Davis and Chew (2008), with numerical results
suggesting only a very mild dependence of the error on the frequency.
For the case of scattering by a smooth convex obstacle in 3D, Ganesh and

Hawkins (2011) again used the ansatz (1.9), and the integral equation for
V (·, k) was solved using a discrete Galerkin method with a global polynomial
basis and a specially chosen global quadrature rule to handle the oscillatory
integrals.
The design of hybrid spaces for the case of multiple scattering (scattering

by two or more disjoint convex scatterers) has been considered by Geuzaine,
Bruno and Reitich (2005), and a detailed analysis of the phase structure of
the solution has been given in Ecevit (2005), Ecevit and Reitich (2009) and
Anand, Boubendir, Ecevit and Reitich (2009).
Further discussion of many of the above approaches will be given in Sec-

tions 3 and 4. Due to space considerations, this review has not been able
to discuss in detail three other techniques which also address the efficient
solution of high-frequency scattering problems, and here we give only a few
representative references.
The first seeks fast implementations (often specifically tuned to the high-

frequency case) of standard discretization methods and includes fast mul-
tipole and related fast iterative methods. Research in this direction is
still very active and here we mention Rokhlin (1990), Amini and Maines
(1998), Christiansen and Nédélec (2000), Farhat, Macedo and Lesoinne
(2000), Bruno and Kunyansky (2001), Chandler-Wilde, Rahman and Ross
(2002), Donepudi, Jin and Chew (2003), Harris and Chen (2003), Darve and
Havé (2004), Livschits and Brandt (2006), Erlangga, Oosterlee and Vuik
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(2006), Engquist and Ying (2007), Banjai and Hackbusch (2008), Bruno,
Domı́nguez and Sayas (2012), Ernst and Gander (2012) and Engquist and
Ying (2012).
The second is research on partition of unity and related methods in which

a number of plane waves is introduced on each element in addition to stan-
dard piecewise polynomial boundary elements. These methods are accu-
rate and rapidly convergent for general Helmholtz problems and do not
require any prior knowledge of the asymptotics of the solution, but they
do not enjoy the k-robustness of the hybrid methods for classes of scat-
tering problems which we describe in this review; in particular, in each of
these methods, the degrees of freedom need to increase in proportion to
kd−1 to maintain accuracy as k → ∞, just as for conventional BEMs, albeit
with a lower constant of proportionality. Examples of this approach include
de La Bourdonnaye (1994), Perrey-Debain, Trevelyan and Bettess (2003a),
Perrey-Debain, Trevelyan and Bettess (2003b), de La Bourdonnaye and To-
lentino (2004), Perrey-Debain, Laghrouche, Bettess and Trevelyan (2004),
Perrey-Debain, Trevelyan and Bettess (2005), and Honnor, Trevelyan and
Huybrechs (2010). There also exists an extensive literature applying similar
ideas within a finite element context; see, for example, Melenk and Babuška
(1996), Babuška and Melenk (1997), Cessenat and Després (1998), Monk
and Wang (1999), Giladi and Keller (2001), Laghrouche, Bettess and Astley
(2002), Huttunen, Monk and Kaipio (2002), Cessenat and Després (2003),
Laghrouche, Bettess, Perrey-Debain and Trevelyan (2005), Buffa and Monk
(2008), Gittelson, Hiptmair and Perugia (2009), Luostari, Huttunen and
Monk (2009), Hiptmair, Moiola and Perugia (2011a) and Esterhazy and
Melenk (2012).
The third is the solution of appropriate limiting problems, which are valid

only if the frequency is sufficiently high (so-called ‘ray tracing’ methods).
Considerable progress has been made on extending these to practical geome-
tries and obtaining error estimates; see, for example, Engquist and Runborg
(2003), Benamou (2003), Bleszynski, Bleszynski and Jaroszewicz (2004) and
Motamed and Runborg (2009).
Finally we mention that earlier reviews on the subject matter of this

article include Bruno and Reitich (2007) and Chandler-Wilde and Graham
(2009).
We finish with a brief word on notations and assumed prior knowledge.

Throughout we use function space notations that are explained in the Ap-
pendix (with cross-referencing from other sections). This use is mild in the
more algorithmic Sections 3, 4, and 7, and more pronounced in Sections 2,
5, and 6, where we also need some functional analysis concepts and results
which are briefly listed with references at the beginning of the Appendix.
We are a little cavalier throughout as to whether we write γu (the trace of
u) or u|Γ (the restriction of u to Γ) for the value of the total field on Γ,
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and likewise whether we write ∂nu or ∂u/∂n for the normal derivative. The
distinction in these definitions, and that they coincide for the scattering
problems that we study, is explained in Section 2.1 (see Theorem 2.12) and
Section 2.8.

2. BVPs and integral equation formulations

In this section we formulate the relevant BVPs for the Helmholtz equation,
giving details as appropriate of function spaces, radiation conditions, etc.
We also formulate BIEs, and study properties of the layer potentials and
integral operators which these give rise to. We make explicit the relationship
between integral equations and BVPs, in particular the conditions under
which BIE and BVP formulations are equivalent.
There is much in this section regarding the theory of BIEs for acoustic

problems which is not found in other reviews or monographs, in part be-
cause many of the results we describe are very recent. In particular, we
develop new BIE formulations and new representations for boundary inte-
gral operators, which are essential components in the wavenumber-explicit
error and stability analysis in Sections 5 and 6.
However, those readers whose primary interest is in the design of hybrid

algorithms and their implementation may well prefer to start with Sections 3
and 4, which can be read largely independently of this section.
This article is concerned with scattering problems, so that our focus is

naturally on exterior BVPs, that is, problems set in the unbounded exterior
of a scatterer. But the theory of BIEs, particularly perhaps BIEs for acoustic
problems, depends inextricably on an understanding of the well-posedness
of both interior and exterior BVPs, so that necessarily we shall consider
interior problems too.
When it comes to the formulation of BVPs and BIEs, there is a degree

of choice in the function space setting, in the sense in which the boundary
conditions are to be understood, and indeed in the class of domains that one
wishes to consider. Overwhelmingly the literature of the modern theory of
BIE methods and their numerical solution, especially the solution of these
problems on non-smooth domains, uses Sobolev space settings, for which a
standard reference is McLean (2000). There is some variation in notations
and definitions in respect of Sobolev spaces. We spell out our definitions
precisely in the Appendix, mainly following McLean (2000), which has be-
come a standard reference for the theory of BIEs on Lipschitz domains, but
indicating explicitly wherever our notations and definitions vary from those
of McLean, in which case we usually follow Sauter and Schwab (2011).
For many of the scattering problems we consider, formulations in spaces

of continuous functions, or Hölder-continuous functions, are also possi-
ble, particularly where the boundary is sufficiently smooth. A standard
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reference for these is Colton and Kress (1983). We will indicate to what
extent and under what conditions these formulations are equivalent in what
follows. Some of the results that we wish to use and develop in this arti-
cle are associated with a third setting for the BVPs, that associated with
the harmonic analysis of Calderón–Zygmund operators on the boundaries
of Lipschitz domains. There one studies BVPs with data in Lp spaces,
understands boundary conditions to hold in a sense of almost everywhere
non-tangential convergence, and supplements this with a requirement on
the behaviour of maximal functions.
Much of the above material, in particular the deep results using harmonic

analysis methods, is not available in an accessible form in the BIE literature,
and their implications for BIE methods are not fully understood. At the
same time a number of the recent results which we will describe, and which
are key to a rigorous error analysis of the new boundary element methods
that we will propose, make essential use of these methods of analysis. For
this reason the Appendix includes a brief account of these results, which
use function spaces specified in terms of maximal functions, and of the
relationship of these function spaces to usual Sobolev spaces.

2.1. Acoustic boundary value problems

All the BVPs that we consider are for the Helmholtz equation (1.1) with
wavenumber k, which arises in acoustics from the wave equation, satisfied
by the perturbation in pressure on an assumption of harmonic (e−iωt) time
dependence. We will impose most often the sound-soft or Dirichlet bound-
ary condition, namely that u is specified on the boundary Γ, which has
been the focus of most of the theory and computation for hybrid numerical-
asymptotic methods to date. We will also show numerical results and analy-
sis for problems where an impedance boundary condition (much more widely
used in acoustic modelling) is imposed. This is

∂u

∂n
− ikβu = h (2.1)

on Γ, where n is the normal directed outwards from the domain of propa-
gation, and β is the normalized admittance of the surface. In general β is
a function of position (and generally also a function of frequency ω), given
by β = ρc/ζ, where ζ is the surface impedance, and ρ the density of the
fluid in which the acoustic wave propagates; the product ρc is termed the
impedance of the medium of propagation. The h in (2.1) is given; usually
h = 0 in scattering problems whenever u denotes the total field. Physical
considerations, namely the requirement that the boundary does not emit
energy, imply that

Reβ ≥ 0. (2.2)
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In the special case β = 0, the impedance boundary condition reduces to the
Neumann or sound-hard boundary condition. One of many examples where
(2.1) is a widely used boundary condition is in outdoor noise propagation,
an application we will return to in Section 3.2, where (2.1) with β = 0 is an
appropriate boundary condition on a hard road surface, while (2.1), with
Reβ > 0 and frequency dependent, is a widely used model of a range of
sound-absorbing outdoor surfaces; e.g., Taraldsen and Jonasson (2011).

This review contains some new BIE methods which give rise to the study
of a generalization of the above boundary condition. Let Z be a bounded
vector field defined (at least) on the boundary Γ. The generalization we
make replaces the normal derivative in the boundary condition by an oblique
derivative, so that the boundary condition is

Z · ∇u− ikβu = h (2.3)

on Γ.
We will formulate all of our problems in the Sobolev space setting, and

selected problems also in alternative function space settings. In the inte-
rior problems below, D is a bounded Lipschitz domain (see Definition A.2
and the paragraph that follows that definition) with boundary Γ, and γ is
the trace operator (see Section A.3). We state first the interior Dirichlet
problem:

Given h ∈ H1/2(Γ), find u ∈ C2(D) ∩H1(D)

such that (1.1) holds in D and γu = h on Γ.
(2.4)

The solvability of this standard interior problem is well understood, e.g.,
McLean (2000, p. 286).

Theorem 2.1. There exists a sequence 0 < k1 < k2 < · · · of positive
wavenumbers, with km → ∞ as m → ∞, such that the interior Dirichlet
problem with h = 0 has a non-trivial solution. For all other values of k > 0
the interior Dirichlet problem has exactly one solution.

The other interior BVPs that are relevant to us are the interior impedance
problem and what we will call the interior oblique impedance problem, by
which we will mean the Helmholtz equation subject to the boundary condi-
tion (2.3). Note that, in these Sobolev space formulations, we understand
the normal derivative of u in (2.1) as ∂nu ∈ H−1/2(Γ), where ∂n is the nor-
mal derivative operator defined in equation (A.28). (Of course – see (A.18) –
∂nu coincides with classical definition of the normal derivative ∂u/∂n when
u is sufficiently regular.) We understand the oblique derivative Z · ∇u as
meaning

Z · ∇u = Zn∂nu+ Z · ∇Γγu,

where Zn := Z · n is the normal component of Z and ∇Γ is the surface
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gradient operator (see (A.14)). Thus the interior impedance problem is

Given h ∈ H−1/2(Γ), and β ∈ L∞(Γ), find u ∈ C2(D) ∩H1(D)

such that (1.1) holds in D and ∂nu− ikβγu = h on Γ;
(2.5)

and the interior oblique impedance problem is

Given h ∈ L2(Γ), Z ∈ (L∞(Γ))d, and β ∈ L∞(Γ), find

u ∈ C2(D) ∩H1(D), with γu ∈ H1(Γ), such that (1.1)

holds in D and Zn∂nu+ Z · ∇Γγu− ikβ γu = h on Γ.

(2.6)

Note that the requirement, in (2.5), that ∂nu = h + ikβγu holds, means,
in view of the definition of the normal derivative operator ∂n in (A.28) and
(A.29), nothing more or less than the requirement that∫

Γ
h γv ds+ik

∫
Γ
β γu γv ds =

∫
D

(
∇u ·∇v̄+ v̄∆u

)
dx, v ∈ H1(D), (2.7)

in the case that h ∈ L2(Γ). In the case that h ∈ H−1/2(Γ) but h �∈ L2(Γ),
the integral

∫
Γ h γv ds in (2.7) is understood as the limit∫

Γ
h γv ds = lim

j→∞

∫
Γ
hj γv ds,

where (hj) ⊂ L2(Γ) is any sequence which is convergent to h in theH−1/2(Γ)
norm. The boundary condition in (2.6) has an analogous interpretation to
that of (2.7).
The part of the solvability theory for the interior impedance BVP that we

need (Colton and Kress 1983, McLean 2000) is encapsulated in the following
theorem. In the statement of this theorem we make the first reference to
the following assumption.

Assumption 2.2. Either: (a) Reβ ≥ 0 and Reβ > 0 on some relatively
open subset of Γ; or: (b) Reβ ≤ 0 and Reβ < 0 on some relatively open
subset of Γ.

Theorem 2.3.

(i) Suppose that Assumption 2.2 holds. Then the interior impedance prob-
lem has exactly one solution.

(ii) Suppose that β = 0 (the Neumann boundary case). Then there exists
a sequence 0 = k1 < k2 < · · · of positive wavenumbers, with km → ∞
as m → ∞, such that the interior impedance problem with h = 0
has a non-trivial solution. For all other values of k > 0 the interior
impedance problem with β = 0 has exactly one solution.
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The existence statement in (i) can be obtained by a variety of arguments,
not least by BIE methods as a corollary of Theorem 2.30 below. The unique-
ness statement in (i) is a consequence of (2.7). In more detail, if u1 and
u2 are solutions of (2.5) then, defining u := u1 − u2, it follows from (2.7)
applied with v = u, since ∆u = −k2u, that

ik

∫
Γ
β |γu|2 ds =

∫
D

(
|∇u|2 − k2|u|2

)
dx. (2.8)

Taking imaginary parts, we see that
∫
ΓReβ|γu|2 ds = 0, so that in case

(i) we deduce that γu vanishes on some relatively open subset of Γ. Since
∂nu = ikβγu, it follows that ∂nu vanishes on the same open subset of Γ. By
the following version of Holmgren’s uniqueness theorem it follows that u is
identically zero and so u1 = u2.

Theorem 2.4. Suppose that D is a bounded Lipschitz open set and that
u ∈ C2(D) ∩H1(D) satisfies the Helmholtz equation (1.1) in D and γu =
∂nu = 0 on Γ0, some non-empty, relatively open subset of Γ = ∂D. Then
u = 0 (in D).

Proof. Let G = (Rd\Γ)∪Γ0, so that G is the open set which is the union of
Γ0 and the interior and exterior of Γ. Extend the definition of u from D to G
by setting u(x) = 0 for x ∈ G\D. Then it follows from Theorem 2.20 below
that u in G\Γ0 is the difference of two layer potentials, each with density
that vanishes on Γ0. Hence, by Theorem 2.14, u ∈ C2(G) and (1.1) holds
in G. But (see, e.g., Colton and Kress 1983) solutions of the Helmholtz
equation in a domain are real analytic in that domain and, if they vanish
in some open subset, vanish identically. Thus u = 0 in the component of G
that includes D ∪ Γ0, and in particular u = 0 in D.

Of course, the focus of this article is on solving exterior problems in
unbounded domains, for which radiation conditions need to be imposed to
ensure uniqueness of solution, expressing mathematically the physical idea
that any acoustic field is radiating away from the physical boundary. In
the case when the Helmholtz equation (1.1) holds outside some bounded
set, the standard radiation condition to impose is the Sommerfeld radiation
condition, that

∂u

∂r
(x)− iku(x) = o(r−(d−1)/2), (2.9)

as r := |x| → ∞, uniformly in x̂ := x/r. The following lemma is an
important consequence of this radiation condition; for a proof see, e.g.,
Colton and Kress (1983). In this lemma, and the remainder of the article,
we use the notations BR := {x ∈ R

d : |x| < R}, ΓR := ∂BR = {x : |x| = R},
and S

d−1 := {x ∈ R
d : |x| = 1}.
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Lemma 2.5. If, for some R > 0, u satisfies (1.1) in R
d \BR and the Som-

merfeld radiation condition (2.9), then there exists a function F ∈ C∞(Sd−1)
(the far-field pattern) such that

u(x) =
eikr

r(d−1)/2
(
F (x̂) +O(r−1)

)
(2.10)

as r → ∞, uniformly in x̂ := x/r.

A consequence of Lemma 2.5 is the following lemma, derived by applying
Green’s first identity (A.29) to u in the domain BR ∩ Ω+ and then letting
R → ∞. In this lemma and for the next paragraphs up to and including
Theorem 2.10, we suppose that Ω− is a bounded Lipschitz open set such
that Ω+ := R

d \ Ω− is a Lipschitz domain with boundary Γ = ∂Ω+. In
this configuration, as noted in Sections 1 and A.5, the normal vector n will
always be taken to point out from Ω− into Ω+, and H1

loc(Ω+) is as defined
in (A.30).

Lemma 2.6. If u ∈ C2(Ω+) ∩ H1
loc(Ω+) and u satisfies the Helmholtz

equation (1.1) in Ω+ and the Sommerfeld radiation condition (2.9), then∫
Ω+

(
|∇u|2 − k2|u|2

)
dx = I −

∫
Γ
γū ∂nu ds (2.11)

where

I := lim
R→∞

∫
ΓR

ū
∂u

∂r
ds = ik lim

R→∞

∫
ΓR

|u|2 ds = ik

∫
Sd−1

|F (x̂)|2 dx̂,

and the integral over Ω+ in (2.11) is understood as the improper integral
limR→∞

∫
BR∩Ω+

(
|∇u|2 − k2|u|2

)
dx.

We will study, in the unbounded domain Ω+, the exterior Dirichlet prob-
lem:

Given h ∈ H1/2(Γ), find u ∈ C2(Ω+) ∩H1
loc(Ω+) such that (1.1) holds

in Ω+, γu = h on Γ, and u satisfies the radiation condition (2.9). (2.12)

We will also study the exterior impedance problem:

Given h ∈ H−1/2(Γ) and β ∈ L∞(Γ), find u ∈ C2(Ω+)∩
H1

loc(Ω+) such that (1.1) holds in Ω+, ∂nu+ ikβu = h on Γ, (2.13)

and u satisfies the radiation condition (2.9).

(The sign change in this impedance boundary condition compared to (2.1)
is because the normal n here points into the domain of propagation.)
In contrast to the interior Dirichlet and Neumann problems, both prob-

lems (2.12) and (2.13) have at most one solution for all k > 0. This is a
consequence of Lemma 2.8 below, which in turn follows from the following
key lemma due to Rellich (for a proof see Colton and Kress 1983).
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Lemma 2.7. (Rellich) If u ∈ C2(Ω+) satisfies (1.1) in Ω+ and the ra-
diation condition (2.9), and limR→∞

∫
ΓR

|u|2 ds = 0, then u is identically
zero.

Rellich’s lemma implies the following result (Colton and Kress 1983).

Lemma 2.8. If u ∈ C2(Ω+)∩H1
loc(Ω+) satisfies (1.1) in Ω+, the radiation

condition (2.9), and

Im

∫
Γ
γū∂nu ds ≤ 0,

then u = 0 (in Ω+).

Proof. The conditions of the lemma imply, by Lemma 2.6, that

k

∫
Sd−1

|F (x̂)|2 dx̂ = Im

∫
Γ
γū∂nu ds ≤ 0, (2.14)

so that F = 0 in L2(Sd−1). It follows from Lemma 2.6 that

lim
R→∞

∫
ΓR

|u|2 ds = 0

and hence, by Rellich’s lemma, that u = 0.

An immediate consequence of Lemma 2.8 is the following uniqueness re-
sult for the exterior Dirichlet and impedance problems.

Corollary 2.9. The exterior Dirichlet BVP (2.12) and the exterior im-
pedance BVP (2.13), with Reβ ≥ 0, each have at most one solution.

Corollary 2.9 is the uniqueness part of the following theorem.

Theorem 2.10. The exterior Dirichlet BVP and the exterior impedance
BVP, with Reβ ≥ 0, each have exactly one solution.

Proof. Existence follows from Corollary 2.28 below, which uses results
about invertibility of boundary integral operators.

Our prime interest in the above exterior Dirichlet and impedance prob-
lems is that they arise in the context of acoustic scattering. By acoustic
scattering we mean the problem of computing the scattered acoustic field
uS produced when an incident field uI interacts with an obstacle or obsta-
cles (the scatterer) occupying some closed set Ω, such that Ω+ := R

d \Ω is
an unbounded domain. By an incident field we mean the following.

Definition 2.11. We call uI ∈ L1
loc(R

d) an incident field if, for some open
neighbourhood G of Ω, uI |G ∈ C∞(G) and satisfies the Helmholtz equation
(1.1) in G. We will refer throughout to the sum u := uI + uS as the total
acoustic field (total field for short).
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We deal exclusively with the case when Ω is bounded, except in Sec-
tion 3.2. Further, except in Section 7.6, we deal exclusively with the case
where Ω = Ω−, with Ω−, the interior of Ω, a Lipschitz open set, in which
case Γ, the surface of the scatterer, is the common boundary of Ω+ and Ω−.
We will focus particularly on the case when the incident field is a plane

wave, that is, for some â ∈ R
d with |â| = 1,

uI(x) = exp(ikx · â), x ∈ R
d.

However, many of our results apply to general incident fields, for example
the field generated by a point source, that is, for some z ∈ R

d \ Ω,
uI(x) = Φk(x, z), x ∈ R

d \ {z},
where Φk is the fundamental solution of the Helmholtz equation defined in
(1.2).
In this article we will focus on the cases of the sound-soft scatterer (where

u = 0 on Γ), the impedance scatterer, where (2.13) with h = 0 holds on Γ,
and the sound-hard scatterer, the special case of the impedance scatterer in
which ∂u/∂n = 0 on Γ.
Considering first the sound-soft scattering problem, one natural formula-

tion, where our requirement on uS is continuity rather than membership of
a particular Sobolev space, is the following:

Find uS ∈ C2(Ω+) ∩ C(Ω+) such that (1.1) holds in Ω+, u = 0 (2.15)

(so uS = −uI) on Γ, and uS satisfies the radiation condition (2.9).

In the case that Ω+ is a Lipschitz domain, a second natural formulation is
to require that the scattered field uS satisfy the exterior Dirichlet problem
(2.12), with boundary data −uI |Γ. In other words uS satisfies:

Find uS ∈ C2(Ω+) ∩H1
loc(Ω+) such that (1.1) holds in Ω+, γu = 0 (2.16)

(so γuS = −uI |Γ) on Γ, and uS satisfies the radiation condition (2.9).

It is shown in Colton and Kress (1998, Theorem 3.7) that problem (2.15)
has at most one solution, and the argument in the proof of that theorem
shows that if uS satisfies (2.15) and Ω+ is Lipschitz, then uS satisfies (2.16).
Further, in the case that Ω+ is Lipschitz, it is a corollary of Theorem 2.10
that (2.16) has exactly one solution which also satisfies (2.15); to see this
it is a matter of showing that if uS satisfies (2.16) then uS ∈ C(Ω+). This
does not follow from the Sobolev embedding theorem (Theorem A.1), but is
a consequence of elliptic regularity results up to the boundary; e.g., Kenig
(1994). Thus the following result holds.

Theorem 2.12. The Dirichlet scattering problem (2.15) has at most one
solution. In the case that Ω+ is a Lipschitz domain, (2.15) and (2.16) share
the same unique solution, which satisfies ∂nu ∈ L2(Γ).
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Proof. In view of the discussion above it remains only to show that ∂nu ∈
L2(Γ). But, by Definition 2.11, for some neighbourhood G of Γ, uI |G ∈
C∞(G) so that uI |Γ ∈ C∞(Γ) ⊂ H1(Γ) (see Section A.3). Thus γuS ∈
H1(Γ), and the fact that ∂nu ∈ L2(Γ) follows from Theorem A.5.

We remark that, while it is common (following the lead of Colton and
Kress 1983, for instance) to make use of the formulation (2.15) in the case
when Ω+ is sufficiently smooth, precisely when Ω+ is C1,µ for some µ ∈
(0, 1], overwhelmingly the recent numerical analysis literature for the case
of Lipschitz Ω+ uses the formulation (2.16). Theorem 2.12 makes clear that
the formulation (2.15) is a valid alternative even in the Lipschitz case.
Consider next the impedance scattering problem formulated as follows.

Restricting attention to the case when Ω+ is Lipschitz, we require that uS

satisfies the exterior impedance problem (2.13) with

h := −
(
∂uI

∂n
+ ikβuI

)∣∣∣∣
Γ

∈ L2(Γ). (2.17)

In other words, with h given by (2.17), uS satisfies:

Find uS ∈ C2(Ω+) ∩H1
loc(Ω+) such that (1.1) holds in

Ω+, ∂nu+ ikβγu = 0 (so ∂nu
S + ikβγuS = h) on Γ, (2.18)

and uS satisfies the radiation condition (2.9).

Analogously to Theorem 2.12, an immediate corollary of Theorem 2.10 and
Theorem A.5, is the following result.

Corollary 2.13. The impedance scattering problem (2.18) has exactly
one solution, which satisfies ∂nu ∈ L2(Γ) and γu ∈ H1(Γ).

2.2. Layer potentials

In Section 2.5 we will formulate the BVPs in the previous subsection as
BIEs. Here we introduce the required layer potentials and recall some of
their properties.
Suppose that Ω+ is an unbounded Lipschitz open set with boundary Γ, in

which case Ω− := R
d \ Ω+ is a bounded Lipschitz open set. For φ ∈ L1(Γ)

and k > 0 let

Skφ(x) :=

∫
Γ
Φk(x, y)φ(y) ds(y), x ∈ R

d \ Γ, (2.19)

and

Dkφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(y)
φ(y) ds(y), x ∈ R

d \ Γ, (2.20)
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where the normal n is directed into Ω+. Note that, in particular, these
definitions apply for φ ∈ Hs(Γ) with 0 ≤ s ≤ 1, since of course Hs(Γ) ⊂
L2(Γ) ⊂ L1(Γ). Further, they extend in a natural way, via the duality
pairing 〈·, ·〉Γ defined by (A.24), to the case that φ ∈ Hs(Γ) for −1 ≤ s < 0.
In this case, for example, noting that Φk(x, ·) ∈ C∞(Γ) ⊂ H−s(Γ), Skφ(x) is
understood as Skφ(x) = 〈Φk(x, ·), φ〉Γ, and Dkφ(x) is understood similarly.
Equivalently, Skφ(x) and Dkφ(x) can be understood as the limits

Skφ(x) = lim
j→∞

Skφj(x), Dkφ(x) = lim
j→∞

Dkφj(x), (2.21)

where (φj) ⊂ L2(Γ) is any sequence converging in Hs(Γ) to φ ∈ Hs(Γ).
We will use the above definitions also for k = 0 with Φ0 given by (1.2) in

the 3D case (d = 3). The definition (1.2) does not make sense when d = 2
and here we define Φ0 by

Φ0(x, y) :=
1

2π
log

(
a

|x− y|

)
, (2.22)

for some constant a > 0 (the usual choice a = 1). In both 2D and 3D, Φ0

is the standard fundamental solution for the Laplace equation.
Boundary integral equation methods for solving the BVPs of Section 2.1

are based on solutions in terms of layer potentials. This is effective because
of the following simple result whose proof we sketch.

Theorem 2.14. For k ≥ 0 and φ ∈ H−1(Γ), Skφ,Dkφ ∈ C2(Rd \ Γ) and
satisfy (1.1) in R

d \ Γ. For k > 0, Skφ and Dkφ satisfy the Sommerfeld
radiation condition (2.9).

Proof. For a proof in the case that φ ∈ C(Γ), see Colton and Kress (1983).
For Skφ the result follows for φ ∈ H−1(Γ) since C(Γ) is dense in H−1(Γ),
so that there exists a sequence (φj) ⊂ C(Γ) with ‖φ − φj‖H−1(Γ) → 0 as
j → ∞, which implies that Skφj(x) → Skφ(x) uniformly on compact subsets
of Rd \ Γ, from which it follows that Skφ satisfies (1.1). In the case k > 0
also, for all sufficiently large R,

max
|x|≥R

(
|x| |Skφj(x)− Skφ(x)|

)
→ 0, as j → ∞,

from which it follows that Skφ satisfies the Sommerfeld radiation condition.
The same arguments work for Dkφ when φ ∈ H−1(Γ).

The above theorem, coupled with Lemma 2.5, implies that, for k > 0,
Skφ and Dkφ both have the representation (2.10) at infinity. In fact (see
Colton and Kress 1998, or McLean 2000, p. 294), the far-field patterns of
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Skφ and Dkφ are, respectively,

FS(x̂) = cd k
(d−3)/2

∫
Γ
exp(−ikx̂ · y)φ(y) ds(y) (2.23)

and

FD(x̂) = −i cd k
(d−1)/2

∫
Γ
x̂ · n(y) exp(−ikx̂ · y)φ(y) ds(y), (2.24)

where

cd =
e−i(d−3)π/4

2(2π)(d−1)/2
.

To derive BIEs for scattering problems, we need to supplement the above
result with mapping properties of Sk and Dk. In the following theorem, χ ∈
C∞0 (Rd) is any smooth compactly supported function such that χ(x) = 1
in a neighbourhood of Ω− ∪ Γ and, for example, χSk denotes the compo-
sition of the operator Sk followed by multiplication by χ. A consequence
of Theorem 2.15 is that Skφ ∈ H1

loc(R
d) and that Dkφ ∈ H1

loc(Ω±). (From
(2.23) and (2.24) it follows that Skφ and Dkφ decay too slowly at infinity
for either to be in H1(Ω+).)

Theorem 2.15. For −1
2 ≤ s ≤ 1

2 and k ≥ 0, the following mappings are
bounded:

(i) χSk : Hs−1/2(Γ) → Hs+1(Rd);

(ii) χDk : Hs+1/2(Γ) → Hs+1(Ω±).

A proof of the above theorem for the restricted range |s| < 1/2, derived
from the key paper by Costabel (1988), is given in McLean (2000). It
depends on characterizations of the single- and double-layer potential oper-
ators in terms of the adjoints of the trace and normal derivative operators,
respectively, and, in particular, depends on (A.17), which holds only for
1/2 < s < 3/2 and not for s = 1/2 (even for smooth boundaries Γ). Thus
the proof does not extend to s = ±1/2. This is of significance for us since,
for the most part, it will be precisely the limiting cases s = ±1/2 that are
of interest.
To establish the mapping properties of Theorem 2.15 for s = ±1/2 (which,

as McLean notes, imply the same mapping properties for |s| < 1/2 by in-
terpolation), we can use the equivalences of Corollary A.8. These, together
with the standard interpolation results, imply that Theorem 2.15 is equiv-
alent to Theorem 2.16 below. In this theorem, the so-called non-tangential
maximal functions, u∗ and (∇u)∗, are defined as in (A.36) and (A.37), ex-
cept that now Θ(x) := Θ+(x) ∪Θ−(x), where {Θ±(x) : x ∈ Γ} denotes any
uniform and sufficient family of non-tangential approach sets in Ω±, so that
Θ±(x) ⊂ Ω±, Θ±(x) ∩ Γ = {x}, and (A.32) holds with the same constant
C > 1 for every x ∈ Γ.
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Theorem 2.16. For φ, ψ ∈ H−1(Γ) let u = Skφ and v = Dkψ. Then, for
some constant C > 0 independent of φ and ψ:

(i) if φ ∈ L2(Γ) then (∇u)∗ ∈ L2(Γ) and ‖(∇u)∗‖L2(Γ) ≤ C‖φ‖L2(Γ);

(ii) if ψ ∈ L2(Γ) then v∗ ∈ L2(Γ) and ‖v∗‖L2(Γ) ≤ C‖ψ‖L2(Γ);

(iii) if φ ∈ H−1(Γ) then u∗ ∈ L2(Γ) and ‖u∗‖L2(Γ) ≤ C‖φ‖H−1(Γ);

(iv) if ψ ∈ H1(Γ) then (∇v)∗ ∈ L2(Γ) and ‖(∇v)∗‖L2(Γ) ≤ C‖ψ‖H1(Γ).

The proof of this theorem requires deep results from the harmonic anal-
ysis literature, specifically that part concerned with the study of Calderón–
Zygmund operators, in particular Cauchy integral and layer-potential oper-
ators on Lipschitz curves and surfaces.
For a proof of (i) and (ii) we refer the reader to the account in Meyer and

Coifman (2000) for the case k = 0 and Torres and Welland (1993) and Liu
(1995) for the extension to k > 0. It is convenient to leave remarks on the
proof of (iii) and (iv) (which are corollaries of (i) and (ii)) until we introduce
relevant boundary integral operators in the next subsection. Note that by
far the main part of the work is to establish results for k = 0. Extensions
from k = 0 to k > 0 by perturbation arguments are relatively straightfor-
ward because Wk := Φk−Φ0 is much smoother than Φ0. Precisely, it follows
easily from (1.2) and the power series expansions for Hankel functions that
Wk(x, y) = wk(x − y) where wk ∈ C∞(Rd \ {0}) and, for some constant
ck > 0,

|wk(x)|+ |∇wk(x)| ≤ ck, |∂αwk(x)| ≤
{

ck log
(
|x|−1

)
, d = 2,

ck|x|−1, d = 3,
(2.25)

for |x| ≤ 1/2. Here α is any multi-index with |α| = 2 so that ∂αwk is
any second-order partial derivative (we use here the notation (A.1)). The
monograph of Colton and Kress (1983) is a classic example of arguing by
perturbation from k = 0 to obtain results for k > 0; see also Torres and
Welland (1993), Liu (1995) and Mitrea (1996).
As in Section A.5, we denote the exterior and interior trace operators by

γ+ and γ−, and the exterior and interior normal derivative operators by ∂+
n

and ∂−n , respectively, with the normal directed out of Ω− into the exterior
domain Ω+. Applying Theorem 2.15 with s = 0 and Theorem 2.14, we
see that, for φ ∈ H−1/2(Γ) and ψ ∈ H1/2(Γ), both χSkφ and χDkψ are in
H1(Ω±), in fact in H1(Ω±; ∆). (This notation is defined below equation
(A.26).) It follows from (A.17) that the traces γ±Skφ and γ±Dkψ are well-
defined as elements of H1/2(Γ), and that (see (A.28)) the normal derivatives
∂±n Skφ and ∂±n Dkψ are well-defined as elements of H−1/2(Γ). Moreover
(McLean 2000) the following jump relations hold:

γ+Skφ = γ−Skφ, ∂+
n Dkψ = ∂−n Dkψ. (2.26)
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A natural question to ask is whether the traces and normal derivatives
of the single- and double-layer potentials, u = Skφ and v = Dkψ, have
anything to do with the limiting values of u(x), v(x), ∇u(x) and ∇v(x) as
x approaches Γ from inside Ω±. Reassuringly, this is the case, at least if the
densities φ and ψ are smooth enough. As before Theorem 2.16, for x ∈ Γ
let Θ±(x) denote any non-tangential approach set to x from Ω±, so that

Θ±(x) ⊂ Ω±, Θ±(x) ∩ Γ = {x}, and (A.32) holds. Then, if φ ∈ Hs−1/2(Γ)
and ψ ∈ Hs+1/2(Γ), for some s ∈ (−1/2, 1/2], it follows from Lemma A.9
that, for almost every x ∈ Γ,

γ±u(x) = lim
y→x, y∈Θ±(x)

u(y) and γ±v(x) = lim
y→x, y∈Θ±(x)

v(y). (2.27)

Further, these non-tangential limits are well-defined, by Theorem 2.16 and
Corollary A.8, even for φ ∈ H−1(Γ) and ψ ∈ L2(Γ), providing an extension
of the notion of the traces of u and v to the cases of densities φ ∈ H−1(Γ)
and ψ ∈ L2(Γ).
Similarly, if φ ∈ L2(Γ) and ψ ∈ H1(Γ) then, by Theorem 2.16 and

Lemma A.10, ∂±n u, ∂±n v ∈ L2(Γ) and, for almost all x ∈ Γ,

∂±n u(x) =
∂u±
∂n

(x) := lim
y→x, y∈Θ±(x)

n(x) · ∇u(y) (2.28)

and

∂±n v(x) =
∂v±
∂n

(x) := lim
y→x, y∈Θ±(x)

n(x) · ∇v(y). (2.29)

Further, for almost all x ∈ Γ, by Theorem 2.16 and Lemma A.10, ∇Γγu ∈
L2(Γ) and

lim
y→x,y∈Θ±(x)

∇u(y) = ∇Γγ±u(x) + n(x)∂±n u(x) (2.30)

and

lim
y→x,y∈Θ±(x)

∇v(y) = ∇Γγ±v(x) + n(x)∂±n v(x). (2.31)

2.3. Boundary integral operators

For k ≥ 0 we define the acoustic single- and double-layer operators, Sk and
Dk, respectively, by

Skφ(x) :=

∫
Γ
Φk(x, y)φ(y) ds(y),

Dkφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(y)
φ(y) ds(y),

(2.32)

for x ∈ Γ, where Φk is given by (1.2) in 3D and in 2D by (1.2) for k > 0
and by (2.22) for k = 0.



High-frequency acoustic scattering 113

When Γ and φ are both sufficiently smooth, it is well known that the above
integrals are well-defined (the integrands are in L1(Γ)) for all x ∈ Γ. In
particular (Colton and Kress 1983), this is the case if Γ is C2 and φ ∈ C(Γ),
with both Skφ,Dkφ ∈ C(Γ). In the 2D case, with φ ∈ L2(Γ) and Γ Lipschitz,
it still holds (by Cauchy–Schwarz, since Φk(x, ·) ∈ L2(Γ) when d = 2), that
Skφ(x) is well-defined for all x ∈ Γ and Skφ ∈ C(Γ).
For Lipschitz Γ, the situation is more delicate for the double-layer po-

tential, but for φ ∈ L2(Γ), irrespective of the dimension d, Skφ and Dkφ
are well-defined by (2.32) for almost all x ∈ Γ, with Dkφ understood as the
Cauchy principal value integral

Dkφ(x) := lim
ε→0

∫
Γ\Bε(x)

∂Φk(x, y)

∂n(y)
φ(y) ds(y), x ∈ Γ, (2.33)

where Bε(x) is the open ball of radius ε centred at x and Skφ,Dkφ ∈ L2(Γ).
This result for the double-layer potential is not straightforward and was
established first for the case k = 0; see, e.g., Meyer and Coifman (2000) and
the discussion in the following paragraphs. The extension to k > 0 is more
straightforward; see Torres and Welland (1993).
As is well known, and will be recalled below, Skφ and Dkφ appear when

we take boundary values of the single- and double-layer potentials Skφ and
Dkφ. When we apply the normal derivative operator ∂n, two additional
boundary integral operators, D′k and Hk, arise, which we will term the
(acoustic) adjoint double-layer operator and the (acoustic) hypersingular
operator, respectively. For φ ∈ L2(Γ) and ψ ∈ H1(Γ) these operators are
given explicitly by

D′kφ(x) :=
∫
Γ

∂Φk(x, y)

∂n(x)
φ(y) ds(y), (2.34)

Hkψ(x) :=
∂

∂n(x)

∫
Γ

∂Φk(x, y)

∂n(y)
ψ(y) ds(y), (2.35)

for almost all x ∈ Γ, where the integral defining D′kφ is understood as a
Cauchy principal value integral (as in (2.33)) while Hkψ ∈ L2(Γ) is defined
in the sense of (2.29), that is,

Hkψ(x) := lim
y→x, y∈Θ±(x)

n(x) · ∇Dkψ(y). (2.36)

Note that for ψ ∈ H1/2(Γ), ∂+
n Dkψ = ∂−n Dkψ (see (2.26)). It follows from

(2.29) that the limits in (2.36) as y → x from Θ+(x) and from Θ−(x)
coincide.
It is a consequence of Young’s inequality for convolutions that Sk is a

bounded operator on L2(Γ). A much deeper result is that both Dk and
D′k are bounded operators on L2(Γ); for a clear discussion of the proofs
of these results for k = 0 see Meyer and Coifman (2000), and see Torres
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and Welland (1993) for the relatively straightforward extensions to k > 0.
This boundedness was established only in 1982 as a corollary of the proof of
Coifman, McIntosh and Meyer (1982) that the Cauchy integral operator is
bounded on L2(Γ) when Γ is the graph of a Lipschitz-continuous function.
It was shown soon afterwards, by Verchota (1984), that, in the case k = 0,
Dk is also a bounded operator on H1(Γ) and Sk a bounded operator from
L2(Γ) to H1(Γ); again, for extensions to k > 0 see Torres and Welland
(1993). The results in Verchota (1984) were achieved through the use of
Rellich-type identities, which we will make new use of in Section 5.7 (see
the discussion in Section 5.3).
Important identities, which follow by Fubini’s theorem for Sk, and by the

arguments of Meyer and Coifman (2000) plus Fubini’s theorem (to move
from k = 0 to k > 0) for Dk and D′k, are that, for φ, ψ ∈ L2(Γ),∫

Γ
φSkψ ds =

∫
Γ
ψ Skφ ds,

∫
Γ
φDkψ ds =

∫
Γ
ψD′kφ ds. (2.37)

For k = 0 (when the kernels of the operators are real) this is precisely a
statement that, as operators on the Hilbert space L2(Γ), D′k is the adjoint
of Dk and Sk is self-adjoint. To frame these identities as statements about
adjoints for k > 0, let C : Hs(Γ) → Hs(Γ) denote the operation of complex
conjugation, that is,

Cu(x) := u(x), x ∈ Γ,

so that C is an anti-linear bounded operator on Hs(Γ) for |s| ≤ 1. Then, if
A∗ denotes the adjoint of a bounded linear operator A on L2(Γ), it follows
from (2.37) that

S∗k = CSkC, D∗k = CD′kC. (2.38)

Combined with standard results on adjoints of operators on Hilbert spaces,
this has simple but important consequences, for example that

‖Dk‖L2(Γ)←L2(Γ) = ‖D∗k‖L2(Γ)←L2(Γ) = ‖D′k‖L2(Γ)←L2(Γ). (2.39)

A further important consequence follows from writing (2.37) in terms of the
duality pairing (A.24), as

〈Skφ, ψ〉Γ = 〈φ, S∗kψ〉Γ, 〈Dkφ, ψ〉Γ = 〈φ,D∗kψ〉Γ. (2.40)

These identities hold in the first instance just for φ, ψ ∈ L2(Γ). But, since
Sk is a bounded operator from L2(Γ) to H1(Γ), the first of these identities
can be extended to φ ∈ L2(Γ), ψ ∈ H−1(Γ), and used to show (together
with (2.38)) that Sk extends to a bounded operator from H−1(Γ) to L2(Γ).
Similarly, since Dk is a bounded operator on H1(Γ) as well as on L2(Γ),
the second of these identities implies that D′k extends to a bounded linear
operator onH−1(Γ). These remarks sketch the proof of most of the following
result.
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Theorem 2.17. For |s| ≤ 1/2 and k ≥ 0 the following mappings are
bounded:

Sk : Hs−1/2(Γ) → Hs+1/2(Γ),

Dk : Hs+1/2(Γ) → Hs+1/2(Γ),

D′k : Hs−1/2(Γ) → Hs−1/2(Γ).

Proof. We have shown the above mappings for the limiting cases s = ±1/2.
The results for intermediate values of s follow by interpolation (see, e.g.,
the introduction and Theorems B.2 and B.11 in Appendix B of McLean
(2000)).

The connection between the above boundary integral operators and the
operators Sk and Dk is obtained via an extended version of the jump rela-
tions (2.26). From McLean (2000) we have, on H−1/2(Γ),

γ±Sk = Sk, ∂±n Sk = ∓1
2I +D′k, (2.41)

where I is the identity operator. Similarly, on H1/2(Γ), we have

γ±Dk = ±1
2I +Dk. (2.42)

For ψ ∈ H1(Γ) we have, from (2.26), (2.36) and (2.29), that

Hkψ = ∂±n Dkψ. (2.43)

To see that Hk extends (uniquely) to a bounded operator from Hs+1/2(Γ) to
Hs−1/2(Γ), for |s| ≤ 1/2, and in particular that (2.43) holds for ψ ∈ H1/2(Γ),
our method is again to show this result first for k = 0 and then make
a perturbation argument. To obtain the result for k = 0 a convenient
route is to use the result of Verchota (1984) that S0 : L2(Γ) → H1(Γ) is a
bijection. (There is a subtlety in dimension 2: we have to choose a in (2.22)
so that it does not equal the so-called capacity of Γ. For example, choosing
a larger than the diameter of Γ is sufficient. See Chapter 8 in McLean
(2000) and Section 4 of Verchota (1984).) This implies by duality that also
S∗0 = S0 : H

−1(Γ) → L2(Γ) is a bijection, and hence, by interpolation, that
S0 : Hs−1/2(Γ) → Hs+1/2 is a bijection for |s| ≤ 1/2. Uniqueness for the
interior Dirichlet problem for Laplace’s equation and the trace results (2.41)
and (2.42) imply that, for ψ ∈ H1(Γ),

D0ψ(x) = −S0S
−1
0

(
1
2I −D0

)
ψ(x), x ∈ Ω− (2.44)

(a similar argument is used in Verchota 1984). By density ofH1(Γ) in L2(Γ),
and that both the left and right sides of this equation depend continuously
on ψ ∈ L2(Γ), it follows that (2.44) in fact holds for all ψ ∈ L2(Γ).
The identity (2.44) firstly establishes (iv) in Theorem 2.16, as a corollary

of (i) (see the remarks following Theorem 2.16). Then, recalling that Ver-
chota (1984) also tells us that 1

2I−D0 is a bijection on Hs(Γ) for s = 0 and
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1, and hence by interpolation for all 0 ≤ s ≤ 1, we can rewrite (2.44) as

S0φ(x) = −D0

(
1
2I −D0

)−1
S0φ(x), x ∈ Ω−, (2.45)

for φ ∈ H−1(Γ). Hence we are able to deduce (iii) in Theorem 2.16 as a
corollary of (ii). Finally, combining (2.41), (2.42), and (2.44), we see that,
on H1(Γ),

H0 = −∂−n S0S
−1
0

(
1
2I −D0

)
= −

(
1
2I +D′0

)
S−10

(
1
2I −D0

)
. (2.46)

This identity, combined with the above observation that S0 : Hs−1/2(Γ) →
Hs+1/2(Γ) is a bijection, and Theorem 2.17, allows us to extend the do-
main of definition of H0, and implies, together with the bounds (2.25), the
following result.

Theorem 2.18. For |s| ≤ 1/2, the hypersingular operator

Hk : Hs+1/2(Γ) → Hs−1/2(Γ),

and this mapping is bounded.

2.4. Green’s representation theorems

Our main starting point for our numerical schemes will be integral equa-
tions obtained from Green’s theorems. We begin with the following simple
consequence of (A.29).

Theorem 2.19. (Green’s second formula) Suppose that D is a Lip-
schitz open set and that u, v ∈ H1(D; ∆). Then∫

Γ

(
γv∂nu− γu∂nv

)
ds =

∫
D

(
v∆u− u∆v

)
dx.

From this theorem we deduce Green’s representation theorems. As in the
previous subsection, Ω− is a bounded Lipschitz open set, and Ω+ = R

d \Ω−
is assumed to be connected, and so is an unbounded Lipschitz domain, and
the trace and normal derivative operators, γ± and ∂±n , are as defined in
Section A.5.

Theorem 2.20. If u ∈ H1(Ω−)∩C2(Ω−) and, for some k ≥ 0, ∆u+k2u =
0 in Ω−, then

Sk∂
−
n u(x)−Dkγ−u(x) =

{
u(x) x ∈ Ω−,
0 x ∈ Ω+.

(2.47)

Proof. For x ∈ Ω+ this is an immediate consequence of Theorem 2.19,
applied with D = Ω− and v = Φk(·, x). For x ∈ Ω−, the application
of Theorem 2.19 is in Ω− with a small ball of radius ε removed, and the
theorem follows on taking the limit ε → 0; see Colton and Kress (1983) for
details.
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The following is the version of Green’s representation theorem which holds
in exterior domains. It is shown by applying Theorem 2.20, with Ω− re-
placed by the part of Ω+ contained in a large ball of radius R, and then
letting R → ∞. The integral around the boundary of the large ball vanishes
in this limit as a consequence of the Sommerfeld radiation condition (2.9)
satisfied by u and by Φk(·, x); see Colton and Kress (1983) for details.

Theorem 2.21. If u ∈ H1
loc(Ω+) ∩ C2(Ω+) and, for some k > 0, ∆u +

k2u = 0 in Ω+ and u satisfies the Sommerfeld radiation condition (2.9) in
Ω+, then

−Sk∂
+
n u(x) +Dkγ+u(x) =

{
u(x) x ∈ Ω+,

0 x ∈ Ω−.
(2.48)

2.5. Boundary integral equation formulations

We have set up the tools that we need to derive BIE formulations of the
BVPs in Section 2.1. Our main tool for computation will be so-called di-
rect BIE formulations, namely, integral equation formulations derived from
the Green’s representation theorems in which the solution to the integral
equation is either the trace or normal derivative of the solution to the BVP.
The starting point to derive these BIEs are the representation formulae in
Theorems 2.20 and 2.21.
To describe the integral equations succinctly, we define the matrices of

operators

P± = ±
[
γ±Dk −γ±Sk

∂±n Dk −∂±n Sk

]
. (2.49)

These are the so-called Calderón projectors; we will see shortly that these
are indeed projection operators (for example on the Hilbert space H1/2(Γ)×
H−1/2(Γ)). Applying the jump relations, (2.41), (2.42) and (2.43), we find
that

P± = 1
2I ±Mk, (2.50)

where I is the (2 × 2 matrix) identity operator and Mk is the matrix of
boundary integral operators

Mk =

[
Dk −Sk

Hk −D′k

]
. (2.51)

To see where P+ arises, we apply the trace operator γ+ and then the
normal derivative operator ∂+

n to (2.48) to obtain two equations which we
can write in matrix form as

P+c+u = c+u, (2.52)

where c+u = [γ+u, ∂
+
n u]

T is the Cauchy data for u on Γ. Explicitly, using
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(2.50), these two equations are(
Dk − 1

2I
)
γ+u− Sk∂

+
n u = 0 (2.53)

and

Hkγ+u−
(
D′k +

1
2I
)
∂+
n u = 0, (2.54)

each a linear relationship between the components γ+u and ∂+
n u of the

Cauchy data c+u. Similar relationships between the components of the
Cauchy data c−u = [γ−u, ∂−n u]T are obtained by applying γ− and ∂−n to
(2.47). We summarize these key results in the following lemma.

Lemma 2.22. If u ∈ H1(Ω−)∩C2(Ω−) and, for some k ≥ 0, ∆u+k2u = 0
in Ω−, then P− c−u = c−u. Similarly, if u ∈ H1

loc(Ω+) ∩ C2(Ω+) and, for
some k > 0, ∆u + k2u = 0 in Ω+ and u satisfies the Sommerfeld radiation
condition (2.9) in Ω+, then P+ c+u = c+u.

Of course, this lemma implies that if, for some k > 0, u ∈ H1(Ω−) ∩
H1

loc(Ω+)∩C2(Rd\Γ), ∆u+k2u = 0 in R
d\Γ, and u satisfies the Sommerfeld

radiation condition, then P± c±u = c±u. In particular, by Theorems 2.14
and 2.15, the following lemma holds.

Lemma 2.23. If u = Dkφ1 − Skφ2 with φ1 ∈ H1/2(Γ), φ2 ∈ H−1/2(Γ),
then

P± c±u = c±u.

Further, writing φ = [φ1, φ2]
T , it follows immediately from the definition

(2.49) that

c±u = ±P±φ,

so that

P 2
±φ = ±P±c±u = ±c±u = P±φ.

This lemma confirms that P± are projection operators on H1/2(Γ) ×
H−1/2(Γ), i.e., that P 2± = P±. Further, in view of (2.50), this projection
property is equivalent to the very useful identity

M2
k = 1

4I, (2.55)

which, written out in component form, is

SkHk = D2
k − 1

4I, DkSk = SkD
′
k, HkDk = D′kHk, (2.56)

plus a further identity, obtained from the first identity by taking adjoints.
Lemma 2.22 is the basis for all the standard direct BIE formulations

for interior and exterior acoustic BVPs. For example, if u satisfies the
exterior Dirichlet problem (2.12), then it follows immediately from (2.52),
in component form (2.53) and (2.54), that ∂+

n u satisfies both

Sk∂
+
n u =

(
Dk − 1

2I
)
h (2.57)
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and (
D′k +

1
2I
)
∂+
n u = Hkh. (2.58)

Similarly, if u satisfies the interior Dirichlet problem (2.4), then, from
Lemma 2.22, in particular from the equation P−c−u = c−u, it follows that

Sk∂
−
n u =

(
Dk +

1
2I
)
h (2.59)

and (
D′k − 1

2I
)
∂−n u = Hkh. (2.60)

Let us make two simple observations here. Firstly, all these equations are
BIEs of the form

Aφ = ψ, (2.61)

where A is a linear combination of boundary integral operators and the
identity, φ is the solution to be determined and ψ is given data. Secondly
we observe that the same operator A can arise from both interior and exte-
rior problems. This has the important implication that, although exterior
acoustic problems are generically uniquely solvable (this holds in particu-
lar for the exterior Dirichlet and Neumann/impedance problems that we
focus on in this article: see Theorem 2.10), the natural BIE formulations of
these problems need not be uniquely solvable for all wavenumbers k. For
example, Theorem 2.1 shows that the homogeneous interior Dirichlet prob-
lem has non-trivial solutions at a sequence km of positive wavenumbers. If
k = km and u is such a solution then ∂−n u is a solution of (2.59) with h = 0
(a non-trivial solution by Theorem 2.4 which implies that ∂−n u �= 0), and so,
for k = km, the BIE (2.57) for the exterior Dirichlet problem has infinitely
many solutions (in H−1/2(Γ)).
In (2.57)–(2.60) we have stated four standard BIEs for the exterior and

interior Dirichlet BVPs. Similarly, we can write down BIEs for the exterior
and interior Neumann problems (problems (2.5) and (2.13) with β set to
zero); indeed these equations are just equations (2.57)–(2.60) re-interpreted
as equations where the unknown is the Dirichlet data h and the known
function is ∂nu.
Another popular and closely related approach is the indirect method

where the solution is sought in the form of a layer potential with some
unknown density, for example in the form

u = Skφ or u = Dkψ, (2.62)

for some φ ∈ H−1/2(Γ) or ψ ∈ H1/2(Γ). By Theorems 2.14 and 2.15 these
satisfy each of the BVPs of Section 2.1 provided the relevant boundary
condition is satisfied. For example, u = Skφ satisfies the exterior Dirichlet
problem (2.12) if and only if γ+u = h, that is,

Skφ = h; (2.63)
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similarly u = Dkφ satisfies (2.12) if and only if γ+u = h, that is,(
1
2I +Dk

)
ψ = h. (2.64)

Like (2.57) and (2.58), these equations are of the form (2.61); indeed, with
the same operator A = Sk in (2.63) and (2.57), and with closely related
operators in (2.58) and (2.64).
We recall (see (2.38)) thatD′k is closely related to the Hilbert space adjoint

of Dk. Seeking to generalize this, let us denote by A′ the quasi-adjoint of
an operator A, where we call A′ the quasi-adjoint of A if

A′ = CA∗C, (2.65)

where A∗ is the Hilbert space adjoint of A. We call A quasi-self-adjoint if
A′ = A. Then (see (2.38)) D′k is the quasi-adjoint of Dk and Sk is quasi-
self-adjoint, and moreover(

1
2I +Dk

)′
= 1

2I +D′k,

that is, the operator in (2.64) is the quasi-adjoint of that in (2.58).

Remark 2.24. An important observation is that A, A∗ and (as a conse-
quence of (2.65)) A′ all share the same norm. Furthermore, one of the three
is invertible if and only if they are all invertible. Moreover, if they are all
invertible, then their inverses share the same norm.

The observation that the operator in (2.64) is the quasi-adjoint of that
in (2.58) holds more generally: the indirect BIE method gives rise to equa-
tions of the form (2.61) where the operator A is the quasi-adjoint of an
equation arising from the direct BIE approach. In particular the interior
and exterior Dirichlet and Neumann problems all give rise to BIEs of the
form (2.61) and the operators that arise are tabulated in Table 2.1. In the
column labelled ‘Direct’, we list the operators in the direct BIEs which fol-
low from Lemma 2.22, while in the column labelled ‘Indirect’ we show this
information for the indirect BIEs which arise from looking for the solution
in the form (2.62).
Let us pull out a few points from this table. Observe first that each op-

erator in the third column is the quasi-adjoint of the operator immediately
to its left. The message here is, roughly speaking, that the indirect for-
mulation does not give rise to different operators to invert from the direct
formulation, in particular all spectral properties (relevant for conditioning
and behaviour of iterative solvers) are the same. Secondly, note that the
collection of operators arising in the different formulations of the exterior
Dirichlet and Neumann problems is precisely the same collection of oper-
ators as arises in the formulation of the interior problems. Finally, recall
that we argued below equation (2.61) that (2.57) has infinitely many solu-
tions inH−1/2(Γ) at wavenumbers k for which the interior Dirichlet problem
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Table 2.1. The integral operator A, in the equation of the form (2.61), that
arises from a direct formulation from Lemma 2.22 (column 2) or an indirect
formulation, looking for a solution in the form (2.62) (column 3). The operators
in a particular row are not invertible for values of k, for which the homogeneous
interior problem indicated in the last column has non-trivial solutions.

Direct Indirect Homogeneous interior
problem

Interior Dirichlet problem Sk Sk Dirichlet
1
2I −D′

k
1
2I −Dk Dirichlet

Interior Neumann problem 1
2I +Dk

1
2I +D′

k Neumann
Hk Hk Neumann

Exterior Dirichlet problem Sk Sk Dirichlet
1
2I +D′

k
1
2I +Dk Neumann

Exterior Neumann problem 1
2I −Dk

1
2I −D′

k Dirichlet
Hk Hk Neumann

(2.4) with h = 0 has non-trivial solutions, so that Sk (as an operator from
H−1/2(Γ) to H1/2(Γ)) cannot be invertible at those frequencies. Arguing
similarly, as indicated in Table 2.1, one can show that Hk, as an operator
from H1/2(Γ) to H−1/2(Γ) is not invertible if the interior Neumann problem
has non-trivial solutions and that 1

2I ±Dk and 1
2I ±D′k are not invertible if

particular homogeneous interior problems have non-trivial solutions. These
are either the Dirichlet problem ((2.4) with h = 0) or the Neumann problem
((2.5) with β = h = 0), as indicated in the last column of the table.
Let us summarize what is known about the invertibility of the operators

in Table 2.1 in a theorem.

Theorem 2.25. For k > 0 and |s| ≤ 1
2 the mappings

Sk : Hs−1/2(Γ) → Hs+1/2(Γ),
(
1
2I ±Dk

)
: Hs+1/2(Γ) → Hs+1/2(Γ),

Hk : Hs+1/2(Γ) → Hs−1/2(Γ),
(
1
2I ±D′k

)
: Hs−1/2(Γ) → Hs−1/2(Γ)

are all Fredholm of index zero. Further, Sk,
1
2I − Dk and 1

2I − D′k are
invertible as mappings between the spaces indicated above for |s| ≤ 1/2 if
and only if the interior homogeneous Dirichlet problem ((2.4) with h = 0)
only has the trivial solution, while Hk,

1
2I +Dk and 1

2I +D′k are invertible
if and only if the interior homogeneous Neumann problem ((2.5) with β =
h = 0) only has the trivial solution.
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Proof. All the mappings are bounded by Theorems 2.17 and 2.18. Note
that, as discussed before Theorem 2.18, S0 is invertible as a mapping from
L2(Γ) to H1(Γ) and as a mapping from H−1(Γ) to L2(Γ), provided that,
in the 2D case, a in (2.22) is chosen sufficiently large (which we assume
throughout). It is enough to focus on the operators Sk, Hk,

1
2I −D′k, and

1
2I +Dk, as the results for the other two operators follow by taking quasi-
adjoints. So let Rk denote one of these operators. To show that Rk is
Fredholm of index zero for all k and |s| ≤ 1/2, it is enough to show that
Rk = R† + Ck where R† is invertible and Ck is compact. Further, it is
enough to show that R† is invertible and Ck compact for the limiting values
s = ±1/2. (The full range |s| ≤ 1/2 follows from the limiting cases by
interpolation: see Appendix B (especially Theorem B.2) in McLean (2000)
and Cobos, Edmunds and Potter (1990).) Once we have shown that Rk

is Fredholm of index zero, the theorem is proved if we can show, for each
s in the range |s| ≤ 1/2, that Rk is invertible if and only if the relevant
homogeneous interior problem only has the trivial solution. Since Rk is
Fredholm of index zero, invertibility of Rk is equivalent to injectivity. This
injectivity has to be shown for all |s| ≤ 1/2. However, Hr(Γ) is dense in
Ht(Γ) for −1 ≤ t < r ≤ 1, so that a standard result of Fredholm theory
(see, for example, Section 1 in Prössdorf and Silbermann 1991) implies that,
if an operator L is Fredholm of the same index on Hr(Γ) and Ht(Γ), then
the null space of L is the same in each space. This result is applied directly
to Rk in the cases Rk = 1

2I + Dk and Rk = 1
2I − D′k, and is applied to

S−10 Sk and S0Hk in the cases Rk = Sk and Rk = Hk, respectively, and
implies that the null space of Rk is independent of s so that injectivity
for s = 0 is equivalent to injectivity for all |s| ≤ 1/2. Thus the proof is
completed if we can show that Rk is injective for s = 0 if and only if the
relevant homogeneous interior problem only has the trivial solution. But
this is well known (see, for example, the results in Section 7.6 of Steinbach
2008), following easily from Theorems 2.14 and 2.15 and the jump relations
(2.41), (2.42) and (2.43). (See also the discussion in the paragraph below
(2.59) and (2.60).)
We now give a proof of the fact that Rk = R†+Ck, with R† invertible and

Ck compact, for s = ±1/2. This step varies between the distinct choices
Rk = Sk,

1
2I−D′k,

1
2I+Dk, and Hk. In each case it follows from the bounds

(2.25) that the difference Rk − R0 is compact for all k > 0 for s = ±1/2.
(For example, Sk − S0 is a compact operator from L2(Γ) to H1(Γ) because
Sk − S0 and ∇Γ(Sk − S0) are compact operators on L2(Γ), this being clear
from the bounds (2.25), which imply that these are integral operators on
L2(Γ) with bounded kernels. Then the fact that Sk − S0 = (Sk − S0)

′ is a
compact operator from H−1(Γ) to L2(Γ) follows by duality.) When Rk = Sk

a sensible splitting is R† = R0 = S0 and Ck = Sk − S0. This works because
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R† = S0 is invertible for s = ±1/2. Likewise, it is shown in Verchota (1984)
that 1

2I−D0 is invertible on L2(Γ) and H1(Γ). Thus, taking adjoints, when

Rk = 1
2I −D′k, R0 is invertible on L2(Γ) and H−1(Γ).

The splitting in the other two cases is slightly more subtle because H0 and
1
2I +D0 are not invertible (but are Fredholm of index zero). For |s| ≤ 1/2
and φ ∈ Hs(Γ) let

Pφ = |Γ|−1 〈φ, 1〉Γ 1,

where 1 is the constant function on Γ with value one, 〈·, ·〉Γ is the dual-
ity pairing (A.24), and |Γ| = 〈1, 1〉Γ =

∫
Γ ds. Then, for |s| ≤ 1, P is a

(bounded) projection operator, mapping Hs(Γ) onto the one-dimensional
subspace of constant functions. For |s| ≤ 1, let Hs∗(Γ) := {φ ∈ Hs(Γ) :
Pφ = 0}, a closed subspace ofHs(Γ) of co-dimension 1. Where T := 1

2I+D′0
and L2∗(Γ) := H0∗ (Γ), it is shown as Theorem 3.3(i) in Verchota (1984) that
T : L2∗(Γ) → L2∗(Γ) is invertible and T : L2(Γ) → L2∗(Γ). This implies that
T as an operator on L2(Γ) is Fredholm of index zero (note that if φ ∈ L2(Γ)
and Tφ = 0, then φ is a multiple of 1−(T |L2∗(Γ))

−1T1, so that the null space

of T has dimension one). Thus, so is its dual, T ∗ = 1
2I+D0. Further, (2.56)

implies that, as an operator on H−1(Γ),

T = 1
2I +D′0 = S−10 (12I +D0)S0,

so that T is Fredholm of index zero also on H−1(Γ) and, passing to adjoints,
T ∗ is Fredholm of index zero on H1(Γ). A splitting of Rk = 1

2I + Dk is

Rk = R† + Ck with R† = T ∗ + P ∗ = (T + P )∗ and Ck = Dk − D0 − P ∗.
Ck is compact on L2(Γ) and H1(Γ) and R† is Fredholm of index zero on
each space. To see that R† is invertible, it is enough to show that T + P is
injective, and indeed to show that it is injective as an operator on L2(Γ).
But, if φ ∈ L2(Γ) and (T + P )φ = 0, then, since T maps L2(Γ) onto L2∗(Γ),
PTφ = 0 so that Pφ = P 2φ = 0 and φ ∈ L2∗(Γ) with Tφ = 0. Thus φ = 0
since T is invertible on L2∗(Γ). Finally, that H0 is Fredholm of index zero
as a mapping from L2(Γ) to H−1(Γ) and from H1(Γ) to L2(Γ) follows from
(2.46) and the results just discussed. This identity and the above results
imply further that a suitable splitting of Rk = Hk is Rk = R† + Ck with

R† = −(12I +D′0 + P )S−10 (12I −D0),

which has R† invertible and a compact perturbation of H0, so that Ck is
compact.

An attraction of the BIE (2.57) for the exterior Dirichlet problem (and
the corresponding formulation for the Neumann problem where the operator
is Hk) is that, even at frequencies where the operator is not invertible, the
integral equation formulation is still equivalent to the BVP formulation, in
a sense that we make precise now for the Dirichlet case in a theorem.
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Theorem 2.26. If u satisfies the exterior Dirichlet problem (2.12), then

u(x) = Dkh(x)− Sk∂
+
n u(x), x ∈ Ω+, (2.66)

and ∂+
n u ∈ H−1/2(Γ) satisfies (2.57). Conversely, if φ ∈ H−1/2(Γ) is a

solution to the integral equation (2.57) and

u(x) := Dkh(x)− Skφ(x), x ∈ Ω+, (2.67)

then u satisfies (2.12).

Proof. If u satisfies (2.12) then Theorem 2.21 implies that (2.66) holds,
and we have seen above that (2.57) follows by taking traces. Conversely,
if φ ∈ H−1/2(Γ) is a solution to (2.57), that is, Skφ = (Dk − 1

2I)h, and
u is defined by (2.67), then, applying (2.41) and (2.42), it follows that
γ+u = (12I + Dk)h − Skφ = h. Thus, and by Theorems 2.14 and 2.15, u
satisfies (2.12).

2.6. Combined potential integral equations

As is clear from Theorem 2.25, none of the BIEs detailed above have unique
solutions at all wavenumbers k > 0. In the case of direct formulations one
simple and effective solution to this, an idea which dates back at least to
Burton and Miller (1971), is to take linear combinations of the equations
that we have met already. In particular, taking a linear combination of
(2.57) and (2.58), we obtain

A′k,η∂
+
n u = Bk,ηh, (2.68)

where η ∈ C is a parameter that we need to choose and A′k,η, Bk,η are the
operators

A′k,η = 1
2I +D′k − iηSk and Bk,η = Hk + iη

(
1
2I −Dk

)
. (2.69)

Equation (2.68), considered as a reformulation of the exterior Dirichlet prob-
lem (2.12), will be the focus of much of the numerical analysis in this review.
Equation (2.68) can also be viewed as a reformulation of the exterior Neu-
mann problem ((2.13) with β = 0), in which case ∂+

n u is the known data
and h = γ+u is to be determined, this being the point of view taken in
Burton and Miller (1971). We will see in Theorem 2.27 that both A′k,η and

Bk,η are invertible (considered as operators between appropriate pairs of
Sobolev spaces) for all k > 0 provided Re η �= 0, the argument justifying
the injectivity of Bk,η dating back to Burton and Miller (1971).
Alternatively, we can formulate uniquely solvable indirect integral equa-

tions. In these equations the operators to be inverted are the quasi-adjoints
of A′k,η and Bk,η. In particular, if we look for a solution of (2.12) in the
form of the combined layer-potential

u(x) = Dkφ(x)− iηSkφ(x), x ∈ Ω+, (2.70)
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for some φ ∈ H1/2(Γ) and η ∈ C, we see from Theorems 2.14 and 2.15 and
from (2.41) and (2.42) that u satisfies (2.12) if and only if

Ak,ηφ = h, (2.71)

where Ak,η is the quasi-adjoint of A′k,η, that is,

Ak,η = 1
2I +Dk − iηSk. (2.72)

Equation (2.71) and this method for solving the exterior Dirichlet problem
date back to Brakhage and Werner (1965), Leis (1965) and Panič (1965).
Similarly, u given by (2.70) with φ ∈ H1/2(Γ) satisfies the exterior im-

pedance problem (2.13) if and only if

C ′k,η,kβφ = h (2.73)

where, for η̂ ∈ L∞(Γ),

C ′k,η,η̂ = B′k,η + iη̂Ak,η and B′k,η = Hk + iη
(
1
2I −D′k

)
(2.74)

is the quasi-adjoint of Bk,η. Of course, C ′k,η,kβ = B′k,η in the Neumann BVP
case β = 0.
The corresponding direct formulation for the exterior impedance problem

follows essentially from (2.68). If u satisfies (2.13) then, by Lemma 2.22, in
particular from (2.53) and (2.54), we see that(

1
2I −Dk

)
γ+u− ikSk(βγ+u) = −Skh (2.75)

and

Hkγ+u+ ik
(
1
2I +D′k

)
(βγ+u) =

(
1
2I +D′k

)
h. (2.76)

For the case β = 0 (the exterior Neumann problem) we have seen in Table 2.1
that equation (2.75) is not uniquely solvable at wavenumbers k for which
the homogeneous interior Dirichlet problem has a non-trivial solution, and
(2.76) is not uniquely solvable at wavenumbers for which the homogeneous
interior Neumann problem has a non-trivial solution. These statements
hold equally for β �= 0; this can essentially be read off from Table 2.1. In
particular, from (2.59) and (2.60) we see that, if u is a non-trivial solution
of the homogeneous interior Dirichlet problem ((2.4) with h = 0), then
∂−n u (which is non-zero by Theorem 2.4) is in the null space of both Sk and
1
2I−D′k, and hence in the null space of 1

2I−D′k− ikβSk, for any β ∈ L∞(Γ).

Thus, if (2.4) with h = 0 has a non-trivial solution, then 1
2I −D′k − ikβSk

is not invertible. Hence by Remark 2.24 its quasi-adjoint 1
2I −Dk − ikSkβ,

which is the operator on the left-hand side of (2.75), also is not invertible.
We obtain a direct combined potential formulation of the exterior im-

pedance problem by taking a linear combination of equations (2.75) and
(2.76), which gives

Ck,η,kβγu = A′k,ηh, (2.77)
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where Ck,η,η̂ is the quasi-adjoint of C ′k,η,η̂, defined explicitly by

Ck,η,η̂φ := Bk,ηφ+ iA′k,η(η̂φ), φ ∈ H1/2(Γ). (2.78)

We can deduce mapping properties of the operators Ak,η, Bk,η, Ck,η,η̂ and
their quasi-adjoints straightforwardly from Theorem 2.17. This is the con-
tent of the first sentence of the following theorem.

Theorem 2.27. For k ≥ 0, η ∈ C, |s| ≤ 1
2 , and η̂ ∈ L∞(Γ), the mappings

Ak,η : Hs+1/2(Γ) → Hs+1/2(Γ), A′k,η : Hs−1/2(Γ) → Hs−1/2(Γ),

Bk,η : Hs+1/2(Γ) → Hs−1/2(Γ), B′k,η : Hs+1/2(Γ) → Hs−1/2(Γ),

Ck,η,η̂ : Hs+1/2(Γ) → Hs−1/2(Γ), C ′k,η,η̂ : Hs+1/2(Γ) → Hs−1/2(Γ),

are bounded. Further, for k > 0 and Re η �= 0 the mappings for Ak,η, A
′
k,η,

Bk,η and B′k,η are invertible; the mappings for Ck,η,η̂ and C ′k,η,η̂ are also
invertible provided also that Re η̂ ≥ 0.

Proof. That these mappings are bounded follows from Theorems 2.17 and
2.18. It is enough (cf. Remark 2.24) to show the invertibility of A′k,η, Bk,η,
and Ck,η,η̂, with the invertibility of the other operators following by passing
to adjoints. A main step in proving the invertibility of these three operators
is to show that each is Fredholm of index zero for |s| ≤ 1/2. But this fol-
lows from Theorem 2.25 since, for |s| ≤ 1

2 , A
′
k,η is a compact perturbation

of 1
2I + D′k and Bk,η and Ck,η,η̂ are compact perturbations of Hk. These

compactness results follow from the boundedness of the mappings in The-
orem 2.17 and that the operator embedding Ht(Γ) into Hr(Γ) is compact
for −1 ≤ r < t ≤ 1. To establish invertibility, it remains to show injectivity
and, arguing as in the proof of Theorem 2.25, it is enough to show this
injectivity for the standard case s = 0. We give the proof of injectivity for
just one of these operators, namely A′k,η, which is the focus of much of the
rest of this article, following Theorem 2.7 in Chandler-Wilde and Langdon
(2007). The proofs for the other operators are similar.
So suppose that φ ∈ H−1/2(Γ) and A′k,ηφ = 0 and let u = Skφ. Then,

using (2.41) and Theorems 2.14 and 2.15, we see that u satisfies the interior
impedance problem (2.5) with h = 0 and β = η/k, in particular ∂−n u −
iηγ−u = A′k,ηφ = 0. It follows from Theorem 2.3 that, provided Re η �= 0,

u = 0 in Ω−. This (together with Theorems 2.14 and 2.15) implies that
u in Ω+ satisfies the homogeneous exterior Dirichlet problem ((2.12) with
h = 0), in particular γ+u = γ−u = 0. It follows from Corollary 2.9 that
u = 0 in Ω+ so that φ = ∂−n u− ∂+

n u = 0.

The implications of this for our combined potential integral equation for-
mulations is spelled out in the following corollary. This corollary provides
further the promised proof of the existence part of Theorem 2.10.
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Corollary 2.28. Suppose that k > 0 and η ∈ C with Re η �= 0. Then
both the following statements hold.

(i) For every h ∈ L2(Γ) the integral equation (2.71) has exactly one solu-
tion φ ∈ L2(Γ), and if h ∈ Hs(Γ) for 0 ≤ s ≤ 1 then also φ ∈ Hs(Γ).
If h ∈ H1/2(Γ) and φ ∈ H1/2(Γ) is the unique solution of (2.71), then
u given by (2.70) is the unique solution of (2.12). Conversely, if u is
the unique solution of (2.12) then ∂+

n u ∈ H−1/2(Γ) is the unique so-
lution of (2.68). Further, if h = γ+u ∈ Hs(Γ) for 1/2 < s ≤ 1 then
∂+
n u ∈ Hs−1(Γ).

(ii) For every h ∈ H−1(Γ) the integral equation (2.73) has exactly one
solution φ ∈ L2(Γ), and if h ∈ Hs(Γ) for −1 ≤ s ≤ 0 then also
φ ∈ Hs+1(Γ). If h ∈ H−1/2(Γ) and φ ∈ H1/2(Γ) is the unique solu-
tion of (2.73), then u given by (2.70) is the unique solution of (2.13).
Conversely, if u is the unique solution of (2.13) then γ+u ∈ H1/2(Γ)
is the unique solution of (2.77). Further, if h = γ+u ∈ Hs(Γ) for
−1/2 < s ≤ 0 then γ+u ∈ Hs+1(Γ).

The above corollary makes clear that the exterior Dirichlet, Neumann
and impedance BVPs can be solved by combined potential integral equation
formulations. Essentially the same boundary integral operators arise when
we solve the interior impedance BVP (2.5). To see this, extending the
notations (2.72) and (2.74), for η ∈ L∞(Γ), we define the bounded operators
Ak,η : Hs(Γ) → Hs(Γ) and B′k,η : Hs(Γ) → Hs−1(Γ), for 0 ≤ s ≤ 1, by

Ak,ηφ = 1
2φ+Dkφ− iSk(ηφ) and B′k,ηφ = Hkφ+ i

(
1
2I −D′k

)
(ηφ), (2.79)

and, with Ak,η and Bk,η defined in this way, define the bounded operator
Ck,η,η̂, for η̂ ∈ L∞(Γ), by (2.78). Thus the following result contains the
invertibility statements about Ak,η and B′k,η in Theorem 2.27 as a special
case. Its proof is a straightforward variation on the proof of Theorem 2.27.

Theorem 2.29. If η ∈ L∞(Γ) and Assumption 2.2 holds with β replaced
by η, then the operators Ak,η and B′k,η are invertible as mappings Ak,η :

Hs+1/2(Γ) → Hs+1/2(Γ) and B′k,η : Hs+1/2(Γ) → Hs−1/2(Γ), for |s| ≤ 1/2.

Further, if also η̂ ∈ L∞ with Re η̂ ≥ 0, then also C ′k,η,η̂ : Hs+1/2(Γ) →
Hs−1/2(Γ) is invertible for |s| ≤ 1/2.

These generalizations of Ak,η and B′k,η arise when we make a direct for-

mulation of the interior impedance problem (2.5).

Theorem 2.30. If u satisfies the interior impedance problem (2.5), then

Ak,kβγ−u = Skh, (2.80)

B′k,kβγ−u = −
(
1
2I −D′k

)
h, (2.81)
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and γu is the unique solution in H1/2(Γ) of each of these equations in the
case that Assumption 2.2 holds. Conversely, suppose Assumption 2.2 holds.
Then, if φ ∈ H1/2(Γ) is the unique solution of either Ak,kβφ = Skh or
B′k,kβφ = −

(
1
2I −D′k

)
h, and

u(x) = Sk(h+ ikβφ)(x)−Dkφ(x), x ∈ Ω−, (2.82)

it follows that u satisfies (2.5).

Proof. Equations (2.80) and (2.81) follow from Lemma 2.22 and (2.50), and
the fact that γu is the unique solution of each of these equations follows from
Theorem 2.29. Suppose now that Assumption 2.2 holds and φ ∈ H1/2(Γ) is
the unique solution of either (2.80) or (2.81) and u is defined by

u(x) := Sk(h+ ikβφ)(x)−Dkφ(x), x ∈ R
d \ Γ. (2.83)

Then, by Theorems 2.14 and 2.15, u ∈ H1(Ω−) ∩ H1
loc(Ω+) ∩ C2(Rd \ Γ),

∆u+ k2u = 0 in R
d \Γ, and u satisfies the Sommerfeld radiation condition.

Further, by Lemma 2.23, (2.50) and (2.80), ∂+
n u− ∂−n u = −(h+ ikβφ) and

γ−u − γ+u = φ and moreover γ+u = 0 in the case that Ak,kβφ = Skh,
while ∂+

n u = 0 in the case that B′k,kβφ = −(12I − D′k)h. Thus, by the

uniqueness parts of Theorem 2.10, u = 0 in Ω+ so that γ+u = ∂+
n u = 0 and

∂−n u = h+ iβkγ−u. Thus we have shown that u|Ω− satisfies (2.5).

2.7. Poincaré–Steklov and boundary integral operators

In this section we explore the connections between boundary integral op-
erators and solution operators for the corresponding BVPs (Dirichlet to
Neumann and similar maps). The representations we deduce, several of
which appear to be new, will be an important tool in our investigation of
the k-dependence of condition numbers of BIE formulations in Section 5.
We noted in Theorem 2.10 that the exterior Dirichlet problem (2.12) is

uniquely solvable. Let P+
DtN denote the mapping which takes h ∈ H1/2(Γ)

to ∂nu, where u is the solution to (2.12). This mapping P+
DtN : H1/2(Γ) →

H−1/2(Γ) is called the exterior Dirichlet to Neumann map or exterior Poin-
caré–Steklov operator. Similarly, let P+

NtD : H−1/2(Γ) → H1/2(Γ) denote

the mapping which takes h ∈ H−1/2(Γ) to γu ∈ H1/2(Γ), where u is the
solution to the exterior Neumann problem ((2.13) with β = 0). P+

NtD is
called the exterior Neumann to Dirichlet map or sometimes the exterior
Steklov–Poincaré operator (Sauter and Schwab 2011). It is immediate from
these definitions that these mappings are inverses of each other; what is less
obvious, but follows easily from Green’s second formula (Theorem 2.19), is
that the Steklov–Poincaré and Poincaré–Steklov operators are both quasi-
self-adjoint. Thus

P+
DtNP

+
NtD = P+

NtDP
+
DtN = I,

(
P+
DtN

)′
= P+

DtN,
(
P+
NtD

)′
= P+

NtD. (2.84)
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The importance of these mappings for our purposes is their close con-
nection with boundary integral operators. Indeed, we have from Corol-
lary 2.28(i) that, if u satisfies the exterior Dirichlet problem (2.12), then
∂nu is the unique solution of (2.68). Thus

P+
DtN =

(
A′k,η

)−1
Bk,η. (2.85)

We can deduce a further representation for P+
DtN from Corollary 2.28(i)

based on solving (2.71) and can deduce representations for P+
NtD from Corol-

lary 2.28(ii), but these representations can equally be read off from (2.84).
For example, combining (2.84) and (2.85), we see that

P+
DtN =

(
P+
DtN

)′
=
((
A′k,η

)−1
Bk,η

)′
= B′k,ηA

−1
k,η.

Let us summarize these representations in a theorem.

Theorem 2.31. It holds that

P+
DtN =

(
A′k,η

)−1
Bk,η = B′k,ηA

−1
k,η and P+

NtD = B−1k,ηA
′
k,η = Ak,η

(
B′k,η

)−1
.

The operators P+
DtN : H1/2(Γ) → H−1/2(Γ) and P+

NtD : H−1/2(Γ) → H1/2(Γ)
are bounded, and have unique extensions to bounded operators P+

DtN :
L2(Γ) → H−1(Γ) and P+

NtD : H−1(Γ) → L2(Γ). Further,

P+
DtN : H1/2+s(Γ) → H−1/2+s(Γ) and P+

NtD : H−1/2+s(Γ) → H1/2+s(Γ),

for |s| ≤ 1/2, and all these mappings are bounded.

The above representations are only one of many possible boundary inte-
gral representations for the Poincaré–Steklov maps; indeed it is most usual
in the BIE literature (e.g., Steinbach 2008, Sauter and Schwab 2011) to use
representations directly in terms of Sk, Dk, D

′
k and Hk, avoiding combined

potential operators. One such representation follows from Theorem 2.26
and (2.57); we see that, for values of k for which Sk is invertible,

P+
DtN = S−1k

(
−1

2I +Dk

)
.

For further such representation see Steinbach (2008) and Sauter and Schwab
(2011).
Similar representations can be obtained for interior Dirichlet to Neumann

and Neumann to Dirichlet operators, for wavenumbers k for which the
Dirichlet and Neumann interior problems are uniquely solvable. But we
will focus here on the interior impedance to Dirichlet operator P−,ηItD which

maps h ∈ H−1/2(Γ) to γu, where u is the solution of the interior impedance
problem (2.5) with β = η/k. Provided β satisfies Assumption 2.2, which
is the case if and only if η ∈ L∞(Γ) satisfies Assumption 2.2, it follows
from Theorem 2.10 that this is a well-defined mapping from H−1/2(Γ) to
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H1/2(Γ); we see from Theorem 2.30 that

P−,ηItD = A−1k,ηSk. (2.86)

One can also make representations for exterior impedance to Dirichlet op-

erators. For h ∈ H−1/2(Γ) and η̂ ∈ L∞(Γ) with Re η̂ ≥ 0, let P+,η̂
ItD denote

the mapping which takes h to γu ∈ H1/2(Γ), where u denotes what is, by
Theorem 2.10, the unique solution of the exterior impedance problem (2.13)
with β = η̂/k. From Theorem 2.30 and (2.77) we see that, for every η ∈ C

with Re η �= 0,

P+,η̂
ItD = C−1k,η,η̂A

′
k,η. (2.87)

Just as for the exterior Dirichlet to Neumann map, it follows from Theo-

rem 2.19 that the operators P−,ηItD and P+,η̂
ItD are quasi-self-adjoint. Thus, in

particular,

P−,ηItD =
(
P−,ηItD

)′
=
(
A−1k,ηSk

)′
= Sk

(
A′k,η

)−1
. (2.88)

These representations are one route to establishing the following mapping
properties.

Theorem 2.32. Provided η̂ ∈ L∞(Γ) and Assumption 2.2 is satisfied with

β replaced by η̂, the mapping P−,η̂ItD : H−1/2(Γ) → H1/2(Γ) is bounded and

has a unique extension to a bounded operator P−,η̂ItD : H−1(Γ) → L2(Γ).

The same statements hold for P+,η̂
ItD for η̂ ∈ L∞(Γ) with Re η̂ ≥ 0. Further,

provided the respective conditions on η̂ are satisfied,

P±,η̂ItD : H−1/2+s(Γ) → H1/2+s(Γ),

for |s| ≤ 1/2, and all these mappings are bounded.

The above results represent the exterior DtN and NtD maps and the inte-
rior and exterior ItD maps partly in terms of the inverses of Ak,η, Bk,η and
Ck,η,η̂. A component of our arguments in Section 5.6, when we study the

dependence of the norm of A−1k,η on k, will be the following representations
in the other direction. While representations, such as those we have pre-
sented above, for Poincaré–Steklov operators in terms of boundary integral
operators and their inverses are widely used, these representations in the
other direction seem less well known.

Theorem 2.33. Suppose that η ∈ L∞(Γ) and that Assumption 2.2 holds
with β replaced by η. Then, for |s| ≤ 1/2, the mapping A−1k,η : H1/2+s(Γ) →
H1/2+s(Γ) has the representation

A−1k,η = I − P−,ηItD

(
P+
DtN − iη

)
(2.89)

and, provided also that η̂ ∈ L∞(Γ) with Re η̂ ≥ 0, the mapping C−1k,η,η̂ :
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Hs−1/2(Γ) → H1/2+s(Γ) has the representation(
C ′k,η,η̂

)−1
= P+,η̂

ItD − P−,ηItD

(
I − i(η + η̂)P+,η̂

ItD

)
. (2.90)

Proof. The left- and right-hand sides of (2.89) are bounded operators on
Hs+1/2(Γ) for |s| ≤ 1/2, by Theorems 2.27, 2.31 and 2.32, so that to show
(2.89) it is enough to show that

A−1k,ηh = h− P−,ηItD

(
P+
DtN − iη

)
h (2.91)

holds for all h in some dense subset of L2(Γ), e.g., H1/2(Γ). So suppose
that h ∈ H1/2(Γ) and that φ = A−1k,ηh, so that

Ak,ηφ = h,

and define

u = Dkφ− iSk(ηφ). (2.92)

Then, by Lemma 2.23 and (2.50), γ+u = h, γ−u = h− φ and ∂+
n u− ∂−n u =

iηφ, so that

∂−n u− iηγ−u = ∂+
n u− iηh.

Hence, and by Theorems 2.14 and 2.15, u|Ω+ satisfies the exterior Dirichlet
problem (2.12) with γ+u = h, while u|Ω− satisfies the interior impedance
problem (2.5) with β = η/k and impedance data ∂+

n u− iηh, so that

γ−u = P−,ηItD

(
∂+
n u− iηh

)
= P−,ηItD

(
P+
DtN − iη

)
h.

and, since A−1k,ηh = φ = h− γ−u, (2.91) follows.
Arguing similarly, to establish (2.90) it is enough to show that(

C ′k,η,η̂
)−1

h = P+,η̂
ItD h− P−,ηItD

(
I − i(η + η̂)P+,η̂

ItD

)
h (2.93)

holds for all h in some dense subset of H−1(Γ), e.g., H−1/2(Γ). So suppose
that h ∈ H−1/2(Γ) and that φ = (C ′k,η,η̂)

−1h, so that C ′k,η,η̂φ = h, and define

u by (2.92). Then, by Lemma 2.23 and (2.50), ∂+
n u+ iη̂γ+u = C ′k,η,η̂φ = h,

γ+u− γ−u = φ, and ∂+
n u− ∂−n u = iηφ, so that

∂−n u− iηγ−u = h− i(η̂ + η)γ+u.

Hence, and by Theorems 2.14 and 2.15, u|Ω+ satisfies the exterior impedance
problem (2.13) with β = η̂/k and impedance data h, while u|Ω− satisfies
the interior impedance problem (2.5) with β = η/k and impedance data
h− i(η̂ + η)γ+u, so that

γ−u = P−,ηItD

(
h− i(η̂ + η)γ+u

)
= P−,ηItD

(
I − i(η + η̂)P+,η̂

ItD

)
h.

and, since (C ′k,η,η̂)
−1h = φ = γ+u− γ−u, (2.93) follows.
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We note that, in particular, the above theorem holds for η̂ = 0, in which
case (2.90) reduces to(

B′k,η
)−1

= P+
NtD − P−,ηItD

(
I − iηP+

NtD

)
. (2.94)

It is clear from Theorem 2.31, (2.86), and Theorem 2.33, that A−1k,η and

the interior and exterior solution operators P+
DtN and P−,ηItD are intimately re-

lated. In particular, we will use the representation (2.89) to bound the norm
of A−1k,η as an operator on L2(Γ) in Section 5.6. This method of bounding
the norms of inverses of integral operators is not spelt out, but is to some
extent implicit in the arguments in Verchota (1984) and Chandler-Wilde
and Monk (2008).
Theorem 2.33 is also very useful in shedding light on the physical mean-

ings of the solutions to indirect BIEs. In the direct case, for instance the
combined potential equations (2.68) and (2.77), the solution is just the trace
or normal derivative of the solution of the BVP that we are solving. The
meaning of the solution to an indirect integral equation, for instance (2.71)
or (2.73), is more obscure, but is elucidated by Theorem 2.33. For example
(2.89) implies that the solution to the direct integral equation formulation
(2.71) of the exterior Dirichlet problem is the difference between the Dirich-
let data (the trace of the solution of the exterior problem) and the trace of
the solution of an interior impedance problem with data depending on the
solution to the exterior problem. Thus the solution of (2.71) depends in a
complex way on the solutions of both interior and exterior BVPs. This can
make direct formulations preferable for numerical computation. As has been
well known for many years, the issue is that the singularities in the solution
to direct formulations are just those of the boundary traces of the solutions
to the original BVPs, while the solutions to indirect integral equations, e.g.,
(2.71), typically contain singularities related to both solutions of interior
and exterior problems, and so require more degrees of freedom to approxi-
mate. As pointed out in Bruno et al. (2004), there are additional reasons to
prefer direct formulations to indirect formulations for high-frequency scat-
tering problems: the oscillatory behaviour of solutions of indirect integral
equations is more complex, and depends inextricably on the solutions to
both interior and exterior problems in a complicated interacting way.

2.8. Regularity of the solutions of the integral equations and BVPs

In this subsection we make some brief comments on the smoothness of the
solutions of the BVPs (2.4), (2.5), (2.12), and (2.13).
Our first result makes clear that, under rather general and mild condi-

tions, the traces γu and ∂nu are (at least almost everywhere) limiting values
of the function and its gradient as Γ is approached from Ω±.
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Theorem 2.34. Let {Θ±(x) : x ∈ Γ} be families of non-tangential ap-
proach sets to x from Ω± (as defined in Section A.4). (i) If u satisfies
the exterior Dirichlet problem (2.12) or the exterior impedance problem
(2.13) then limy→x,y∈Θ+(x) u(y) = γ+u(x), for almost all x ∈ Γ. (ii) If v
satisfies the interior Dirichlet or impedance problems, (2.4) or (2.5), then
limy→x,y∈Θ−(x) v(y) = γ−v(x). (iii) If u satisfies (2.12) with boundary data

h ∈ H1(Γ) or satisfies (2.13) with data h ∈ L2(Γ), then also ∇Γγ+u ∈ L2(Γ)
and ∂+

n u ∈ L2(Γ) and

lim
y→x,y∈Θ+(x)

∇u(y) = ∇Γγ+u(x) + n(x)∂+
n u(x),

for almost all x ∈ Γ. In particular, for almost all x ∈ Γ,

∂+
n u(x) =

∂u

∂n
(x) := lim

y→x,y∈Θ+(x)
n(x) · ∇u(y). (2.95)

(iv) Similarly, if v satisfies (2.13) with data h ∈ L2(Γ), then also ∇Γγ+v ∈
L2(Γ) and ∂+

n v ∈ L2(Γ) and

lim
y→x,y∈Θ+(x)

∇v(y) = ∇Γγ+v(x) + n(x)∂+
n v(x),

for almost all x ∈ Γ.

Proof. By Theorems 2.21 and 2.20 the solutions to all these problems
have representations as single- and double-layer potentials. Thus the limits
claimed in (i) and (ii) follow from (2.27). Similarly the limits claimed in
(iii) and (iv) follow from (2.28)–(2.31), provided that γ+u, γ+v ∈ H1(Γ) and
∂+
n u, ∂

+
n v ∈ L2(Γ). But for u, this follows from Corollary 2.28(i), while for v

this follows from the impedance boundary condition and Corollary 2.28(ii).

Under stronger smoothness conditions on Γ and on the data, the solu-
tion of each BVP and some of its derivatives may be continuous up to the
boundary. The following local elliptic regularity result is a result of this sort
which is sufficient for our purposes, applying in the important practical case
when the boundary Γ is smooth except for corners and edges: for a proof see
Theorem 4.18 in McLean (2000) (and see also Theorem 3.27 and its proof in
Colton and Kress 1983 for a related result specific to the Helmholtz case).

Lemma 2.35. Suppose that u satisfies the interior or exterior Dirichlet
or impedance BVP in D = Ω± (i.e., u satisfies (2.12), (2.13), (2.4) or (2.5)),
and that Γ0 is a relatively open subset of Γ which is C∞, and that the
boundary data h ∈ C∞( Γ0 ) and (in the impedance case) also β ∈ C∞( Γ0 ).
Then u and its partial derivatives of all orders have continuous extensions
from D to D ∪ Γ0.
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2.9. The star-combined integral equation

In this subsection we introduce novel generalizations of the combined po-
tential integral equations (2.68) and (2.71), building on recent developments
in Spence, Chandler-Wilde, Graham and Smyshlyaev (2011).

Theorem 2.36. If u satisfies the exterior Dirichlet problem (2.12) with
h ∈ H1(Γ), then

Sk∂
+
n u =

(
−1

2I +Dk

)
h (2.96)

and [
n
(
1
2I +D′k

)
+∇ΓSk

]
∂+
n u =

[
nHk +∇ΓDk − 1

2∇Γ

]
h. (2.97)

Hence, for η ∈ L∞(Γ) and Z ∈ (L∞(Γ))d, we have

A′k,η,Z∂
+
n u = Bk,η,Zh, (2.98)

where the operator A′k,η,Z : L2(Γ) → L2(Γ) is defined by

A′k,η,Z := Z · n
(
1
2I +D′k

)
+ Z · ∇ΓSk − iηSk, (2.99)

and Bk,η,Z : H1(Γ) → L2(Γ) by

Bk,η,Z := Z ·
[
nHk +∇ΓDk − 1

2∇Γ

]
− iη

(
−1

2I +Dk

)
. (2.100)

Proof. We have observed already above in (2.57) that (2.96) holds under
the weaker condition that h ∈ H1/2(Γ). If also h ∈ H1(Γ) then, by Corol-
lary 2.28(i), ∂+

n u ∈ L2(Γ). Then, taking the non-tangential limit of the
gradient of (2.66) as x approaches Γ, and using (2.30) and (2.31) and the
jump relations (2.41)–(2.43), we obtain (2.97).

The above derivation is straightforward, but the integral equation for-
mulation (2.98) seems to be very recent (Spence et al. 2011). The integral
equation can be seen as a generalization of (2.68), reducing to this equation
when the choice Z = n is made, since

A′k,η,n = A′k,η and Bk,η,n = Bk,η. (2.101)

In the case when Ω− is star-shaped with respect to an appropriately
chosen origin (see Definition 5.5 below), Spence et al. (2011) proposed the
integral equation formulation (2.97) with Z(x) := x, x ∈ Γ, and the special
choice

η(x) := k|x|+ i
d− 1

2
. (2.102)

We will use, following Spence et al. (2011), the notation Ak for Ak,η,Z in
that case, that is,

Ak := A′k,η,Z = Z · n
(
1
2I +D′k

)
+ Z · ∇ΓSk − iηSk, (2.103)
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with η given by (2.102) and Z(x) := x, x ∈ Γ. Following Spence et al.
(2011) we will call Ak the star-combined operator.
The following theorem follows from results in Spence et al. (2011) dis-

cussed in Section 5.7, precisely from Theorem 5.26, which proves the stronger
property of coercivity. These results, and their implications for high-fre-
quency scattering computations, are discussed in more detail in Sections 5.7
and 6.4.

Theorem 2.37. If Ω− is star-shaped with respect to the origin, which
implies that, for some c > 0,

x · n ≥ c, for almost all x ∈ Γ, (2.104)

then Ak : L2(Γ) → L2(Γ) is invertible with ‖A −1k ‖L2(Γ)←L2(Γ) ≤ 2/c.

The operator A′k,η,Z appearing in (2.98) also arises in solving the interior

oblique impedance problem (2.6).

Theorem 2.38. The single-layer potential u = Skφ, with density φ ∈
L2(Γ), satisfies the interior oblique impedance problem (2.6) if

A′k,kβ,Zφ = h. (2.105)

If u satisfies the interior oblique impedance problem, then u = Skφ, with
φ ∈ L2(Γ) satisfying (2.105).

Proof. If u = Skφ with φ ∈ L2(Γ) then, by Theorems 2.14, 2.15 and (2.30),
u satisfies the interior oblique impedance BVP if and only if

Zn∂
−
n u+ Z · ∇Γγ−u− ikβγ−u = h.

But, using the jump relations (2.41), this equation is precisely (2.105). On
the other hand, if u satisfies the interior oblique impedance problem then
γ−u ∈ H1(Γ) and, by Theorem A.5, ∂−n u ∈ L2(Γ) so that h0 := ∂−n u −
ikγ−u ∈ L2(Γ). Now note that, by Theorem 2.3, the interior impedance
BVP (2.5) with β = 1 and h = h0 has exactly one solution. Clearly this
solution is u. Now, recall that A′k,k,n = A′k,k, and this operator is invertible
by Theorem 2.27. Further, the interior impedance problem is the special
case of the interior oblique impedance problem in which Z = n. So, by the

first part of this theorem, we see that u = Skφ with φ =
(
A′k,k

)−1
h0 ∈ L2(Γ).

From Theorem 2.38 the invertibility of A′k,kβ,Z is equivalent to the solv-
ability of the interior oblique impedance problem.

Corollary 2.39. For β ∈ L∞(Γ) and Z ∈ (L∞(Γ))d, the operatorA′k,kβ,Z :

L2(Γ) → L2(Γ) is injective if and only if (2.6) with h = 0 has only the
trivial solution, and is surjective if and only if (2.6) has a solution for every
h ∈ L2(Γ).
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Proof. The statement regarding surjectivity is clear from Theorem 2.38.
So is the statement regarding injectivity, provided that u = Skφ = 0 in Ω−
only if φ = 0. But this is a consequence of Theorems 2.14 and 2.15 and
(2.26) and the fact that the exterior Dirichlet problem (2.12) is uniquely
solvable. More explicitly, φ ∈ L2(Γ) and u = Skφ is zero in Ω− then u
satisfies (2.12) in Ω+ with h = 0 and so u = 0 in Ω+ by Corollary 2.9.
Then, by (2.41), φ = ∂−n u− ∂+

n u = 0.

The following result is taken from Chandler-Wilde and Spence (2012), and
is a consequence of Theorem 2.50 below. It strengthens the above corollary
in the case when Z is real-valued and Lipschitz-continuous and Zn is strictly
positive.

Theorem 2.40. If β ∈ L∞(Γ) and Z ∈ (C0,1(Γ))d is real-valued, with

Zn(x) := Z(x) · n(x) ≥ c, for almost all x ∈ Γ, (2.106)

for some c > 0, then the operator A′k,kβ,Z : L2(Γ) → L2(Γ) is Fredholm of

index zero, and so is invertible if and only if (2.6) with h = 0 has only the
trivial solution.

The above corollary and theorem show equivalence of questions of solv-
ability of the interior oblique impedance problem to questions of solvability
of the integral equation (2.105). One case in which both are clear is the case
Z = n, when the interior oblique impedance problem reduces to the regular
interior impedance problem. Another case is when Ω− is star-shaped. In
that case we have the following corollary of Theorems 2.37 and 2.38.

Corollary 2.41. If Ω− is star-shaped with respect to the origin, so that
(2.104) holds for some c > 0, then the interior oblique impedance problem
with

Z(x) := x and β(x) := |x|+ i
d− 1

2k
, x ∈ Γ,

has the unique solution u = Skφ with φ =
(
A′k,kβ,Z

)−1
h ∈ L2(Γ). Moreover,

‖φ‖L2(Γ) ≤ (2/c)‖h‖L2(Γ).

The above corollary applies to a special case of the interior oblique im-
pedance BVP: the domain must be star-shaped and particular choices made
for Z and β. But one context where this case may have application is in
boundary-element-based domain decomposition methods for the Helmholtz
equation, for example modifying the method of Steinbach and Windisch
(2011). In domain decomposition methods the bounded Lipschitz domain
Ω− is initially divided into a number of subdomains Ω1, . . . ,ΩM , the choice
of these up to the user: in particular, it is always possible to arrange that
each Ωj is star-shaped with respect to some point xj ∈ Ωj . In the itera-
tive solution schemes based on domain decomposition methods, a main step
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is the solution of local problems for the Helmholtz equation on each sub-
domain Ωj . In the design of such methods a choice that has to be made is the
boundary condition to be used in these local problems. A natural choice in
domain decomposition methods for the Helmholtz equation is the impedance
boundary condition, so that one solves (2.5) on each subdomain, choosing
β (e.g., β = 1) to ensure that (2.5) is uniquely solvable; a variant on this
with additional non-local operators in the impedance boundary condition is
used in Steinbach and Windisch (2011). But an interesting alternative may
be to use the oblique boundary condition (2.3) on Ωj , choosing Z and β as
in the above corollary, that is,

Z(x) := x− xj and β(x) := |x− xj |+ i
d− 1

2k
, x ∈ ∂Ωj .

This choice ensures that each local problem is well-posed, as is the integral
equation formulation (2.105), but further, as we will see in Section 5.7, this
integral equation formulation is coercive in the sense of Section 2.11, with
a coercivity constant that is uniform in the wavenumber k.
In Section 2.7 we discussed the relation between boundary integral op-

erators and Poincaré–Steklov operators. These results generalize to the
operator A′k,η,Z and the interior oblique impedance BVP (2.6). Generaliz-

ing the notation P−,ηItD introduced before equation (2.86), let P−,η,ZItD denote
the operator which maps h ∈ L2(Γ) to γ−u ∈ H1(Γ), where u is the solution
of the interior oblique impedance problem (2.6) with β = η/k. Of course,

P−,η,ZItD is only well-defined for those η ∈ L∞(Γ) and Z ∈ (L∞(Γ))d for which
the interior oblique impedance BVP (2.6) has exactly one solution in the
case that β = η/k. By Corollary 2.39 these are precisely the η and Z for
which A′k,η,Z is invertible, as shown in the following result.

Theorem 2.42. Suppose that k > 0 and that η ∈ L∞(Γ) and Z ∈
(L∞(Γ))d are such that A′k,η,Z is invertible. Then

P+
DtN =

(
A′k,η,Z

)−1
Bk,η,Z , P−,η,ZItD = Sk

(
A′k,η,Z

)−1
,

and, if ess infx∈Γ |Zn(x)| > 0,(
A′k,η,Z

)−1
=

1

Zn
I −

(
P+
DtN − 1

Zn

(
iη − Z · ∇Γ

))
P−,η,ZItD .

Proof. The first two results follow immediately from Theorems 2.36 and
2.38. To see the last equation, suppose that φ, h ∈ L2(Γ) and A′k,η,Zφ = h

and define u = Skφ. Then, by Theorem 2.38 and (2.41),

γ+u = γ−u = P−,η,ZItD h, φ = ∂−n u− ∂+
n u.

Further,

∂+
n u = P+

DtNγ+u = P+
DtNP

−,η,Z
ItD h,
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while, using Theorem 2.38, which implies that u satisfies the oblique bound-
ary condition (2.3) with β = η/k, we have

∂−n u =
1

Zn

(
h+ iηγ−u− Z · ∇Γγ−u

)
=

1

Zn

(
I + iηP−,η,ZItD − Z · ∇ΓP

−,η,Z
ItD

)
h.

From these equations the rest of the theorem follows.

2.10. Boundary integral equations for scattering problems

In Section 2.5 we derived various integral equation formulations for the ex-
terior Dirichlet and impedance BVPs (2.12) and (2.13). These immediately
imply integral equation formulations for the sound-soft and impedance scat-
tering problems, (2.16) and (2.18). Indeed, to say that uS satisfies one of
these scattering problems is no more or less than saying that uS satisfies the
corresponding BVP with boundary data h determined by the incident field
uI , precisely by the requirement that the total field u = uI + uS satisfies
the respective homogeneous Dirichlet or impedance boundary condition.
Thus, any integral equation for the exterior Dirichlet or impedance BVP
immediately implies an integral equation formulation for the corresponding
scattering problem.
The hybrid numerical–asymptotic schemes we will propose are based on

discretization of direct integral equation formulations for the scattering
problems. To implement these schemes we will work with essentially the
integral equations (2.68) and (2.98) for the sound-soft scattering problems,
with u replaced by uS and h = −uI |Γ, and the integral equations (2.75) or
(2.77) for the impedance scattering problem, with u replaced by uS and h
given by (2.17). But we will work with versions of these integral equations
where the expressions for the inhomogeneous terms in the equations are
simplified, thanks to the special form of the boundary data h. One way
to obtain these simplified equations is to derive the following modified ver-
sion of the Green’s representation theorem (Theorem 2.21), which applies
to scattering problems.

Theorem 2.43. In the case that uS satisfies the sound-soft scattering
problem (2.16), ∂+

n u ∈ L2(Γ) and

u(x) = uI(x)−
∫
Γ
Φk(x, y)∂

+
n u(y) ds(y), x ∈ Ω+. (2.107)

In the case that uS satisfies the impedance scattering problem (2.18), γ+u ∈
H1(Γ) and

u(x) = uI(x) +

∫
Γ

(
∂Φk(x, y)

∂n(y)
+ ikβ(y)Φk(x, y)

)
γ+u(y) ds(y), x ∈ Ω+.

(2.108)
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Proof. From Theorem 2.12 or Corollary 2.13 it follows that ∂+
n u ∈ L2(Γ)

and γ+u ∈ H1(Γ). From Theorem 2.21,

uS(x) = Dkγ+u
S(x)− Sk∂

+
n u

S(x), x ∈ Ω+,

while from Theorem 2.20,

0 = Dkγ+u
I(x)− Sk∂

+
n u

I(x), x ∈ Ω+.

Adding these two equations and then adding uI to both sides, we find that

u(x) = uI(x) +Dkγ+u(x)− Sk∂
+
n u(x), x ∈ Ω+.

Equations (2.107) and (2.108) follow from the boundary conditions satisfied
in the sound-soft and impedance cases.

From the above theorem and the jump relations (2.41) and (2.42), we
deduce immediately the integral equation formulations in the next theorem.
The rest of the theorem in respect of the Dirichlet problem is a consequence
of Theorem 2.26 and that uS satisfies the sound-soft scattering problem
if and only if uS satisfies the exterior problem (2.12) with Dirichlet data
h = −uI |Γ. The proof that u given by (2.112) satisfies the impedance
scattering problem provided (2.4) has at most one solution follows similarly
to the proof of Theorem 2.26.

Theorem 2.44. If uS satisfies the sound-soft scattering problem (2.16),
then ∂+

n u ∈ L2(Γ) and

Sk∂
+
n u = uI |Γ. (2.109)

Conversely, if φ ∈ H−1/2(Γ) satisfies Skφ = h and

u(x) = uI(x)−
∫
Γ
Φk(x, y)φ(y) ds(y), x ∈ Ω+, (2.110)

then u satisfies the scattering problem.
If uS satisfies the impedance scattering problem (2.18), then γ+u ∈ H1(Γ)

and (
1
2I −Dk

)
γ+u− ikSk(βγ+u) = uI |Γ. (2.111)

Conversely, if φ ∈ H1/2(Γ) is a solution to (2.111),

u(x) = uI(x) +

∫
Γ

(
∂Φk(x, y)

∂n(y)
+ ikβ(y)Φk(x, y)

)
γ+φ(y) ds(y), x ∈ Ω+,

(2.112)
and the wavenumber k is such that the homogeneous interior Dirichlet prob-
lem ((2.4) with h = 0) has only the trivial solution, then u satisfies the
impedance scattering problem.
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Remark 2.45. We have shown below equation (2.76) that (2.75) (and so
also (2.111)) is not uniquely solvable at irregular wavenumbers k for which
the homogeneous interior Dirichlet problem has a non-trivial solution. Fur-
ther, at these wavenumbers, it does not hold that (2.112) is a solution to the
impedance scattering problem for every solution φ of (2.111). (This is in
contrast to (2.110), which satisfies the sound-soft scattering problem even
when (2.109) has more than one solution, which it does for the same irreg-
ular wavenumbers.) This ‘irregular frequency’ property leads, for standard
BEM discretizations, to very bad conditioning and inaccurate numerical ap-
proximations of u in a neighbourhood of such k. In Section 7.4, through
computations using (2.111) precisely at irregular wavenumbers where the
integral equation is not uniquely solvable, we see that a bonus of the novel
discretization methods that we propose is that they, at least in these exam-
ples, do not exhibit any conditioning problems at the discrete level, and in
fact produce accurate numerical results.

As observed in Remark 2.45, the integral equations (2.109) and (2.111)
are not uniquely solvable for all k > 0. The standard cure is to use the
combined potential integral equations introduced in Section 2.6. The direct
versions of the combined potential equations are the integral equation (2.68)
for the sound-soft problem (with u replaced by uS and h = −uI |Γ) and
(2.77) for the impedance scattering problem (with u replaced by uS and h
given by (2.17)). Versions of these equations with simplified expressions for
the inhomogeneous terms on the right-hand side are stated in the following
two theorems. In the first of these theorems we derive a version of the
generalized integral equation (2.98) which includes (2.68) as a special case.
Note that (2.114) is a restatement of equation (1.5) in Section 1.

Theorem 2.46. Suppose that uS satisfies the sound-soft scattering prob-
lem (2.16) and that η ∈ L∞(Γ) and Z ∈ (L∞(Γ))d. Then ∂+

n u ∈ L2(Γ)
satisfies the integral equation

A′k,η,Z∂
+
n u = fk,η,Z := [Z · ∇uI − iηuI ]|Γ. (2.113)

In the case that Z = n and η is constant, this equation simplifies to

A′k,η∂
+
n u = fk,η := fk,η,n = [∂+

n u
I − iηuI ]|Γ, (2.114)

and this equation is uniquely solvable for all k > 0 if Re η �= 0. In the case
that Ω− is star-shaped with respect to the origin, satisfying (2.104) for some
c > 0, Z(x) := x, for x ∈ Γ, and η is given by (2.102), equation (2.113) is

Ak∂
+
n u = fk := [x · ∇uI − iηuI ]|Γ, (2.115)

with Ak defined by (2.103), and this equation is uniquely solvable for all
k > 0.
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Proof. That ∂+
n u satisfies (2.113) follows from (2.107), (2.30), (2.31) and

the jump relations (2.41)–(2.43). That (2.114) is uniquely solvable follows
from Theorem 2.27, and that (2.115) is uniquely solvable from Theorem 2.37.

We will refer to (2.115) as the star-combined integral equation.
The second theorem states the standard combined potential integral equa-

tion for the impedance scattering problem, dating back to Burton and Miller
(1971), who were concerned with the sound-hard case β = 0.

Theorem 2.47. If uS satisfies the impedance scattering problem (2.18)
and η ∈ C, then γ+u ∈ H1(Γ) satisfies the integral equation

Ck,η,kβ γ+u = −
[
∂uI

∂n
− iηuI

]∣∣∣∣
Γ

, (2.116)

with Ck,η,kβ defined by (2.78). If Re η �= 0 then γ+u is the unique solution

in H1/2(Γ) of this equation.

Proof. Equation (2.116) follows from applying the operator ∂+
n − iηγ+ to

(2.108) (i.e., from taking a particular linear combination of Neumann and
Dirichlet traces), on using the jump relations (2.41)–(2.43). That γ+u is
the unique solution of this equation follows from Theorem 2.27.

2.11. Coercivity of boundary integral operators

For the analysis of numerical methods, for example for the combined po-
tential equation (2.68), it is important that the boundary integral operator
(A′k,η in (2.68)) is invertible, so that the equation we are solving is well-
posed. However, additional properties of the operator are needed to prove
convergence of numerical schemes and deduce error estimates.
The error analysis of BIE methods is most developed for schemes based

on Galerkin methods, and this will be our focus in Section 6. The argument
will proceed as outlined in Section 1, that is, we prove a quasi-optimal error
estimate of the form (1.7), and then bound the best approximation error.
In particular, for the hybrid methods introduced in Section 3, we cannot
currently see any prospect of proving estimates of the form (1.7) for anything
other than Galerkin schemes. The results that have been obtained in this
direction will be described in Section 6.
Our focus in later sections is on high-frequency analysis, proving (1.7)

with the dependence of the constant C on k made explicit. However, al-
though the standard combined potential formulations (2.68) and (2.71) date
back at least to Brakhage and Werner (1965) and Burton and Miller (1971),
the establishment of (1.7) for standard Galerkin methods, even for fixed k
(indeed, even for the Laplace case k = 0) remains an outstanding open
problem for the case of general Lipschitz Γ. We will describe below, and in
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Section 5.7, progress in resolving this open problem, indeed in a way which
also teases out the dependence on k. We will also describe briefly in this
subsection ways that have been proposed in the last five years for modify-
ing equations (2.68) and (2.71), introducing additional operators into these
equations which imply additional computational effort, with the benefit that
they allow (1.7) to be established (for fixed k) for general Lipschitz Γ.
The Galerkin method starts by writing the integral equation in weak form

as follows: find v ∈ V such that

a(v, w) = F (w), for all w ∈ V . (2.117)

Here V is some Hilbert space, F is an anti-linear continuous functional on
V , that is, some element of V ′, the dual space of V , and a is a bounded
sesquilinear form on V × V , so that, for some constant B ≥ 0,

|a(v, w)| ≤ B‖u‖ ‖w‖, v, w ∈ V . (2.118)

(The smallest B ≥ 0 for which this inequality holds is the norm of a.)
The Galerkin method for approximating (2.117) then seeks a solution vN ∈
VN ⊂ V , where VN is a finite-dimensional subspace, requiring that

a(vN , wN ) = F (wN ), for all wN ∈ VN . (2.119)

In the case when the integral equation takes the form

Av = f,

where v ∈ V , f ∈ V ′, and A : V → V ′ is a bounded linear operator, the
standard way to construct the weak form (2.117) is to define

a(v, w) := 〈Av,w〉 and F (w) := 〈f, w〉, (2.120)

where, for f ∈ V ′, w ∈ V , 〈f, w〉 denotes the action of the functional f on w.
Let us illustrate this general framework by application to three of the

integral equation formulations of Section 2.10, using the fact that (see Sec-
tion A.3) H−s(Γ) is (isomorphic to) the dual space of Hs(Γ). For (2.109)
we take V = H−1/2(Γ), V ′ = H1/2(Γ), v = ∂+

n u,

a(v, w) := 〈Skv, w〉Γ and F (w) := 〈uI |Γ, w〉Γ, (2.121)

where 〈·, ·〉Γ is defined in (A.24). For the integral equation (2.113), which
will be the main focus in Section 6, the natural weak form is obtained by
setting V = V ′ = L2(Γ), v = ∂+

n u,

a(v, w) := (A′k,η,Z v, w) and F (w) := (fk,η,Z , w). (2.122)

Finally, the standard weak formulation of (2.116) is obtained by setting
V = H1/2(Γ), V ′ = H−1/2(Γ), v = γ+u,

a(v, w) := 〈Ck,η,kβ v, w〉Γ and F (w) :=

〈
−
[
∂uI

∂n
− iηuI

]∣∣∣∣
Γ

, w

〉
Γ

. (2.123)
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All of these sesquilinear forms are bounded, the norm of the sesquilinear
form a being the norm of the corresponding operator,

Sk : H−1/2(Γ) → H1/2(Γ), A′k,η,Z : L2(Γ) → L2(Γ),

and Ck,η,kβ : H1/2(Γ) → H−1/2(Γ),

in the respective cases (2.121), (2.122), and (2.123).
We will call a bounded sesquilinear form a on V × V coercive if, for some

α > 0 (the coercivity constant),

|a(v, v)| ≥ α‖v‖2, for all v ∈ V . (2.124)

Likewise, we will call the bounded linear operator A : V → V ′ coercive
(with coercivity constant α) if the sesquilinear form a given by (2.120) is
coercive. It is easy to see that if A : V → V ′ is coercive then so is its adjoint
A∗ : V ′ → V with the same coercivity constant α.
Simple but powerful results hold if a is bounded and coercive: the Lax–

Milgram lemma guarantees that (2.117) has exactly one solution v ∈ V for
every w ∈ V , with

‖v‖V ≤ α−1‖f‖V ′ , (2.125)

and existence of the Galerkin solution and quasi-optimality is guaranteed
by Céa’s lemma.

Lemma 2.48. (Céa’s lemma) If the sesquilinear form a is bounded and
coercive, satisfying (2.118) and (2.124), then (2.119) has exactly one solution
vN ∈ VN , which satisfies

‖v − vN‖ ≤ B

α
inf

wN∈VN
‖v − wN‖. (2.126)

This version of Céa’s lemma will be one of the main analysis tools for our
hybrid numerical-asymptotic methods in Section 6. This will be surpris-
ing to many readers since variational problems of the form (2.117), arising
from BVPs for the Helmholtz equation, are standard examples of indefinite
problems where coercivity does not hold, at least for sufficiently large k. It
has seemed reasonable to assume that the same should hold true for weak
formulations arising via integral equation formulations. However recent re-
sults, discussed in Section 5.7, show that coercivity holds for (2.122), for
certain choices of Z and a range of geometries, with α bounded away from
zero for all sufficiently large k.
In cases where coercivity does not hold (or is not known to hold) analysis

of Galerkin methods, at least for fixed k, can be achieved when the operator
A takes the form A = B+C, where B : V → V ′ is coercive and C : V → V ′ is
compact. We will say that A is a compactly perturbed coercive operator in
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this case. (Many authors call our ‘coercive’ and ‘compactly perturbed coer-
cive’ elliptic and coercive respectively.) The standard generalization of Céa’s
lemma to this case is as follows (see, e.g., Theorem 8.11 in Steinbach 2008).

Theorem 2.49. Suppose the sesquilinear form a is given by (2.120), where
the bounded linear operator A : V → V ′ is a compactly perturbed coercive
operator and is injective. Suppose moreover that (VN )N∈N is a sequence of
approximation spaces converging to V , in the sense that

inf
wN∈VN

‖w − wN‖ → 0 as N → ∞,

for every w ∈ V . Then there exists N0 ∈ N and C > 0 such that, for
N ≥ N0, (2.119) has exactly one solution vN ∈ VN , which satisfies

‖v − vN‖ ≤ C inf
wN∈VN

‖v − wN‖.

This theorem is relevant to the combined potential integral equation
(2.116) for the impedance scattering problem, for general Lipschitz Γ, since
Ck,η,kβ : H1/2(Γ) → H−1/2(Γ) is a compactly perturbed coercive operator
(since the same holds for Hk (McLean 2000, Theorem 7.8) and Ck,η,kβ −Hk

is compact), and is also injective for all k > 0 if Re η �= 0 (see Theorem 2.27).
In particular, this means that Theorem 2.49 applies to the standard Burton–
Miller integral equation (Burton and Miller 1971) for sound-hard scattering
(the special case of (2.116) when β = 0), although the dependence of N0

and C on k in this case is still unknown.
Perhaps surprisingly, up to now it seemed harder to develop the theory for

Galerkin BIE methods in the general Lipschitz case for sound-soft scatterers.
Theorem 2.49 does apply to the integral equation (2.109) for the sound-soft
scattering problem, but not for every k > 0. The reason is that, while, for all
k > 0, Sk : H−1/2(Γ) → H1/2(Γ) is a compactly perturbed coercive operator
(see, e.g., Steinbach 2008, Theorem 6.40), Sk is not injective for all k > 0:
see Theorem 2.25. On the other hand, the operator A′k,η : L2(Γ) → L2(Γ)

is injective, indeed invertible, for all k > 0 (Theorem 2.27). However, for
general Lipschitz Γ, it is an open question whether A′k,η is a compactly

perturbed coercive operator. Indeed this question is equivalent, since A′k,η
is compactly perturbed coercive if and only if A′0,0 is, as the difference
A′k,η − A′0,0 is compact (e.g., Chandler-Wilde and Langdon 2007), to the
long-standing open question: Is

A′0,0 =
1
2I +D′0,

considered as an operator on L2(Γ), a compact perturbation of a coercive
operator for general Lipschitz Γ?
The answer to this last question is yes if Γ is C1, for then D′0 itself is

compact (Fabes, Jodeit and Riviere 1978), and so A′0,0 and A′k,η are compact
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perturbations of 1
2I. In the 2D case, when Γ is Lipschitz and a curvilinear

polygon (relevant to many of the examples in this article), it has been known
since the 1960s (e.g., Shelepov 1969) that the answer is also yes. For general
Lipschitz Γ it was shown by Elschner (1992, Appendix A) (cf. Steinbach
and Wendland 2001, Steinbach 2008, §6.64, Costabel 2007, Section 4.1),
that A′0,0 + cS0 is coercive, for all sufficiently large c > 0, but on H−1/2(Γ)
rather than L2(Γ), meaning that

|
(
(A′0,0 + cS0)v, v

)
H−1/2(Γ)

| ≥ α‖v‖2
H−1/2(Γ)

,

where (·, ·)H−1/2(Γ) is the inner product on H−1/2(Γ). Since S0 is a compact

operator on H−1/2(Γ), it follows that A′0,0 is compactly perturbed coercive
and Theorem 2.49 can be applied to Galerkin methods for (2.113). How-
ever, these are not the usual Galerkin methods but non-standard methods,
formulated with respect to the non-local H−1/2(Γ) inner product, a setting
which is less straightforward than L2(Γ) for computation. See Wendland
(2009) for a survey that discusses in more detail what is known about these
questions for the operator A′0,0.
Given these difficulties in the Galerkin analysis for equations involving

Ak,η and A′k,η, a number of authors (Buffa and Hiptmair 2005, Buffa and

Sauter 2006, Engleder and Steinbach 2007, Engleder and Steinbach 2008)
have proposed methods involving modified integral operators. Focusing on
A′k,η for convenience, these modifications have in common that they replace

the ‘second-kind’ part, 1
2I +D′k, of the operator by the product of 1

2I +D′k
and another non-local operator, so that the resulting product is a compact

operator from H−1/2(Γ) → H1/2(Γ), and the whole modified operator A†k,η
is injective (like A′k,η) and is a compactly perturbed coercive operator from

H−1/2(Γ) to H1/2(Γ). These modifications are attractive theoretically, but
have the disadvantage that their implementation is more complicated and
expensive.
An alternative and potentially less costly modification is to use A′k,η,Z

instead of A′k,η. The following result, which suggests that this may be a

promising idea, is shown in Chandler-Wilde and Spence (2012).

Theorem 2.50. If η ∈ C and Z ∈ (C0,1(Γ))d is real-valued and satisfies
(2.106) for some c > 0, then the operator A′k,η,Z : L2(Γ) → L2(Γ) is a
compactly perturbed coercive operator.

This result is encouraging but is not quite as helpful as we would like, as
we do not know in general whether A′k,η,Z is injective. One case where this

is clear is when Z = n and Re η �= 0, as then A′k,η,Z = A′k,η is invertible, but

the theorem does not apply in this case unless Γ is C1,1.
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3. Asymptotics and hybrid approximation spaces

Now that we have developed BIE formulations of scattering problems in
Section 2 we are ready to discuss hybrid numerical-asymptotic methods
for their solution, and in particular to design hybrid approximation spaces
informed by asymptotic analysis, addressing questionQ1 posed in Section 1.
The methods of interest here will in general approximate the (k-dependent)
solution v of a BIE using an ansatz of the form

v(x) ≈ V0(x, k) + c(k)
M∑

m=1

Vm(x, k) exp(ikψm(x)), x ∈ Γ. (3.1)

In this representation, V0 is a known (generally oscillatory) function, the
phases ψm are chosen a priori, c(k) is a scaling factor, explicitly chosen, and
the amplitudes Vm, m = 1, . . . ,M , are approximated numerically. The idea
(and in many cases this can be rigorously proved) is that, if the phases are
carefully chosen, then Vm(·, k), m = 1, . . . ,M , will be much less oscillatory
than v and so can be better approximated by piecewise polynomials than v
itself.
One possible starting point for constructing such hybrid methods is re-

lated to the physical optics (or Kirchhoff ) approximation. Consider a plane
wave uI(x) := exp(ikx · â) incident on an infinite plane passing through (for
simplicity only) the origin, with unit normal direction n. Then, under the
assumption of sound-soft scattering, the correct physical scattered field is
the reflected plane wave

uR(x) = − exp(ikx · âR), where âR = â− 2(n · â)n. (3.2)

(The Sommerfeld radiation condition (2.9) is not, of course, relevant in
this case as the scatterer is unbounded.) It follows immediately that if
u := uI+uR is the total wave then its normal derivative v = ∂u/∂n satisfies

v(x) = 2
∂uI

∂n
(x) = 2ikn · â exp(ikx · â), on Γ. (3.3)

Based on the observation that in the high frequency case the scatterer acts
locally like a plane, a plausible high-frequency approximation for v = ∂u/∂n
in the scattering problem (2.15), at least when the scatterer is convex, is
that, on Γ,

v ≈

 2
∂uI

∂n
on the illuminated part,

0 on the part in shadow.
(3.4)

In line with many other authors, we will refer to this as the physical optics
approximation; some other authors call this a geometrical optics approx-
imation. Following usual practice, we will also call the approximation to
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the solution of (2.15) that is obtained by substituting the approximation
(3.4) to ∂u/∂n into the integral representation (2.107), the physical optics
or Kirchhoff approximation. (The analogous approximation in the sound-
hard case is that v = u|Γ, the restriction of u to Γ, satisfies v ≈ 2uI |Γ on
the illuminated part of Γ and v ≈ 0 on the part in shadow.)
For a general smooth, strictly convex obstacle the scattering surface nat-

urally divides into illuminated and shadow zones,

{x ∈ Γ : n(x) · â < 0} and {x ∈ Γ : n(x) · â > 0}, respectively, (3.5)

which are separated by the shadow boundary :

S := {x ∈ Γ : n(x) · â = 0}. (3.6)

Motivated by the physical optics approximation (3.4), which is valid for
high frequency for such scatterers, a plausible ansatz in the case when the
incident field is the plane wave uI(x) := exp(ikx · â), as discussed already
in Section 1, is that

v(x) =
∂u

∂n
(x) ≈ kV (x, k) exp(ikx · â), (3.7)

where V is a well-behaved non-oscillatory function away from the shadow
boundary. Much work has been done on analysing this approximation (see
the discussion in Section 3.1). This is our first example of the general
ansatz (3.1).

Example 3.1. The ansatz (3.1), with M = 1, V0 ≡ 0 and ψ1(x) = x · â,
motivated by the physical optics approximation (3.4), is sometimes assumed
to hold (with V1 non-oscillatory) on the whole of Γ, even when Γ is not
convex. In Section 3.1 we prove its utility, at least for the smooth convex
case.

On the other hand, for a convex polygonal scatterer it can be shown (see
Section 3.3) that, if V0 is the physical optics approximation (3.4), that is,

V0 :=

 2
∂uI

∂n
on illuminated sides,

0 on sides in shadow,
(3.8)

then

v = V0 +Σ, (3.9)

where Σ denotes a sum of terms (of a similar form to the summation on the
right-hand side of (3.1)), arising from diffraction of the incoming wave at
the corners of the polygon.

Example 3.2. The ansatz (3.1), with V0 given by (3.8) and M = 2ns,
where ns is the number of sides of Γ, will be proposed for convex polygons
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in Section 3.3, with the phases ψm determined by the orientation of the
sides of Γ.

As we have described already in Section 1, a number of authors in the
acoustics and electromagnetics literature, starting with Uncles (1976), have
proposed the ansatz of Example 3.1 as the basis for hybrid numerical-
asymptotic methods for scattering by convex obstacles. Abboud, Nédélec
and Zhou (1994, 1995) developed this idea, apparently independently of ear-
lier work, and took the first steps towards numerical analysis of these meth-
ods. These authors considered the impedance scattering problem (2.18) and
formulated this as the first-kind BIE

−Hkv + k2βSk(βv)− ikD′k(βv)− ikβDkv = gk := −∂uI

∂n
− ikβuI , (3.10)

where v = u|Γ, the restriction of u to Γ. Then the ansatz of Example 3.1
was used, and the unknown ‘slow variable’ V1(·, k) was approximated using
the h-version BEM. Although the method in Abboud, Nédélec and Zhou
(1994, 1995) lacks a rigorous error analysis, some formal arguments were
given which suggested that consistency error for the Galerkin method for
(3.10) remains bounded as k → ∞, provided the BEM is employed with
O(k(d−1)/3) degrees of freedom. In Abboud et al. (1995), and also in the
thesis Zhou (1995), a range of experiments on smooth and non-smooth con-
vex 2D objects (and some experiments also on the sphere) were presented,
illustrating the sharpness of the formal error estimate described above. The
authors also discussed there the computation of the Galerkin stiffness ma-
trix, and proposed some methods for computing the matrix entries which
(while not being independent of k in cost) do allow a reduction in complexity
by making some use of the method of stationary phase.
In terms of key algorithmic ideas, a substantial step forward was taken

in the work of Bruno and collaborators (Bruno et al. 2004), which again
employed the ansatz of Example 3.1 but combined it with a more careful
discretization scheme, aimed at avoiding the breakdown of the ansatz near
the shadow boundary. Starting from the direct combined potential formu-
lation (2.114), employing the ansatz of Example 3.1, and multiplying each
side of (2.114) by exp(−ikx · â), one obtains(

1

2
I + D̃k

′ − iηS̃k

)
V (·, k) = i(kn · â− η), (3.11)

where the single-layer and adjoint double-layer operators with modulated

kernels, S̃k and D̃k
′
respectively, are defined by

S̃kφ(x) :=

∫
Γ
Φk(x, y) exp(ik(y − x) · â)φ(y) ds(y), (3.12)
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and

D̃k
′
φ(x) :=

∫
Γ

∂Φk(x, y)

∂n(x)
exp(ik(y − x) · â)φ(y) ds(y). (3.13)

These integral operators have oscillatory kernels containing a factor of the
form exp(ikΨ(x, y)), where Ψ(x, y) = |x− y|+ (y − x) · â. (This will be ex-
plained in more detail later: see, e.g., (4.41).) To solve (3.11), Bruno et al.
(2004) sampled V at points of a suitable mesh on Γ, and applied special
integration rules based on partitions of unity and exponentially convergent
quadrature, carefully handling the oscillations in the kernel, to obtain a
Nyström-type scheme. The result is a fully discrete method which, in the
examples computed, turns out to have close to k-independent error for a
fixed number of degrees of freedom. To avoid the breakdown of the approx-
imation of Example 3.1 at the shadow boundary S, the mesh is graded in
O(k−1/3) neighbourhoods of S. The estimates on the derivatives of V in
Section 3.1 below could be used to provide consistency estimates for such
a procedure. The work of Bruno et al. (2004) was continued by Bruno and
Geuzaine (2007), concentrating on the formulation of a robust quadrature
method for the oscillatory integrals which arise in the discretization of (3.11)
in 3D. This is described in more detail in Section 4.5.
Huybrechs and Vandewalle (2007b) solved a model 2D problem related

to (3.11), by collocation with a piecewise polynomial basis, and the em-
phasis then was on the construction of efficient quadrature schemes for the
entries of the collocation matrix. These were evaluated by a combination
of generalized Filon quadrature with a steepest descent approach; see Sec-
tions 4.2 and 4.5 for details. By examining the location of the stationary
points of the phase Ψ, Huybrechs and Vandewalle were able to demonstrate
that their scheme leads to a sparse BEM formulation, with numerical results
comparable to those of Bruno et al. (2004) being obtained.
Ganesh and Hawkins (2011) solved (3.11) in the case of a 3D smooth

convex obstacle, using a discrete Galerkin method with global polynomial
basis and a specially chosen global quadrature rule to compute the Galerkin
matrix entries (again, see Section 4.5 for details). Following similar lines
to the purely formal argument put forward by Abboud, Nédélec and Zhou
(1994), one might expect that (because no special action is taken at the
shadow boundary) the method would require O(k2/3) degrees of freedom to
maintain accuracy as k → ∞, and numerical results in Ganesh and Hawkins
(2011) support this conjecture. However this method is much more efficient
than standard BEM (which requires at least O(k2) degrees of freedom as
k → ∞) and impressive results for rather large k are presented in Ganesh
and Hawkins (2011). The method of Ganesh and Hawkins (2011) requires
that the scatterer can be mapped to the sphere with an invertible map, but
this is always true for convex obstacles.
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For the rest of this section we will describe the asymptotic background
to the design of various hybrid numerical-asymptotic methods.

3.1. Smooth convex obstacles

Let us consider the sound-soft scattering problem (2.15). Under the as-
sumption that Γ is C∞ and convex (in 2D or 3D), and has strictly positive
curvature, we write the solution v := ∂u/∂n of (1.3) as

v(x) := kV (x, k) exp(ikx · â), x ∈ Γ (3.14)

(i.e., we employ the ansatz of Example 3.1). The key question is how V (x, k)
behaves for x near the shadow boundary defined in (3.6) (this is essentially
equivalent to understanding how the total field u behaves in the transition
region between the illuminated and shadow parts of the exterior domain).
The first (non-rigorous) results on this question were by Fock (e.g., Fock
1965), with these results valid in a neighbourhood of the shadow boundary
whose width shrinks to zero as k → ∞. This was followed by Ludwig (1967),
who obtained (non-rigorous) results in a k-independent neighbourhood of
the shadow boundary, and subsequently by the rigorous analysis of Buslaev
(1964, 1975); see also Babich and Buldyrev (1991, Chapter 13), Babich and
Kirpichnikova (1979) and further references therein. The following result
is quoted from Melrose and Taylor (1985, Theorem 9.27), but the same
result can essentially be found elsewhere in the literature. For example
the ‘Fundamental Theorem’ in Buslaev (1975, §1.9) concerns the case of
Neumann boundary conditions and a point source incident wave, although
the general method used there can also be directly extended to the Dirichlet
boundary conditions and plane wave incidence which are considered here
(Buslaev 1962).

Theorem 3.3. There exists ∆ > 0 such that V (x, k) has the asymptotic
expansion

V (x, k) ∼
∑

�,m≥0
k−1/3−2�/3−mb�,m(x)Φ(�)(k1/3Z(x)), x ∈ Γ∆, (3.15)

as k → ∞, where Γ∆ := {x ∈ Γ : dist(x, S) ≤ ∆}, and S is the shadow
boundary defined in (3.6).

The precise meaning of the asymptotic expansion in (3.15) can be made
clear using the symbol classes of Hörmander (1983a, p. 236, Definition 7.8.1),
also mentioned briefly in Melrose and Taylor (1985, p. 249). In the context
of our problem, a function p = p(x, k) (where x ∈ Γ∆ and k ∈ (0,∞)) is
said to lie in the symbol class Sµ

ρ,δ if

|Dα
kD

n
xp(x, k)| ≤ Cα,n(1 + k)µ−ρα+δn, α, n ∈ N ∪ {0},
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Re z

Figure 3.1. The contour c in the complex plane.

where Dn
x denotes a surface derivative of order n on Γ∆.

Then, the precise meaning of (3.15) is that, for any µ < 0 and for all
L,M ∈ N ∪ {0} sufficiently large (depending on µ), the remainder

RL,M := V (x, k)−
L,M∑
�,m=0

k−1/3−2�/3−mb�,m(x)Φ(�)(k1/3Z(x))

satisfies

RL,M ∈ Sµ
2/3,1/3 for (x, k) ∈ I∆ × (0,∞) (3.16)

(i.e., ρ = 2/3, δ = 1/3 in this case). This interpretation is equivalent to
saying that (3.15) is a conventional asymptotic expansion in the limit as
k → ∞, and remains so under term-by-term differentiation on both sides
with respect to both x and k. This use of the ∼ symbol in (3.15) is prevalent
throughout the rigorous asymptotics and microlocal analysis literature, and
it always has the same meaning.
In the expansion (3.15), b�,m are C∞ complex-valued functions on Γ∆ and

Z is a C∞ real-valued function on Γ∆, which vanishes to first order on S
and is positive-valued on the illuminated zone and negative-valued on the
shadow zone (see (3.5)). Moreover Φ : C → C is an entire function (also
known as ‘Fock’s integral’ (e.g., Fock 1965, §7, 12), defined by

Φ(τ) := exp(−iτ3/3)

∫
c

exp(−izτ)

Ai (exp(2πi/3)z)
dz, (3.17)

where Ai is the Airy function and c is the contour depicted in Figure 3.1,
with θ chosen to be any sufficiently small positive angle, ensuring the ab-
solute convergence of (3.17). We note that Fock’s integral is often denoted
Ψ(τ) in other references (see for example Melrose and Taylor 1985). The
asymptotics of Φ(τ) are given in Melrose and Taylor (1985, Lemma 9.9)
(for τ → +∞), whereas for τ → −∞ they can be inferred from Babich
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and Buldyrev (1991, p. 393), Buslaev (1964, Lemma 8); for a summary see
Domı́nguez et al. (2007). From these one can obtain the derivative estimates

|Φ(τ)| ≤ C0(1 + |τ |), |Φ′(τ)| ≤ C1, (3.18)

and |Φ(�)(τ)| ≤ C�(1 + |τ |)−2−�, for � ≥ 2, (3.19)

for all τ ∈ R, with C� independent of k.
Using the asymptotic expansion in (3.15) and the interpretation of it in

terms of the Hörmander symbol classes, the following result was derived in
Domı́nguez et al. (2007).

Corollary 3.4. For all L,M ∈ N ∪ {0}, the decomposition

V (x, k) =

[
L,M∑
�,m=0

k−1/3−2�/3−mb�,m(x)Φ(�)(k1/3Z(x))

]
+RL,M (x, k) (3.20)

holds for all x ∈ Γ∆, with remainder term satisfying, for all L,M ∈ N∪{0},

|Dn
xRL,M (x, k)| ≤ CL,M,n(1 + k)µ+n/3, (3.21)

where CL,M,n is independent of k and

µ = −min{2(L+ 1)/3, (M + 1)}. (3.22)

In numerical analysis we typically need k-explicit estimates on the deriva-
tives of V . These are obtained in the following result, which is a general-
ization of results in Domı́nguez et al. (2007), to include 3D as well as 2D
scattering problems.

Theorem 3.5. For all n ∈ N ∪ {0} there exist constants Cn > 0 indepen-
dent of k and x such that, for all k sufficiently large, and x ∈ Γ∆,

|Dn
xV (x, k)| ≤

{
Cn n = 0, 1,

Cn k
−1 (k−1/3 + dist(x, S))−(n+2) n ≥ 2,

(3.23)

where Dn denotes any surface derivative operator of order n on Γ∆ and S
is the shadow boundary as defined in (3.6).

Remark 3.6. This theorem quantifies rather precisely the boundary layer
effect near the shadow boundary. If dist(x, S) ≥ C > 0, then all the deriva-
tives of V decay with O(k−1). However if dist(x, S) = O(k−1/3) then for
n ≥ 2, the nth derivative of V grows with O(k(n−1)/3). We emphasize also
that, up to this point in the theory, this estimate holds only for x ∈ Γ∆

(a neighbourhood of the shadow boundary, but independent of k). The
extension to all of Γ requires a rigorous application of matched asymptotic
expansions: see, e.g., Domı́nguez et al. (2007), where the estimates (3.23)
are shown (in the 2D case) to hold for all x ∈ Γ.
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Proof. Choosing any n ∈ N ∪ {0}, we can select L,M so that −µ ≥ n/3,
with µ defined in (3.22). Then we apply Corollary 3.4 to obtain V (x, k) =
AL,M (x, k) +RL,M (x, k), where

AL,M (x, k) := k−1/3
L∑

�=0

k−2�/3B�,M (x)Φ(�)(k1/3Z(x)),

B�,M :=
M∑

m=0

k−mb�,m(x),

the derivatives of RL,M are bounded as in (3.21), and, by choice of µ,

|Dn
xRL,M (x, k)| ≤ Cn, for all k,

with Cn denoting a generic constant independent of x and k but possibly de-
pending on n. Now, since all derivatives of B�,M are bounded independently
of k, we obtain

|Dn
xAL,M (x, k)| ≤ Cnk

−1/3
n∑

j=0

L∑
�=0

k(j−2�)/3
∣∣Φ(�+j)(k1/3Z(x))

∣∣, (3.24)

and the result follows on observing that by (3.18), (3.19), each term in the
double sum can be estimated in the required way.

A hybrid approximation scheme for (1.3) can now be devised by insert-
ing an appropriate piecewise polynomial approximation of V into (3.14).
Although methods which do not take any special care near the shadow
boundary can still be very effective (Abboud, Nédélec and Zhou 1994, 1995,
Aberegg and Peterson 1995, Ganesh and Hawkins 2011), Theorem 3.5 sug-
gests we may do better if we do more work near the shadow boundary.
As an example consider the 2D case, where Γ is parametrized by a map-
ping ζ : [0, 2π] → Γ, assumed proportional to arc-length. The shadow
boundary consists of two points, here denoted ζ(ti), i = 1, 2. Following
Domı́nguez et al. (2007), we partition the parameter domain into four zones
Λi : i = 1, . . . , 4, where Λi, i = 1, 2 are small neighbourhoods of t1, t2 re-
spectively, chosen as

Λ1 := [t1 −O(k−1/3+δ), t1 +O(k−1/3+ε)], (3.25)

Λ2 := [t2 −O(k−1/3+ε), t2 +O(k−1/3+δ)], (3.26)

with δ, ε ∈ (0, 1/3) parameters to be chosen. For large enough k, Λ1,Λ2

are disjoint and the remaining two components of [0, 2π] are denoted Λ3

(contained in the illuminated zone) and Λ4 (in the shadow zone), with the
regions Λj touching only at the end points. The hybrid approximation space
VN is then defined to be the space of functions taking the form (3.14), with
V approximated by a polynomial of degree p in each of Λi : i = 1, 2, 3 and
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by zero in the shadow zone, more precisely

VN := ⊕3
j=1span{kχj(s)s

m exp(ikζ(s) · â) : m = 0, . . . , p}, s ∈ [0, 2π],
(3.27)

where the partition of unity {χj : j = 1, 2, 3, 4} satisfies χj ∈ L∞[0, 2π],

suppχj = Λj , 0 ≤ χj ≤ 1, for each j = 1, . . . , 4, and
∑4

j=1 χj = 1. The

space VN then has dimension N = 3(p+1). It is proved in Domı́nguez et al.
(2007) that, with the choice ε = 1/9, we have, for 6 ≤ n ≤ p+ 1,

inf
wN∈VN

‖v − wN‖ ≤ Cnk

{
k−4/9

(
k1/9

p

)n

+ exp(−c0k
δ)

}
, (3.28)

for some constant c0, where, recalling the convention introduced in Section 1,
‖·‖ is used to denote ‖·‖L2(Γ) . Since (3.28) holds for n = p+1, it is driven to

zero quickly as p → ∞, provided p grows just slightly faster than k1/9. This
relative k-robustness of the estimate arises because we are concentrating
work near the shadow boundary. Note that the rightmost term in (3.28)
arises from the known exponential decay of v in the shadow. (The proofs of
this decay are classical and highly non-trivial (Ursell 1968, Filippov 1976,
Zayaev and Filippov 1985, Zayaev and Filippov 1986, Lebeau 1984, Harge
and Lebeau 1994, Popov 1987).) A brief summary is given in Domı́nguez
et al. (2007).
Before leaving this discussion we mention that a more detailed analysis of

the asymptotics of (3.17) as τ → −∞ allows one to identify exponentially
damped oscillations in V in the shadow region but near the transition points
t1, t2, commonly known as creeping waves. The most dominant of these
creeping waves was modelled explicitly in the hybrid numerical-asymptotic
collocation method of Giladi and Keller (2004) and Giladi (2007).

3.2. The impedance half-plane problem

Chandler-Wilde et al. (2004) and Langdon and Chandler-Wilde (2006) con-
sidered the problem of 2D scattering of an incident plane wave uI(x) =
exp(ikx · â) by an infinite flat surface where the scattered wave uS satis-
fies a suitable radiation condition and the total wave u = uI + uS satisfies
a piecewise constant impedance boundary condition. For this problem, k-
independent stability, convergence and complexity were proved, the first
such rigorous result for any scattering algorithm. We give an overview of
these results here since they can be considered as a prototype for results
later in this section, and, in particular, have direct links to Section 3.3.
The total field u ∈ C(U)∩C2(U) is required to satisfy (1.1) in the upper

half-plane, U := {(x1, x2) ∈ R
2 : x2 > 0}, together with the impedance

boundary condition

∂u

∂n
+ ikβu = 0, on Γ := {(x1, 0) : x1 ∈ R}. (3.29)
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Such problems arise, for example, in outdoor sound propagation, where
the relative surface admittance β in general depends on the frequency and
the ground properties (e.g., Taraldsen and Jonasson 2011). Although more
general configurations are possible, for exposition we here restrict to the
relatively simple case

β(x1) =

{
β1 x1 ∈ [0, 1],

βc x1 ∈ R\(0, 1),

with (recall (2.2)) β1, βc ∈ C assumed to lie in the right half-plane.
This problem differs from all the other boundary value problems in this

review since the scatterer is of infinite extent and the appropriate radiation
condition is different from that for a bounded scatterer. Nevertheless, the
problem can be reformulated as the second-kind BIE

v −Kβc

β v = ψβc , (3.30)

on R, where v(s) := u(s, 0) is the total field at point (s, 0) on Γ, and

ψβc(s) :=

(
2 cos θ

cos θ + βc

)
exp(iks sin θ).

Here â = (sin θ,− cos θ) is the direction of the incident plane wave (with
θ ∈ (−π/2, π/2), so that the wave is incoming), and

Kβc

β χ(s) := ik(β1 − βc)

∫ 1

0
Gβc((s, 0), (t, 0))χ(t) dt,

with Gβc(x, y) the Green’s function for (1.1) and (3.29) in the case β = βc
(Chandler-Wilde and Hothersall 1995). In fact ψβc is the total acoustic field
in the case that the surface has constant impedance βc.
The numerical scheme for solving (3.30) is then based on a high-frequency

analysis of reflected and diffracted rays, in the spirit of the geometrical the-
ory of diffraction. More precisely, the dominant component of v turns out
to be ψβ1 (the total field induced if the whole boundary had the admit-
tance β1) and the remainder can be described by the sum of the diffracted
rays scattered at the discontinuities in the impedance. (For scattering at 0,
rays travel from left to right along (0, 1), and for scattering at 1, rays travel
from right to left along (0, 1).) These diffracted rays are illustrated by the
arrows in Figure 3.2 (where the scattered field uS = u−uI is plotted for the
same choice of parameter values as given in Langdon and Chandler-Wilde
(2006, p. 2454)).
This leads to the ansatz

v(s) = ψβ1(s) + V +(s) exp(iks) + V −(1− s) exp(−iks), s ∈ (0, 1), (3.31)

which corresponds to (3.1) with M = 2, V0(x, k) = ψβ1(x), V1(x, k) =
V +(x), ψ1(x) = x, V2(x, k) = V −(1 − x) and ψ2(x) = −x. Langdon and



156 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

discontinuities in impedance

Figure 3.2. Scattered field uS = u− uI ; the arrows represent the
incident rays, and those diffracted rays scattered at the discontinuities
in the impedance which travel in either direction along the boundary.

Chandler-Wilde (2006, Theorems 2.3, 2.6) have shown that the functions
V ± are not oscillatory, and that their high-order derivatives decay rapidly
away from the discontinuities in impedance at s = 0 and at s = 1.

Theorem 3.7. For t > 1/k, m = 0, 1, . . . , there exist constants Cm, de-
pendent only on m, such that∣∣V ±(m)

(t)
∣∣ ≤ Cm km(kt)−1/2−m cos θ, (3.32)

and there exists a constant C, such that∣∣V ±(t)∣∣ ≤ C (kt)−3/2(cos θ)−1. (3.33)

Thus, if θ is bounded away from −π/2 and π/2 (the directions of graz-
ing incidence), the estimates (3.33) can be used, while the bounds (3.32)
apply for all θ. Numerical experiments in Langdon and Chandler-Wilde
(2003b, 2006) suggest that, for m = 0, these bounds appear to be sharp with
respect to both θ and kr. These estimates are crucial to the k-independent
convergence rate obtained in Theorem 3.8 below.
Given these estimates the hybrid approximation space VN for (3.30) is

then chosen to be a space of functions of the form (3.31), with V + replaced
by certain piecewise polynomials defined on a mesh graded towards 0, and
V − replaced by piecewise polynomials defined on a mesh graded towards
1. A crucial ingredient in the method is the precise design of the mesh,
specifically that it is geometric (like (3.47)) on most of the interval [0, 1].
Solving (3.30) by the Galerkin method in VN , the resulting solution vN ∈ VN
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has an error estimate given by the following theorem. In this section we shall
use the notation A � B when A ≤ CB, where C is a constant that does
not depend on k or N .

Theorem 3.8. (Langdon and Chandler-Wilde 2006, Theorem 3.5)
If |β1 − βc| < Reβc (i.e., the relative jump in β is not too large), then

‖v − vN‖L2(0,1) �
log1/2(min(N/ cos θ, k))

Nν+1
,

where N ∈ N is a parameter used in the definition of the graded meshes and
ν is the degree of polynomial approximation on each interval of the graded
meshes. The space VN has dimension � N log(min(N/ cos θ, k) (in contrast
to elsewhere in the review, where we generally use the convention that VN

has dimension N).

We note that in general the meshes used to approximate V − and V +

do not coincide, which ensures the corresponding system matrices are well-
conditioned. (Further details are in Langdon and Chandler-Wilde 2006.)
This type of approximation scheme arises again below, for example in Sec-
tion 3.3.
The estimate in Theorem 3.8 is derived by first noting that

‖Kβc

β ‖L2(0,1)←L2(0,1) ≤
|β1 − βc|
Reβc

< 1,

under the assumption on β. Thus existence and boundedness of (I−Kβc

β )−1
follows from the Banach Lemma. Writing the Galerkin method as

(I − PNKβc

β )vN = PNψβc , (3.34)

where PN : L2(0, 1) → VN is the orthogonal projection onto VN , with
‖PN‖2 = 1, it follows that (3.34) is uniquely solvable, and a little algebra
(see Section 6.1 for similar arguments) shows that

‖v − vN‖L2(0,1) ≤
Reβc

Reβc − |β1 − βc|
‖v − PNv‖L2(0,1).

The final result is obtained by using a bound on ‖v−PNv‖L2(0,1) proved in
Langdon and Chandler-Wilde (2006, Theorem 3.4).
Thus, for fixed N , as k increases the error is bounded independently of

k. Further results can be found in Langdon and Chandler-Wilde (2003a,
2003b, 2006), where it is shown, for instance, that the Galerkin method can
be implemented with a cost that is independent of k, that the condition
number of the Galerkin matrix is bounded independently of k and, via a
careful choice of mesh parameters, that the error estimates are uniform
with respect to the angle of incidence θ (even as θ approaches grazing angle
of incidence).
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3.3. Convex polygons

In this subsection we consider the solution of three high-frequency scatter-
ing problems, where the scatterers are non-smooth bounded 2D domains.
The first is the sound-soft exterior Dirichlet problem (2.16) for a polygonal
scatterer (‘the sound-soft polygon’, with results described in Section 3.3.1),
the second is the exterior impedance problem (2.18), again for a polygo-
nal scatterer (‘the impedance polygon’, Section 3.3.3), and the third is the
sound-soft exterior Dirichlet problem for a curvilinear polygon (described
briefly in Section 3.3.2). For the two sound-soft problems, (2.16) is reformu-
lated as the BIE (2.114) or (2.115), and the solution v := ∂u/∂n is written
in the form (3.1), using a slightly different ansatz in each case. For the
impedance problem, a similar ansatz to (3.1) is used for v = γu. Rigorous
k-explicit error estimates for approximation in the corresponding hybrid ap-
proximation spaces are available for the sound-soft and impedance polygons.
For the curvilinear polygon, the validity of the hybrid approximation space
is justified by a heuristic argument, and also by numerical results, presented
in Section 7.3.

3.3.1. The sound-soft polygon

The chief reference for this subsection is Chandler-Wilde and Langdon
(2007), although other references are mentioned below. The treatment be-
gins by establishing that the choice of hybrid space given in Example 3.2 is
appropriate for this problem. In fact it is shown that, for x ∈ Γ,

v(x, k) = V0(x, k) (3.35)

+ k

ns∑
m=1

[
V +
m (x, k) exp(ikx · d̂m) + V −m (x, k) exp(−ikx · d̂m)

]
,

where ns is the number of sides of the polygon, the unit vector d̂m is parallel
to the mth side Γm, the function V ±m is non-zero only on Γm, and V0(x, k)
is given by (3.8). It is easily seen that this corresponds to a particular
instance of (3.1) with M = 2ns (note that here v has a different scaling
to that used in Chandler-Wilde and Langdon (2007)). Let Γm denote the
side of the polygon connecting the vertices Pm and Pm+1, with length Lm

and corresponding exterior angles ωm, ωm+1 ∈ (π, 2π) at its end-points, and
make the convention that Pns+1 = P1 and ωns+1 = ω1. Then, for x ∈ Γm,
m = 1, . . . , ns, we can rewrite (3.35) as

v(s) = V0(s) + k
[
V +
m (s) exp(iks) + V −m (Lm − s) exp(−iks)

]
, s ∈ [0, Lm],

(3.36)
where s denotes the distance of x from Pm.

To establish the potential of (3.35) as the starting point for a hybrid ap-
proximation space, it is necessary to establish the k-explicit regularity of
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the functions V ±m (·, k). In fact it turns out that the representation (3.35)
captures the oscillatory behaviour of v exactly, in the sense that the func-
tions V ±m are non-oscillatory. The key to obtaining this result, as for all of
the results in this section, lies in understanding precisely the high-frequency
asymptotics of the solution to the scattering problem. Comparing the prob-
lems in this subsection with those in Section 3.1, it might at first appear
that polygonal scatterers present more of a challenge, due to the difficulties
caused by the corners of the polygon. However, it turns out that if x is
sufficiently close to a corner, the behaviour of V ±m can be understood using
standard techniques for handling elliptic corner singularities (e.g., Grisvard
1985), or by explicitly representing u and ∂u/∂n near corners via separation
of variables in polar coordinates centred on the corner. Using this approach
the following theorem was established.

Theorem 3.9. (Chandler-Wilde and Langdon 2007, Corollary 3.4)
For m = 1, . . . , ns, t > 0, and for all n ≥ 0, the bound∣∣∣∣ ∂n

∂tn
V +
m (t)

∣∣∣∣ � M(u) kn(kt)−αm−n (3.37)

holds for kt ≤ 1, where αm := 1− π/ωm ∈ (0, 1/2), and

M(u) := sup
x∈Ω+

|u(x)|.

The hidden constant in (3.37) is independent of k and t. The same bounds
hold for V −m , with αm replaced by αm+1.

The dependence of the constant M(u) on the wavenumber k is not yet
fully understood. Hewett et al. (2012) showed that when Ω is a star-shaped
polygon, M(u) grows at most algebraically with k; specifically,

M(u) = O(k1/2 log1/2 k) as k → ∞. (3.38)

However, numerical experiments in Chandler-Wilde and Langdon (2007),
Hewett et al. (2012) and Chandler-Wilde et al. (2012a) lead us to conjecture
that, in fact, M(u) = O(1) as k → ∞, for both convex and a more general
class of non-convex polygons. As yet though, this statement remains to be
proved.
Establishing regularity results for V ±m (x, k) when x is further away from

the corners turns out to be a somewhat easier task than deriving the analo-
gous estimates for smooth convex scatterers, as in Section 3.1. The key step
is the observation (adapted from Chandler-Wilde et al. 2004 and related
to the ideas in Section 3.2) that one can write down an explicit solution
to the Dirichlet boundary value problem for the Helmholtz equation in a
half-plane, using the explicit Green’s function constructed via the method
of images. To this end, let Dm ⊂ Ω+ denote the half-plane whose boundary
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contains Γm, and set Gm,k(x, y) = Φk(x, y) − Φk(x, y
′
m), where y′m denotes

the image of y in the straight line ∂Dm. (This is the Dirichlet Green’s func-
tion for the half-plane Dm.) Then, for an illuminated side Γm (shadow sides
are treated similarly), we have the formula

u(x) = uI(x)+ uR(x)+

∫
∂Dm

∂Gm,k(x, y)

∂n(y)
u(y) ds(y), for x ∈ Dm. (3.39)

Here uR is the plane wave reflected from ∂Dm (defined analogously to (3.2)).
Taking the normal derivative in (3.39), noting that ∂Gm,k(x, y)/∂n(y) =
2∂Φk(x, y)/∂n(y), and recalling that u = 0 on Γ, we have

∂u

∂n
(x) = 2

∂uI

∂n
(x) + 2

∫
∂Dm\Γm

∂2Φk(x, y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γm. (3.40)

The formula (3.40) holds on each illuminated side. The same formula
holds also on shadow sides but with the term 2∂uI/∂n deleted. Thus, on a
side Γm, it holds that

∂u

∂n
(x) = V0(x, k) + k

[
V +
m (x, k) eikx·d̂m + V −m (x, k)e−ikx·d̂m

]
, (3.41)

where V0 is defined by (3.8) and the functions V ±m and unit vector d̂m are
defined in (3.42) below. This formula is obtained by decomposing the inte-
gral in (3.40) into two parts, corresponding to the two lines either side of
Γm that extend to infinity in each direction (which we denote by Γ±m), so
that explicitly

V ±m (x, k) :=
ik

2

∫
Γ±
m

exp(∓iky · d̂m)µ(k|x− y|)u(y) ds(y), (3.42)

with µ(z) := exp(−iz)H
(1)
1 (z)/z, for z > 0, and with d̂m the unit vector

pointing from Γ+
m along Γm.

Equation (3.41) is the representation (3.35) promised in Example 3.2,
evaluated on Γm. Although we cannot evaluate the integrals in (3.42), as
they involve the unknown u on Γ±m, it can be shown that the V ±m are not
oscillatory on Γm. This is the content of the following theorem.

Theorem 3.10. (Chandler-Wilde and Langdon 2007, Theorem 3.2)
For m = 1, . . . , ns, t > 0, and for all n ≥ 0, we have∣∣∣∣ ∂n

∂tn
V ±m (t)

∣∣∣∣ � M(u)kn(kt)−1/2−n, (3.43)

for kt ≥ 1. The hidden constant in (3.43) is independent of k and t.

The hybrid approximation space VN for this problem is defined as the
space of all functions of the form (3.35), with V ±m , m = 1, . . . , ns, each re-
placed by certain piecewise polynomials of degree p. Specifically, V +

m is ap-
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proximated on Γm using piecewise polynomials of degree p, on a mesh which
is graded near the corner Pm (to accommodate the blow-up of derivatives
near that point) and has points more spread out over the rest of Γm. Anal-
ogously V −m is approximated on Γm using piecewise polynomials on a mesh
graded towards the other corner, Pm+1 (recall (3.36)); as for the scheme
described in Section 3.2, the meshes used to approximate V +

m and V −m do
not usually coincide and the precise design of the meshes is crucial to the
success of the method. Using Theorems 3.9 and 3.10, one can prove the
following best approximation estimate for VN .

Theorem 3.11. (Chandler-Wilde and Langdon 2007, Theorem 4.4)
Denote the length of the boundary of the polygon by L, the total number
of degrees of freedom by N , and the degree of polynomial approximation on
each element by p. Then

k−1/2 inf
wN∈VN

‖v − wN‖ � M(u)(ns log(kL))
1/2

(
ns log(kL)

N

)p+1

.

The hidden constant in this estimate depends only on the corner angles and
on p.

Combining with (3.38), this theorem shows that in order to maintain
control of the quantity k−1 infwN∈VN ‖v − wN‖, it is sufficient to increase
the number of degrees of freedom N slightly faster than log k as k increases.
For a discussion of what are the appropriate quantities to consider when
measuring the error, and why, we refer to Section 6.5.
A collocation method based on the identical integral equation formulation

and the same approximation space VN is implemented in Arden, Chandler-
Wilde and Langdon (2007). The numerical results there suggest that there
is little difference in accuracy between the Galerkin and the (rather easier to
implement) collocation method for this problem, although there is no error
analysis for collocation.

3.3.2. Convex curvilinear polygons

The extension of the ideas in Section 3.3.1 to sound-soft convex curvilinear
polygons is discussed in Langdon et al. (2010). In this case the ansatz for
smooth convex obstacles (3.14) is combined with that for convex polygons
(3.35), leading to the ansatz (for v = ∂u/∂n)

v(x, k) = kV (x, k) exp(ikx · â) (3.44)

+ k

ns∑
m=1

[
V +
m (x, k) exp(iks) + V −m (x, k) exp(−iks)

]
,

for x = ζ(s) ∈ Γ, where ζ again represents arc-length parametrization of Γ,
ns is the number of sides of the curvilinear polygon and each function V ±m
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is assumed non-zero only on side m. Here, V and V ±m are all to be found.
Whereas for smooth obstacles the regularity of V can be established, and for
convex polygons V is known and V ±m can be proved to be slowly oscillating,
for convex curvilinear obstacles such results have, to date, remained elusive.
Nevertheless, numerical results in Langdon et al. (2010) suggest (at least for
the examples tested) that, if we use the ansatz (3.44) and approximate V
as in Section 3.1 and V ±m as in Section 3.3.1, then the number of degrees of
freedom required to approximate (1/k)∂u/∂n to any given level of accuracy
for convex curvilinear polygons grows only logarithmically as k increases.
This is a similar result to that described in Theorem 3.11 above for straight-
sided convex polygons. Further numerical results in Section 7.3 illustrate
how this result appears to extend to the computation of the solution u in
the domain, and of the far-field pattern F defined by (2.10) (see also (2.23)
and (2.24)).

3.3.3. The impedance polygon

The extension of the method in Section 3.3.1 to scattering from a convex
polygon with impedance boundary condition is described in Chandler-Wilde
et al. (2012b). In this case, we have v = γu as the unknown function to be
approximated on Γ, rather than ∂u/∂n, and the integral formulation (2.111)
is used. Again, v can be expressed as a product of oscillatory and non-
oscillatory functions on each side of the polygon, leading to a similar ansatz
to that used for the sound-soft convex polygon (3.35), but without the factor
k multiplying the summation on the right-hand side, and with a different
V0. Similar techniques to those described in Section 3.3.1 can be applied to
establish regularity estimates for V ±m . In this case, it is proved in Chandler-
Wilde et al. (2012b) that (using the same notation as in Section 3.3.1)

k−n
∣∣∣∣ ∂n

∂tn
V +
m (t)

∣∣∣∣ �
{

M(u)(kt)βm for kt ≤ 1,

M(u)(kt)−1/2−n for kt ≥ 1,

where the hidden constant is independent of k and t and where βm =
min{0, α̂m − n}, with α̂m = π/ωm ∈ (1/2, 1). Similar bounds hold for
V −m , with α̂m replaced by α̂m+1. An order p polynomial approximation
space similar to that in Section 3.3.1 is employed, again with geometric
mesh grading except within a wavelength of each corner. Letting VN de-
note the resulting approximation space (and using the same notation as in
the statement of Theorem 3.11), the best approximation result is

k1/2 inf
wN∈VN

‖v − wN‖ � M(u)(ns log(kL))
1/2

(
ns log(kL)

N

)p+1

. (3.45)

The hidden constant depends only on the impedance β, the corner angles,
and p. This estimate is identical to Theorem 3.11 except that the factor
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of k−1/2 on the left-hand side of the estimate in Theorem 3.11 is now a
factor of k1/2 (recall that here we have v = γu, as opposed to v = ∂u/∂n
in Section 3.3.1). Thus, under the assumption that (3.38) holds also for the
impedance case, we can maintain control of infwN∈VN ‖v−wN‖ by increasing
the number of degrees of freedom N slightly faster than log k as k increases.
Results in Section 7.4 (e.g., Figure 7.11) suggest that this may even be
pessimistic, with errors decreasing for fixed N as k increases (as would be
expected from (3.45) if M(u) = O(1) was known to hold).

3.3.4. Exponential convergence

All of the theoretical and numerical results described in Section 3.3 so far
have concerned methods with an algebraic order of convergence. These
results have recently been improved upon in Hewett et al. (2012), where,
for the sound-soft convex polygon, hpmethods with exponential convergence
rate are presented. The analysis of this scheme requires stronger analyticity
and regularity estimates on V ±m , appearing in (3.36), than are provided by
Theorems 3.9 and 3.10. In Hewett et al. (2012) it is shown that V ±m (t), m =
1, . . . , ns, have an analytic continuation into the right half-plane Re (t) > 0,
where (using the same notation as in Theorem 3.9)

|V +
m (t)| �

{
M(u)|kt|−αm 0 < |t| ≤ 1/k,

M(u)|kt|−1/2 |t| > 1/k,
(3.46)

and an identical bound holds for |V −m |, with αm replaced by αm+1.
We can describe the hp space for approximating v in (3.36) by simply de-

scribing how V +
m and V −m are approximated. For V +

m we define the geometric
mesh

x0 := 0, xi := σn−iLm, i = 1, 2, . . . , n, (3.47)

where Lm is the length of side Γm, 0 < σ < 1 is a grading parameter and
n ∈ N. Then we set V+

m to be the space of piecewise polynomials of de-
gree p on [0, Lm] with respect to this mesh. Because of the grading, this
space approximates V +

m well despite the singularity at s = 0. We define V−m
completely analogously by a mesh graded towards Lm. The approximation
space VN then consists of functions of the form (3.35), with V +

m and V −m re-
placed by functions from V+

m and V−m respectively. Typically the number of
layers n on each geometric mesh is taken to be proportional to p (alternative
choices are discussed in Hewett et al. (2012)), in which case the approxima-
tion space VN has dimension N = O(p2), and the best approximation result
is then (with v = ∂u/∂n)

inf
wN∈VN

‖v − wN‖ � M(u)kα exp(−pτ), (3.48)

where τ > 0 is a constant which represents the rate of exponential decay,
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(a) re-reflections

illuminated region

shadow region

Ω
s

r

uI

x

(b) partial shadowing

Figure 3.3. New phenomena that arise for non-convex obstacles.

Ω

Figure 3.4. Assumption on geometry of non-convex obstacles,
that Ω lies entirely within the semi-infinite dashed lines.

and α = 1−minm=1,...,ns(1−π/ωm) ∈ (1/2, 1), with ωm the external angles
at the corners of the polygon. To maintain accuracy as k increases, it is
sufficient for p to grow only logarithmically, in which case the algebraically
growing k-dependent prefactor in (3.48) (recall (3.38)) will be absorbed into
the exponentially decaying factor. Numerical results demonstrating this are
provided in Section 7.2 (see Figure 7.5).

3.4. Non-convex polygons

In this subsection we consider the sound-soft scattering problem (2.16) when
Γ is the boundary of a non-convex two-dimensional polygon. Non-convexity
significantly complicates the behaviour of the solution on Γ, permitting
two new phenomena that cannot occur for convex obstacles: re-reflections
(where the incident field reflects off one part of Γ onto another part of Γ)
and partial illumination (where one part of Γ obscures another, creating a
shadow zone and shadow boundary that do not correspond to the definitions
(3.5) and (3.6)). These are illustrated in Figure 3.3.
The main reference for the results described in this subsection is Chandler-

Wilde et al. (2012a). Only a restricted class of polygonal geometries is
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convex sides

non−convex sides non−convex sides

(a) star-shaped polygon

convex sidesnon−convex sides

non−convex sides
convex sides

(b) non-star-shaped polygon

Figure 3.5. Examples of non-convex polygons
satisfying our geometrical assumptions.

described rigorously by the present theory. While there is some evidence
that the approximation space we propose will be effective in practice for a
wider range of geometries, it will not be appropriate in certain cases, e.g.,
for the trapping domains described in Section 5.2. The assumptions on the
geometry are as follows.

(1) Each external angle is either greater than π (a ‘convex corner’) or
exactly π/2 (a ‘non-convex corner’); this assumption permits the use
of a representation formula for the solution in a quarter-plane that
leads to a significant simplification of the analysis in Chandler-Wilde
et al. (2012a).

(2) For each non-convex corner, the obstacle Ω must lie within the dashed
lines illustrated in Figure 3.4; this assumption ensures that re-reflec-
tions and partial shadowing occurring on any side of the polygon can
only be caused by a single alternative side of the polygon (and also
disallows trapping domains), which eases the analysis considerably.

Such polygons may or may not be star-shaped. Two examples of scatterers
satisfying these constraints are shown in Figure 3.5. We call a side Γm,
m = 1, . . . , ns, ‘convex’ if each of its end points is a convex corner and ‘non-
convex’ otherwise. On convex sides, the ansatz (3.36) holds (for v = ∂u/∂n),
and the analysis of Sections 3.3.1 and 3.3.4 can be carried over to derive
identical best approximation estimates on those sides as for convex polygons.
We now consider the behaviour on a typical non-convex side. For ease

of presentation, we consider only the configuration in Figure 3.3(b), and
describe a representation for the solution v = ∂u/∂n on the vertical side in
that figure (with r representing the distance from the ‘shadowing’ corner to
a point x on that side, and s representing the distance from the non-convex
corner to the point x (thus r can be thought of as a function of s), as shown
in the figure). In this case, the side is partially illuminated; we also expect
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Ω

infinite ’knife edge’

uI

Figure 3.6. The leading-order behaviour ud on the vertical side
of Ω corresponds to the known exact solution to the problem
of diffraction by the infinite knife edge in the figure.

diffraction from each corner in the figure. The following theorem describes
an appropriate ansatz on such a side (which we denote by Γm, and presume
to have length Lm).

Theorem 3.12. (Chandler-Wilde et al. 2012a) On the vertical side
Γm in Figure 3.3(b), v = ∂u/∂n satisfies

v(s) = V0(s) + V +(Lm + s) exp(iks) + V −(Lm − s) exp(−iks)

+ Ṽ (s) exp(ikr(s)), (3.49)

for s ∈ [0, Lm], where

V0(s) := 2
∂ud

∂n
(s),

and ud is the known exact solution to the problem of diffraction of the
incident plane wave uI by the infinite knife edge (with Dirichlet boundary
conditions) that would be created were the horizontal side of the polygon
to be extended indefinitely to the right, as shown in Figure 3.6, and the
rest of Ω ignored. The functions V ± and Ṽ can be shown to be analytic in
appropriate regions of the complex plane to allow a similar approximation
theory to that described in Section 3.3.4 to be applied; in particular, V ±
satisfy the bounds (3.46), and (for star-shaped polygons)

|Ṽ (s)| ≤ Ck log1/2 k,

in a fixed (independent of k) neighbourhood of [0, Lm] in the complex plane.

For alternative configurations such as that corresponding to Figure 3.3(a),
very similar results hold. We refer to Chandler-Wilde et al. (2012a) for
details.
There are parallels between the proof of Theorem 3.12 and the proofs

of the regularity results for convex polygons described in Section 3.3.1. In
particular, whereas the results in Section 3.3.1 are based on a representation
of the solution in a half-plane, the proof of Theorem 3.12 is based on the
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explicit expression for the Green’s function in a quarter-plane, with this
used in the quarter-plane formed by extending to infinity the two sides
subtended by the non-convex corner. This theoretical reliance on the explicit
expression for the quarter-plane Green’s function has driven the geometrical
restrictions imposed here, but we anticipate that an approximation space
based on ansatz (3.49) could equally well be applied to more general star-
shaped non-convex scatterers, although the analysis does not carry forward
to such cases at present.
The hybrid approximation space VN for this problem is then defined as

the set of functions that on each convex side has the form (3.36), with V +
m

and V −m replaced by functions from V+
m and V−m respectively (as described

in Section 3.3.4). On non-convex sides we use representations based on the
ansatz (3.49); for the configuration described in Theorem 3.12 on Γm, V − is
replaced by a function from V−m (to deal with the singularity at the convex
corner at the top of the vertical side in Figure 3.3(b)), and V + and Ṽ are
each replaced by a polynomial on the whole of Γm, since these functions are
analytic in a neighbourhood of [0, Lm].
Assuming for simplicity the same number of layers n on each graded mesh,

and the same degree p of polynomial approximation on each element, the
result is a scheme with 2n(p + 1) degrees of freedom per convex side and
(n + 2)(p + 1) per non-convex side. As described in Section 3.3.4, if the
number of layers n on each geometric mesh is taken to be proportional to
p then the approximation space VN has dimension N = O(p2). Using the
regularity results provided by Theorem 3.12 and (3.46) the following best
approximation result can be proved (for v = ∂u/∂n).

Theorem 3.13. (Chandler-Wilde et al. 2012a) For star-shaped non-
convex polygons satisfying the geometrical assumptions described above, for
some τ > 0,

inf
wN∈VN

‖v − wN‖ � M(u)k1/2+α exp(−pτ), (3.50)

where α = 1 − minm=1,...,ns(1 − π/ωm) ∈ (1/2, 1), with ωm the external
angles at the corners of the polygon.

To maintain accuracy as k increases, since (3.38) holds, it is again suffi-
cient for p to grow logarithmically as k → ∞. Numerical results illustrating
this are provided in Section 7.5 (see Tables 7.6–7.8), where it is also shown
that the approximation properties of the best approximation (3.50) carry
over to the approximation of the far-field pattern.

3.5. Multiple scattering

A very interesting extension of the method in Bruno et al. (2004) and Bruno
and Geuzaine (2007) to multiple scattering is given in Geuzaine et al. (2005).
There it is explained how the integral equation (1.3) may be solved by a
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Neumann series approach, where each term in the Neumann series corre-
sponds to the scattering by a single convex obstacle of an incident field
consisting of the incident wave combined with previously scattered waves.
Each of these single-obstacle scattering problems can be solved by a method
similar to the methods described above, except that now the ansatz (3.1)
becomes somewhat more complicated. Although there is still only one term
in the expansion (i.e., V0 = 0 and M = 1), the phase ψ1 has now to be cho-
sen as a function reflecting the optical distance travelled by rays through
all previous reflections (as worked out in detail for the case of two scat-
terers when each individual scatterer is smooth and convex in Geuzaine
et al. (2005)). Preliminary numerical tests were provided in Geuzaine et al.
(2005) which demonstrated the potential for the method. The theory was
substantially advanced in the subsequent works of Ecevit (2005) and Ecevit
and Reitich (2009), where the implementation of the Neumann series was
shown to correspond to a sum over increasing period of a sequence of peri-
odic orbits. Each orbit corresponds to reflections off a fixed set of scatterers,
and this allows the convergence rate of the Neumann series to be estimated,
for sufficiently high frequency, and permits the formulation of methods for
accelerating its convergence. The most recent work in this direction (Anand
et al. 2009) extended the analysis to the three-dimensional case, where ad-
ditional considerations on the relative orientation of the scattering bodies
come into play.

4. Numerical treatment of oscillatory integrals

In this section we review work on the key implementation issue (see ques-
tion Q2 identified in Section 1) of how to assemble the linear systems aris-
ing from hybrid methods with a computational time that either remains
bounded or else grows only slowly as k → ∞. In Section 4.1 we describe
the specific integrals which arise in the numerical treatment of scattering
problems by hybrid Galerkin methods. These are particularly challenging
examples of the general problem of computing oscillatory integrals, which
has a long history and has seen a great deal of research interest in recent
years. In Section 4.2 we review classical and modern work on oscillatory
integration in general. The oscillatory integrals introduced in Section 4.1
have integrands which are products of explicit oscillatory exponentials and
complicated non-oscillatory factors; Filon quadrature rules which require
only point-values of the non-oscillatory factors are particularly useful for
these. Some classes of such rules are reviewed in Section 4.3, together with
recent progress in their error analysis. These are applied to computation of
Galerkin integrals in scattering problems in Section 4.4. The section is com-
pleted with Section 4.5, in which the integration approaches in a number of
other hybrid methods are reviewed.
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4.1. Integration problems arising in hybrid Galerkin methods

We will be chiefly concerned with discretization of integral equations arising
from the direct and indirect formulations of scattering problems, of the form

Ak,ηv :=

(
1

2
I +Dk − iηSk

)
v = f, (4.1)

A′k,ηv :=

(
1

2
I +D′k − iηSk

)
v = f, (4.2)

(recall (2.71) and (2.68) for the general case and (2.114) for the direct for-
mulation in the particular case of sound-soft scattering), where η is usually
taken to be a k-dependent constant. We will also be concerned with imple-
mentation of the star-combined formulation, which is of the form

Akv := (x · n)
(
1

2
I +D′k

)
v + x · ∇ΓSkv − iηSkv = f, (4.3)

where η is a (smooth) function of x ∈ Γ (see (2.103) and (2.115)). Each
equation above is posed in L2(Γ) and in general f is k-dependent.
Let us suppose we take a Galerkin approach based on the ansatz (3.1) and

let φ, φ̃ denote a typical pair of basis functions in this Galerkin method. Dis-
regarding for a moment the surface derivative term (the second term of the
middle entry of (4.3)), the Galerkin implementation of all other terms will
require computation of various inner products. Firstly inner products which
do not involve integral operators appear. These are (d−1)-dimensional ‘load
vector’ and ‘mass matrix’ integrals, of the form

(f, φ̃), (bV0, φ̃) and (bφ, φ̃), (4.4)

with b being smooth and non-oscillatory, f being the right-hand side in
(4.1), (4.2) and (4.3), and V0 the known, in general oscillatory, leading-order
function in (3.1). All inner products involving V0(x, k) are with respect to
x. Secondly there are ‘stiffness matrix’ inner products involving integral
operators. These are in principle 2(d− 1)-dimensional, and in general take
the form

(Dkφ, bφ̃), (D′kφ, bφ̃), (Skφ, bφ̃), (4.5)

or

(DkV0, bφ̃), (D′kV0, bφ̃), (SkV0, bφ̃), (4.6)

with b again smooth and non-oscillatory (in some cases b ≡ 1). Finally the
surface gradient term in (4.3) yields further ‘stiffness matrix’ inner products
of the form

(∇ΓSkφ, φ̃x) and (∇ΓSkV0, φ̃x), (4.7)

and these can be reduced to inner products just involving the single-layer
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operator, via integration by parts, as we explain in Section 4.1.3. So, for
the present let us concentrate on the inner products (4.4)–(4.6).
We may start by observing the fundamental difference between the inte-

gration tasks arising from hybrid methods and those arising from standard
boundary element methods. In standard BEM (with piecewise polynomial
bases), the basis functions have local support, and should cover only a frac-
tion of a wavelength in order for the method to be sufficiently accurate.
Moreover, in standard BEM, the terms involving the (in general) oscillatory
function V0 are not present. So, even though the kernels of the operators
(e.g., in (4.5)) are oscillatory, the oscillation does not pose a problem in
practice since the domains of integration are so small that they resolve the
oscillation. On the other hand, in hybrid methods the intention is that
the support of the basis functions should be large compared to the wave-
length (to achieve computational efficiency), so the domains of integration
are correspondingly large, typically rendering the integrals highly oscilla-
tory (in addition, V0 (when present) is typically supported over the entire

illuminated region). Moreover the basis functions φ, φ̃ are also oscillatory
(as are f and V0), thus complicating the oscillation in (4.5) and also poten-
tially introducing oscillation in (4.4). (We consider this in more detail in
Section 4.1.1 below.)
Recalling (3.1), a typical basis function for a hybrid space VN will take

the form

φ(x) = χj(x)P�(x) exp(ikψm(x)), (4.8)

where {χj : j = 1, . . . , J} is a partition of unity with respect to a covering,
{Γj : j = 1, . . . , J} of Γ, {ψm : m = 1, . . . ,M} is a set of phase functions
and {P�(ζ(s)) : � = 1, . . . , p} is a basis for the polynomials of degree p, with
ζ a parametrization of Γ. This includes, as a special case, basis functions of
the form φ(x) = P�(x) exp(ikψm(x)), with x restricted to a subdomain of Γ,
i.e., standard discontinuous piecewise polynomials modulated with a priori
chosen plane waves.

4.1.1. Load vector and mass matrix integrals

With the basis functions given by the generic formula (4.8), and introducing

also φ̃ = χj′P�′ exp(ikψm′), the integrals in (4.4) may be written

(f, φ̃) =

∫
Γj′

(fχj′P�′)(x) exp(−ikψm′(x)) ds(x), (4.9)

(bV0, φ̃) =

∫
Γj′

(bV0χj′P�′)(x) exp(−ikψm′(x)) ds(x), (4.10)

(bφ, φ̃) =

∫
Γj∩Γj′

(bχjχj′P�P�′)(x) exp(ik(ψm(x)− ψm′(x))) ds(x). (4.11)
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In general these integrals take the form∫
Γj∩Γj′

g(x) exp(ikΨ(x)) ds(x), (4.12)

and in general they are oscillatory (with g smooth and non-oscillatory, and
the oscillations contained in the term exp(ikΨ(x))). However, in some cases
Ψ is constant and the integral (4.12) is not oscillatory. To illustrate this
point, let us consider the sound-soft scattering problem solved by the direct
boundary integral method (4.2). In this case (see (1.4))

f(x) = fk,η(x) = i(kn(x) · â− η) exp(ikx · â).
Example 4.1. In the case of scattering by a smooth convex obstacle (see
Section 3.1), V0 ≡ 0 and the basis functions take the form (4.8) with M = 1
and ψ1(x) = x · â: see, e.g., Domı́nguez et al. (2007). In this case all basis
functions have the same phase, which is the same as the phase of f , and so
neither of the integrals (4.9) or (4.11) are oscillatory, and the integral (4.10)
is not present.

Example 4.2. In the case of scattering by a polygon, V0 is oscillatory and
supported over (at least) the entire illuminated region, and basis functions
with several phases appear. Thus each of the integrals (4.9), (4.10) and
(4.11) may be oscillatory. For example, consider an illuminated side of a
convex polygon, parametrized by ζ(s) = {(s, 0) : s ∈ [0, 1]}. Recalling
(3.35), on this side V0 = 2∂uI/∂n, and basis functions with the phases
ψ1(ζ(s)) = s and ψ2(ζ(s)) = −s appear. Thus the integrals (4.9) and (4.10)
each take the form (4.12) with Ψ(ζ(s)) = ζ(s) · â±s, and the integral (4.11)
takes the form (4.12) with Ψ(ζ(s)) ∈ {−2s, 0, 2s}. For a convex polygon
each of these integrals thus has linear phase, which eases their evaluation
considerably (see Section 4.4.1).

Example 4.3. For the case of a non-convex polygon, we consider an il-
luminated non-convex side (defined as in Section 3.4), again parametrized
by ζ(s) = {(s, 0) : s ∈ [0, 1]}. In this case, recalling (3.49) and considering
only (4.11) (the oscillatory behaviour of the ‘knife edge’ solution (and hence
of V0) is rather complicated; we refer to Chandler-Wilde et al. (2012a) for
details), basis functions with the phases ψ1(ζ(s)) = s, ψ2(ζ(s)) = −s and
ψ3(ζ(s)) =

√
s2 + a2 appear (where a > 0). Thus in this case the inte-

gral (4.11) takes the form (4.12), with linear phase functions of the form
Ψ(ζ(s)) ∈ {−2s, 0, 2s} occurring, as in Example 4.2, but also non-linear
phase functions of the form Ψ(ζ(s)) = ±s±

√
s2 + a2.

4.1.2. Stiffness matrix integrals for conventional operators

To describe the structure of the integrals in (4.5) and (4.6), it is useful to
introduce the following notation.
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Notation 4.4. If R is any linear integral operator on Γ with kernel func-
tion r and if ψm are the phases appearing in (4.8), then we denote by Rm,m′

the integral operator:

(Rm,m′
w)(x) =

∫
Γ
rm,m′

(x, y)w(y)ds(y),

with modulated kernel rm,m′
(x, y) := exp(ik(ψm(y)− ψm′(y))r(x, y).

With φ, φ̃ as defined above, it is then easy to see that

(Rφ, bφ̃) = (Rm,m′
(χjP�), bχj′P�′)

=

∫
Γj′

∫
Γj

rm,m′
(x, y)χj(y)P�(y)b(x)χj′(x)P�′(x) ds(y) ds(x),

and the structure of each of the inner products in (4.5) can then be under-
stood to be special cases of this abstract formula. For example the third
integral in (4.5) may be written

(Skφ, bφ̃) = (Sm,m′
k (χjP�), bχj′P�′),

where Sk is the integral operator with modulated kernel

Φk(x, y) exp(ik(ψm(x)− ψm′(y))), x, y ∈ Γ. (4.13)

Similarly the first and second inner products in (4.5) (involving Dk and D′k)
yield the modulated kernels

∂Φk(x, y)

∂n(y)
exp(ik(ψm(x)− ψm′(y))),

∂Φk(x, y)

∂n(x)
exp(ik(ψm(x)− ψm′(y))).

(4.14)
The inner products in (4.6) can be represented in a similar way, noting that
for each the examples discussed in Section 3 we can write

V0(x, k) =
∑
j

V j
0 (x, k) exp(ikψ

j
0(x)), (4.15)

where the known functions V j
0 are not oscillatory. This representation is

obvious for the convex obstacles studied in Section 3; that it can also be
applied for the non-convex polygons discussed in Section 3.4 is shown in
Chandler-Wilde et al. (2012a).
The construction of robust quadrature rules for the oscillatory integrals

(4.5) and (4.6) depends crucially on the explicit extraction of the phase of
the oscillatory components, which (once this is done for the leading-order
behaviour V0, as discussed above) is achieved by extracting the phase from
the fundamental solution and its normal derivatives. Restricting to (4.5)
and to the kernels which arise in the direct boundary integral operator only
(i.e., the second and third entries in (4.5); the first entry is analogous), it
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is easy to see that

Φk(x, y) = F (x, y) exp(ik|x− y|), ∂Φk(x, y)

∂n(x)
= G(x, y) exp(ik|x− y|),

(4.16)
where

F (x, y) =


i

4
h0(k|x− y|) d = 2,

1

4π|x− y| d = 3,
(4.17)

with h0(z) = exp(−iz)H
(1)
0 (z) for z > 0, and

G(x, y) =


− ik

4

(
n(x) · (x− y)

|x− y|

)
h1(k|x− y|) d = 2,

n(x) · (x− y)(ik|x− y| − 1)

4π|x− y|3 d = 3,

(4.18)

with h1(z) = exp(−iz)H
(1)
1 (z) for z > 0.

In the 3D case, both F and G are trivially non-oscillatory but of course
have derivatives which (in general) blow up with negative powers of |x− y|.
This statement also holds in 2D, but its proof is a bit more complicated and
is postponed to Section 4.1.4.
Collecting together the observations (4.13), (4.14) and (4.16), we see that

all of the integrals in (4.5) take the form∫
Γj

∫
Γj′

g(x, y) exp(ikΨ(x, y)) ds(y) ds(x) (4.19)

with phase

Ψ(x, y) = |x− y|+ ψm(y)− ψm′(x). (4.20)

Here g(x, y) is smooth except at the diagonal x = y, and is non-oscillatory
in the sense that derivatives of g do not grow any faster as k increases than
g itself. The integrals in (4.6) can be represented in a similar way, with
different phase functions Ψ varying from problem to problem according to
the exact nature of V0 (specific examples are discussed in Section 4.4).

Remark 4.5. Note that by (4.17) and (4.18), G(x, y) (the non-oscillatory
part of the kernel of D′k) contains a multiplicative factor of k which is absent
from F (x, y) (the non-oscillatory part of the kernel of Sk). Moreover in the
combined potential formulation (4.1), (4.2), Sk is multiplied by the coupling
parameter η, which is usually chosen proportional to k. (The discussion in
Remark 5.1 indicates that this is a natural choice.) Thus it may at first
appear that (D′kφ, φ̃) and iη(Skφ, φ̃) might be O(k) as k → ∞. However, this
is in fact not the case; the oscillatory components of the integral operators
lead to decay of O(1/k) as k → ∞ for the corresponding integrals (see
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Section 4.2, (4.29) in particular), and hence the matrix entries (D′kφ, φ̃) and
iη(Skφ, φ̃) are both, in general, O(1) as k → ∞.

4.1.3. Stiffness matrix integrals for surface gradient of the single-layer
potential

It remains to discuss the implementation of the Galerkin integrals (4.7)
arising from the star-combined formulation. We do this here only for the
3D case (following the discussion in Spence et al. 2011) but we note an
analogous procedure can be applied in 2D, and this has been implemented
in Kim (2012). Let us denote Γ0 = supp φ̃, so that (4.7) may be written∫

Γ0

(
φ̃(x)x

)
· ∇Γ(Skφ)(x) ds(x). (4.21)

The surface gradient operator may be moved from the right-hand term in
(4.21) to the left-hand term by the following integration by parts procedure.
We assume that the surface patch Γ0 is parametrized by a map,

x̂ →
[

x̂
ξ(x̂)

]
,

defined on a 2D parameter domain Γ̂0, where ξ ∈ C2(Γ̂0). (This does not
imply that Γ is globally smooth.) This map is assumed to provide a good
parametrization of Γ0 such that the columns of the Jacobian

J(x̂) :=

 1 0
0 1
∂ξ
∂x̂1

∂ξ
∂x̂2


form a basis for the tangent plane at x, the image of x̂ = (x̂1, x̂2) under this
map. Moreover for any vector field w : Γ0 → R

3, we may also resolve w in
the tangent and normal directions via the formula

w(x) = J(x̂)ω̂(x̂) + (w(x) · n(x))n(x),

for some field ω̂ : Γ̂0 → R
2. Then in Spence et al. (2011) the formula∫

Γ0

w(x) · ∇Γv(x) ds(x) =

∫
∂Γ̂0

(det J(x̂)TJ(x̂))1/2 (ω̂(x̂) · n̂(x̂)) v̂(x̂) dζ(x̂)

−
∫
Γ̂0

∇̂ ·
[
(det J(x̂)TJ(x̂))1/2ω̂(x̂)

]
v̂(x̂) dx̂

(4.22)

is proved for all sufficiently smooth vector fields w and v, where n̂(x̂) is the

outward normal from Γ̂0 at x̂ ∈ ∂Γ̂0 and ∇̂ denotes gradient with respect
to x̂. Inserting w = φ̃(x)x and v = Skφ into (4.22) gives a formula for
the integral (4.21), which avoids computing the surface derivative of the
single-layer potential.
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4.1.4. Phase extraction in the 2D case

We finish this subsection by briefly explaining why the functions F and G
appearing in (4.17) and (4.18) are non-oscillatory in the 2D case. This prop-
erty is proved using the following lemma, which examines the asymptotics
of the functions h0 and h1 which appear in the formulae (4.17) and (4.18).

Lemma 4.6. For all n ≥ 0, there exists a constant Cn such that∣∣∣∣( d

dz

)n

h0(z)

∣∣∣∣ ≤ Cn

{
max{1 + log(1/z), z−n} z ∈ (0, 1],

z−(n+1/2) z ∈ [1,∞),

and ∣∣∣∣( d

dz

)n

h1(z)

∣∣∣∣ ≤ Cn

{
z−(n+1) z ∈ (0, 1],

z−(n+1/2) z ∈ [1,∞).

We do not give the proof here, but we note it is obtained by using the
following integral formula (see, e.g., Oberhettinger and Badii (1973, (12.31)
in part II)):

H
(1)
0 (z) = −2i

π
exp(iz)

∫ ∞
0

exp(−zt)

t1/2(t− 2i)1/2
dt. (4.23)

This immediately gives us a formula for h0(z) which can be readily differ-
entiated. A formula for h1(z) is obtained by combining the first deriva-

tive of (4.23) with the formula H
(1)
1 (z) = − d

dzH
(1)
0 (z) (Abramowitz and

Stegun 1964, (9.1.27)). More details of the proof of Lemma 4.6 are in
Chandler-Wilde and Langdon (2007, Theorem 3.1) and in Kim (2012) .
Now if the 2D contour Γ is parametrized by ζ (say arc length parametriza-

tion), we are concerned with estimates for the derivatives of h0(kr(s, t)) and
h1(kr(s, t)) where r(s, t) = |ζ(s)− ζ(t)|. When considering the single-layer
potential we can use Lemma 4.6 and the Faá di Bruno formula for mul-
tiple application of the chain rule to show (see Kim (2012)) that for each
p1, p2 ∈ N, there exists a constant C such that∣∣∣∣( ∂

∂s

)p1( ∂

∂t

)p2{
h0(kr(s, t))

}∣∣∣∣ ≤ C r(s, t)−p1−p2 ,

so the function F is not oscillatory. Analogous estimates can be obtained
for the function G (Kim 2012).

In Sections 4.3 and 4.4 below, we will describe some oscillatory integration
methods which have been used to implement hybrid methods in scattering.
Since the computation of oscillatory integrals has a long history and has
seen a great deal of recent interest (some of it related to high-frequency
scattering and some of it coming from completely different motivations), we
insert at this point a (necessarily brief) review of numerical methods for
oscillatory integration in general.
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4.2. Efficient evaluation of highly oscillatory integrals: a review

In this subsection we describe a range of schemes for computing single in-
tegrals of the form

I
[a,b]
k (g) =

∫ b

a
g(s) exp(ikΨ(s)) ds, (4.24)

and double integrals of the form

I
[a,b]×[a′,b′]
k (g) =

∫ b

a

∫ b′

a′
g(s, t) exp(ikΨ(s, t)) dt ds, (4.25)

where a, b, a′, b′ ∈ R, a < b, a′ < b′, and k > 0. We have in mind here that
the function g is integrable on its domain and that it is slowly oscillating
compared to exp(ikΨ).
Such integrals appear in Galerkin methods for BIEs arising in 2D scat-

tering as described in Section 4.1 (after parametrization of (a part of) the
boundary via univariate functions); recall (4.12) and (4.19). Integrals such
as (4.25) also appear in collocation methods for 3D scattering problems, as
described in Section 4.5, after parametrization of a part of the boundary
by a bivariate function. Galerkin methods in 3D lead to integrals such as
(4.25) and its four-dimensional analogue (again recalling the formulae (4.12)
and (4.19)). We consider specific methods for the 3D case in Section 4.5,
but remark that many of the ideas applicable to the efficient evaluation of
(4.25) can, in principle at least, be extended to higher dimensions.
Because of the oscillation, conventional (interpolatory) quadrature tech-

niques for evaluating (4.24)–(4.25) perform poorly when k is large, with
the computational cost required to achieve a prescribed level of accuracy
increasing rapidly as k → ∞. To get around this difficulty, many schemes
have been proposed, some of which have been inspired by classical asymp-
totic integration schemes; see, e.g., Bleistein and Handelsman (1986), Olver
(1974) and Wong (1989). Starting with (4.24) and assuming that g and
Ψ are sufficiently smooth and that Ψ′ does not vanish on [a, b], repeated
integration by parts gives

I
[a,b]
k (g) = −

n−1∑
j=0

(
i

k

)j+1

uj(s) exp(ikΨ(s))

∣∣∣∣s=b

s=a

+

(
i

k

)n ∫ b

a
gn(s) exp(ikΨ(s)) ds, (4.26)

for n = 1, 2, . . . , where

u0 =
g

Ψ′
, gj+1 = u′j , uj+1 =

gj+1

Ψ′
,

for j = 0, 1, 2, . . . . Applying the Riemann–Lebesgue lemma (e.g., Wong
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1989, p. 200) to the remaining integral, we find that I
[a,b]
k (g) is asymptotic

to the boundary terms (assuming they do not vanish), that is,

I
[a,b]
k (g) ∼ −

n−1∑
j=0

(
i

k

)j+1

uj(s) exp(ikΨ(s))

∣∣∣∣s=b

s=a

+ o(k−n), as k → ∞,

(4.27)
for n = 1, 2, . . . .
For (4.25) on the other hand, making the assumption that ∇Ψ(x) �= 0 for

all x ∈ [a, b]× [a′, b′], applying the divergence theorem and following Wong
(1989, p. 425), for instance, we have the similar result that

I
[a,b]×[a′,b′]
k (g) = −

n−1∑
j=0

(
i

k

)j+1 ∫ L

0
(uj(ζ(s)) · n(s)) exp(ikΨ(ζ(s))) ds

+

(
i

k

)n ∫ b

a

∫ b′

a′
g̃n(s, t) exp(ikΨ(s, t)) dt ds, (4.28)

where ζ(s), n(s) and L = 2(b−a+b′−a′) are the arc length parametrization,
unit outward normal vector and length, respectively, of the boundary of
[a, b]× [a′, b′], and

u0 :=
∇Ψ

|∇Ψ|2 g, g̃j+1 = (∇ · uj), uj+1 =
∇Ψ

|∇Ψ|2 g̃j+1,

for j = 0, 1, 2, . . . . Under the further assumption that ∂
∂sΨ(ζ(s)) �= 0 on the

boundary of [a, b]× [a′, b′] (this is equivalent to the non-resonance condition
of Iserles and Nørsett (2006)), which ensures that the double integral on the
right-hand side of (4.28) is o(1) as k → ∞, we have

I
[a,b]×[a′,b′]
k (g) ∼ −

n−1∑
j=0

(
i

k

)j+1∫ L

0
(uj(ζ(s))·n(s)) exp(ikΨ(ζ(s))) ds+o(k−n),

(4.29)
as k → ∞, for n = 1, 2, . . . .
If in (4.27) Ψ′ vanishes at any point of [a, b] then one cannot use the inte-

gration by parts representation (4.26). Likewise, if∇Ψ vanishes at any point
of [a, b]× [a′, b′] then one cannot use the divergence theorem formula (4.29).
In either case, it can easily be shown that as k → ∞, the corresponding
oscillatory integral is dominated by contributions obtained by integrating
over small neighbourhoods of all such ‘stationary phase’ points, with the
size of the neighbourhoods vanishing as k → ∞.
In particular, in the 1D case it can be shown that if xs is a stationary

point of order n ≥ 1, that is,

Ψ′(xs) = Ψ′′(xs) = · · · = Ψ(n)(xs) = 0, and Ψ(n+1)(xs) �= 0,
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and if, in addition, g(xs) �= 0, then I
[a,b]
k (g) = O(k−1/(n+1)) as k → ∞.

(Thus the flatter Ψ(x) is at x = xs, the less rapidly I
[a,b]
k (g) vanishes as

k → ∞.) Similar results hold for I
[a,b]×[a′,b′]
k (g): see, e.g., Wong (1989). The

classical ‘method of stationary phase’ then consists of approximating the
integrals asymptotically via Taylor series expansions about the stationary
points: see, e.g., Olver (1974, p. 96). If a partition of unity is used to isolate
the stationary points, then the integrals over the remainder of the domain
can be expanded in a similar way to (4.27) and (4.28) above.

Historically, asymptotic formulae such as these have been used to approx-
imate oscillatory integrals arising from scattering problems. For example,
the single integrals in (4.29) each take the form (4.24), and thus an obvi-
ous way to evaluate (4.25) for large k, under the stated assumptions on Ψ,
could be to simply apply (4.27) within (4.29) and to truncate the series.
Such an approach may yield accurate results for sufficiently large k; how-
ever, the asymptotic series (4.27) and (4.29) are not convergent for fixed k,
and may diverge very quickly in practice; see, e.g., Ganesh, Langdon and
Sloan (2007), where such an approach is analysed within the context of a
particular class of 3D scattering problems. Hence it is not possible to obtain
the required integrals to a controllable accuracy for any fixed k unless we
combine the asymptotic approach with a convergent quadrature rule. On
the other hand, a reasonable goal for any quadrature approach is that it
should be able to replicate the asymptotic results in the limit as k → ∞,
and standard quadrature schemes for which the weights are not explicitly
dependent on k will perform poorly.

A simple idea, implemented by Asheim (2008) is to use the series repre-
sentations (4.26) and (4.27) and to evaluate the remaining single and double
integrals numerically (via Filon quadrature, see Section 4.3), rather than in-
tegrating the original integral directly. The reduction of order (with respect
to k) of the integral being evaluated numerically, compared to more standard
approaches, leads to improved overall accuracy. The schemes in Bruno et al.
(2004) and Bruno and Geuzaine (2007) are also based on the asymptotic
expansions above, but applying convergent quadrature rules to evaluate the
integrals in the neighbourhood of stationary points; see Section 4.5 for more
details.

An alternative asymptotic approach is the ‘method of steepest descent’
(see, e.g., Jones 1972, Wong 1989, §II.4). Describing this method as it
applies to (4.24), the idea is to deform the path of integration into the com-
plex plane in such a way that the oscillatory integral (4.24) over a finite
interval is replaced by two or more non-oscillatory ‘Laplace-type integrals’.
These ‘Laplace-type integrals’ are integrals over infinite intervals but with
non-oscillatory integrands which decay exponentially. The exponential rate
of decay, moreover, increases as k increases so that the integrals can be
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evaluated asymptotically, using, e.g., Watson’s Lemma (Jones 1972). An
observation dating back at least to Jones (1972) is that, in the limit as
k → ∞, very high-order asymptotic approximations to Laplace-type inte-
grals are provided alternatively by generalized Gauss–Laguerre quadrature.
Moreover, these approximations are convergent as the number of quadrature
points increases. This suggests a ‘numerical method of steepest descent’, in
which the path of integration is deformed to one or more steepest descent
paths and generalized Gauss–Laguerre quadrature is used to evaluate the
resulting integrals. This amounts to a numerical quadrature scheme for
the original oscillatory integral whose performance improves rapidly as k
increases. Chandler-Wilde and Hothersall (1995) is a case study of this
methodology applied to evaluate numerically a particular Green’s function
in acoustics. This paper provides an error analysis of the resulting general-
ized Gauss–Laguerre quadrature approximations, showing moreover how it
is possible to modify the approximations to take account of the presence of
a simple pole singularity near the steepest descent path of integration, in a
way which maintains accuracy uniformly in k and the position of the pole.

The ‘numerical method of steepest descent’, only hinted at in Jones
(1972), and applied only to a particular example in Chandler-Wilde and
Hothersall (1995), is developed systematically by Huybrechs and Vandewalle
(2006) for the general oscillatory integral (4.24), with further extensions and
generalizations in Deaño and Huybrechs (2009). In Huybrechs and Vande-
walle (2006) the focus is on single integrals. The methodology has subse-
quently been extended to double integrals of the form (4.25) (Huybrechs
and Vandewalle 2007a), and has been used to good effect in a number of
schemes (e.g., Honnor et al. 2010, Huybrechs and Vandewalle 2007b, Asheim
and Huybrechs 2010b), that we discuss further in Section 4.5. Due in part to
the added difficulties arising due to stationary points in the complex plane,
particularly for higher-dimensional integration, a complete rigorous error
analysis for this approach has proved elusive. However, recent progress by
Huybrechs and Olver (2012), who have reinterpreted this ‘numerical steep-
est descent’ method as a Filon-type method (see below) with special com-
plex interpolation points, has gone some way to rectifying this, for single
integrals at least.

We now turn our focus to Filon quadrature; this procedure turns out to
be particularly well suited to integrals of the form (4.24) and (4.25) arising
from hybrid Galerkin methods, and is more amenable to the derivation of
rigorous error estimates than some of the other schemes described above.
For a much more detailed discussion of highly oscillatory quadrature, we
refer to the review articles by Iserles, Nørsett and Olver (2005) and Huy-
brechs and Olver (2009), and also to the more recent literature reviews in
Olver (2010), Huybrechs and Olver (2012) and Domı́nguez, Graham and
Smyshlyaev (2011), for example.
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4.3. Recent progress on error analysis of Filon rules

The construction of Filon quadrature starts from the simple observation
that integrals of the form ∫ b

a
Pn(s) exp(iks) ds

can be evaluated analytically if Pn is a polynomial. Thus any integral of the
form (4.24) with Ψ(s) = s (often referred to as the linear oscillator), can be
approximated by replacing g by a suitable polynomial (e.g., the Legendre or
Chebyshev interpolant) and then integrating exactly. More generally, if we
wish to approximate (4.24), and if Ψ does not have stationary points, the
change of variable s̃ = Ψ(s) reduces (4.24) to a new oscillatory integral with
a phase which is linear in s̃, at the cost of having to evaluate the inverse
function Ψ−1. Even if Ψ has stationary points this procedure can still be
applied on a partition of [a, b] with breakpoints chosen to be the stationary
points, although now algebraic singularities in the integrand appear at the
breakpoints due to the singularity of the inverse function there.
Filon quadrature has a long history starting from Filon (1928) (see also

Luke 1954, Bakhvalov and Vasilčeva 1968, and the review in Evans andWeb-
ster 1999), and has enjoyed considerable recent interest following a sequence
of influential papers by Iserles and co-authors (see, e.g., Iserles 2004, Iserles
2005, Iserles and Nørsett 2004, Iserles et al. 2005). In particular, Iserles
(2004) showed that for the linear oscillator a Filon rule has an error which
will decay with k like O(k−2), provided the interpolation points include the
end points a, b. This was generalized in Iserles and Nørsett (2005), to ob-
tain faster decay as k → ∞, by using interpolation of derivatives at the
end points of the domain of integration. Related methods were proposed by
Xiang (2007), and general oscillators Ψ which may have stationary points
were treated by Olver (2007, 2010).
In the context of high-frequency scattering, many integrals of the form

(4.24) and (4.25) have to be computed, and rules which use only point values
of g are particularly attractive, since g is often very complicated (and may it-
self be an integral involving special functions). In error and complexity anal-
ysis it also turns out to be important to control the quadrature error explic-
itly with respect to both k and N (the number of quadrature points), and to
know how this depends on the regularity of g (e.g., in some Sobolev space).
In this context, a recent error analysis for Filon–Clenshaw–Curtis (FCC)
rules (Domı́nguez, Graham and Kim 2012, Domı́nguez et al. 2011) has been
performed and we now give some details of the results obtained there.
In view of the above remarks we may begin by considering oscillatory

integrals of the form (4.24) with Ψ(s) ≡ s, that is,

I
[a,b]
k (g) =

∫ b

a
g(s) exp(iks) ds. (4.30)
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The FCC rule in its simplest form starts with [a, b] = [−1, 1] and approxi-

mates I
[−1,1]
k (g), by replacing g by QNg, its polynomial interpolant of de-

gree N at the Clenshaw–Curtis points tj,N := cos(jπ/N), j = 0, . . . , N ,
where N ≥ 1. After writing QNg in terms of Chebyshev polynomials
Tn(x) = cos(n arccos(x)), n = 0, . . . , N , and performing some elementary
manipulations, the rule may be written as

I
[−1,1]
k,N (g) =

N∑
n=0

′′αn,N (g)ωn(k), (4.31)

with

αn,N (g) =
2

N

N∑
j=0

′′ cos
(
jnπ

N

)
g(tj,N ), n = 0, . . . , N, (4.32)

where the notation
∑ ′′ means that the first and last terms in the sum are

multiplied by 1/2, and where the weights

ωn(k) :=

∫ 1

−1
Tn(s) exp(iks) ds, n ≥ 0, (4.33)

have to be computed. After an initial application of the discrete cosine trans-
form (via fast Fourier transform (FFT), costing O(N logN) operations), the
rule (4.31) can then be applied to any g in an additional O(N) operations;
see Domı́nguez et al. (2011) for more detail. In Domı́nguez et al. (2011) a
stable and efficient scheme for computing {ωn(k)} is presented, and a public
domain implementation of the rule is provided by Domı́nguez (2009). More-
over, in Domı́nguez et al. (2011), it is shown that there exists a constant
C > 0 such that, for r ∈ {0, 1} and all integers m ≥ 1, we have

|I [−1,1]k (g)− I
[−1,1]
k,N (g)| ≤ Cmin

{
1,

(
1

k

)r}( 1

N

)m−r
‖gc‖Hm(−π,π), (4.34)

for k > 0 and N ≥ 1. Here gc(θ) = g(cos θ) is the cosine transform of g
and Hm(−π, π) is the Sobolev space of order m of all 2π-periodic functions.
The proof of (4.34) is obtained by noticing that

I
[−1,1]
k (g)− I

[−1,1]
k,N (g) =

∫ 1

−1
(g −QNg)(s) exp(iks) ds

=

∫ π

0
(g −QNg)c(θ) exp(ik cos θ) sin θ dθ,

and that (g − QNg)c is the error in the even trigonometric interpolant of
degree N to gc at the points jπ/N , j = 0, . . . , N . Then, integration by
parts and standard error estimates for trigonometric interpolation at equally
spaced points yield the estimate. It is straightforward to extend (4.34) to
all r ∈ [0, 1]. In fact a more general version of this theorem with r = 2
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and m required to be any real number greater than 7/2 was proved in
Domı́nguez et al. (2011), making precise the requirements for the O(k−2)
decay predicted in Iserles (2004).
The convergence rate in (4.34) may be slow if g is not smooth and in

this case it is better to apply the rule in a composite fashion with fixed N
on meshes graded suitably towards the singular point(s) and obtain con-
vergence by letting the mesh diameter shrink to zero. In order to obtain
error estimates for such composite rules, Domı́nguez et al. (2012) prove a
variant of (4.34) which shows (emphasizing the case k → ∞), that there
exists σN > 0 such that∣∣I [−1,1]k (g)− I

[−1,1]
k,N (g)

∣∣ ≤ σN

(
1

k

)r{∫ 1

−1

|g(N+1)(s)|√
1− s2

ds

}1/2

, (4.35)

for all k > 0 and N ≥ 1.
Now, to compute (4.30) for any [a, b] we can transplant onto [−1, 1] using

the affine change of variables s = c+hs̃, s̃ ∈ [−1, 1], where and the estimate,
analogous to (4.35), is∣∣I [a,b]k (g)− I

[a,b]
k,N (g)

∣∣ ≤ σ̃N

(
1

k

)r

hN+2−r
{∫ b

a

|g(N+1)(s)|√
(s− a)(b− s)

ds

}1/2

.

(4.36)
If the FCC rule is applied in a composite fashion, the estimate (4.36)

may then be used to establish convergence as the subinterval size shrinks to
zero, when N is fixed. Optimal convergence for singular integrands g can
be obtained by suitable mesh refinement. For example, suppose

‖g‖N+1,β := max

{
sup

s∈[0,1]
|g(s)|, sup

s∈[0,1]

∣∣s(j−β)Djg(s)
∣∣, j = 1, . . . , N+1

}
< ∞,

(4.37)
for some β > 0, and introduce the graded mesh sj = (j/M)q, j = 0, . . . ,M .
On the first interval, we use the one-point rule∫ s1

0
g(s) exp(iks) ds ≈ g(s1)

∫ s1

0
g(s) exp(iks) ds,

while on all other subintervals we use the FCC rule shifted to that interval in
an affine way. Then it was shown (Kim 2012) that the error Ek,M,q,N (g) (i.e.,

the difference between the integral I
[0,1]
k (g) and the resulting approximation)

may be estimated as

|Ek,M,q,N (g)| ≤ C

(
1

k

)r ( 1

M

)N+1−r
‖g‖N+1,β , (4.38)

provided q > (N + 1 − r)/(β + 1 − r), where C depends on N , β and r
but not M . The results illustrated here have been extended in Domı́nguez
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et al. (2012) to the case of logarithmic singularities in g and also the case
g(s) ∼ sβ , with β ∈ (−1, 0). In the algorithms presented in Domı́nguez

et al. (2012) the error decays at least as fast as the exact integral I
[0,1]
k (g) as

k → ∞. Logarithmic singularities in particular often occur in the integrals
arising in hybrid Galerkin methods (recall (4.17) and Lemma 4.6).
Related estimates to those described here may be found in Melenk (2010)

(see also Melenk 2008), where general Filon-type rules for (4.24) are con-
sidered with g approximated by a general Hermite interpolating polynomial
and g,Ψ are considered to be holomorphic in a neighbourhood of [a, b]. Er-
ror estimates for this case showing exponential convergence with respect to
the polynomial degree and allowing sharp estimates of the rate of decay
with respect to k are obtained. It is expected that by changing the choice
of mesh grading and generalizing the setting to that of piecewise analytic
functions, the estimates above could also be extended to show exponential
convergence for hp-versions of the FCC quadrature, such as is observed (for
a related scheme, using Gauss–Legendre rather than Clenshaw–Curtis nodes
and weights) in Melenk and Langdon (2007, 2012).

4.4. Galerkin integrals for the 2D case

In this subsection we describe in more detail the robust computation of
the oscillatory integrals arising in hybrid Galerkin methods in 2D in both
the smooth convex and the polygonal cases. The relevant references are
(for the smooth convex case) Domı́nguez, Graham, Kim and Smyshlyaev
(2009), Domı́nguez et al. (2012), Domı́nguez et al. (2011), and Kim (2012),
and (for the polygonal case) Melenk and Langdon (2007) and Melenk and
Langdon (2012). The central method to be applied is the FCC rule, usually
after application of a transformation to render the phase linear. We start in
Section 4.4.1 by describing the key ideas in the simplest context of the load
vector and mass matrix integrals, as described in Section 4.1.1, which are
only oscillatory in the polygonal case. We then proceed in Section 4.4.2 by
studying the (in general) more difficult stiffness matrix entries, as introduced
in Sections 4.1.2 and 4.1.3.

4.4.1. Load vector and mass matrix entries

Recalling Section 4.1.1, we begin by noting that all load vector and mass
matrix entries for the convex polygonal case (as described in Example 4.2)
have linear phase, and thus each can be expressed exactly in the form (4.24)
with Ψ(s) = Cs, where C ∈ R. The change of variables s̃ = Cs immediately
puts each of these integrals in the form (4.30), and then the FCC rules of
Section 4.3 can be applied without difficulty.
As a slightly more challenging example we consider one of the integrals

described in Example 4.3, which arise in the case of a non-convex polygon
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with an illuminated non-convex side. Specifically, we consider the construc-
tion of an efficient quadrature scheme for evaluating∫ 1

0
g(s) exp(ik(s+

√
s2 + a2)) ds,

where a > 0 and g ∈ L2(0, 1) is not oscillatory. We proceed by making the
change of variables

τ = s+
√

s2 + a2,

giving s = (τ2 − a2)/2τ and hence ds/dτ = (1 + a2/τ2)/2 > 0. Thus the
integral can be written as∫ 1+

√
1+a2

a
g̃(τ) exp(ikτ) dτ, (4.39)

where

g̃(τ) :=
1

2

(
1 +

a2

τ2

)
g

(
τ2 − a2

2τ

)
is non-oscillatory. The integral (4.39) thus again takes the form (4.30),
allowing us to apply the rules of Section 4.3 directly. The other load vec-
tor/mass matrix integrals that arise for convex and non-convex polygons
can all be evaluated using a similar procedure.

4.4.2. Stiffness matrix entries

In Section 4.1.2 it is explained that we can cover all the oscillatory integra-
tion problems which arise from the ‘stiffness matrix’ inner products, (4.5)
and (4.6), by considering integrals of the form (4.19) with g non-oscillatory
but (usually) weakly singular at x = y and with phase Ψ given either by
(4.20) (for (4.5)), where {ψm} are the phases present in the basis functions
(see (4.8)), or by a similar formula found by replacing ψm(y) in (4.20) with

ψj
0(y), where ψj

0 are the phase functions in the representation (4.15) for V0.
In the computation of (4.19) we will parametrize the boundary Γ by some

parametrization ζ. Identifying x with ζ(s), and y with ζ(t), we may rewrite
(4.19) in the form

Jk =

∫ ∫
g(s, t) exp(ikΨ(s, t)) dt ds. (4.40)

(Here we have abused notation slightly: the notation g(s, t) is used to de-
note the function g(ζ(s), ζ(t))|ζ ′(s)| |ζ ′(t)|, while Ψ(s, t) denotes the function
Ψ(ζ(s), ζ(t)) and the limits on the integrals in (4.40) depend on the choice
of the parametrization.)
Recalling the specific phases of the basis functions ψm and the leading-

order behaviour V0 for the two examples of a smooth convex obstacle (recall
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Example 3.1) and a convex polygon (see (3.35) and (3.8)), we have

Ψ(s, t) =

{
|ζ(s)− ζ(t)|+ (ζ(t)− ζ(s)) · â convex smooth,

|ζ(s)− ζ(t)|+ θs± t convex polygon,
(4.41)

for some θ ∈ [−1, 1] (with θ = ±1 corresponding to the inner products (4.5),
and θ ∈ (−1, 1) for the inner products (4.6)).
One approach to computing the integral Jk in (4.40) robustly with respect

to k is to introduce a change of variable τ = Ψ(s, t), thus obtaining a trans-
formed integral with phase which varies linearly in τ (as in Section 4.4.1).
Introducing the notation

Ψ[s](t) := Ψ(s, t) and Ψ[t](s) := Ψ(s, t),

we can choose to interpret this transformation as either τ = Ψ[s](t) (defining

τ in terms of t, for each s) or τ = Ψ[t](s) (defining τ in terms of s, for each t).
(The choice of interpretation would be motivated by the desire to avoid,
as far as possible, choosing a transformation containing stationary points.)
The transformed integral is then suitable for treatment using the Filon rules
outlined in Section 4.3 (as described in Section 4.4.1 for the simpler load
vector/mass matrix entries), and hence rigorous error estimates are possible.
The transformation does however introduce some new difficulties, since the
regular domain of integration in (4.40) (usually rectangular or triangular)
is transformed to a (usually non-standard) shaped domain and, moreover,
inverse functions of Ψ appear in the transformed integrand. However, the
method (first suggested by Melenk 2006 and substantially developed by
Domı́nguez 2007; see also Domı́nguez et al. 2009) has enjoyed considerable
success in computing the Galerkin integrals.
To give more detail, let us first consider the case of a smooth convex obsta-

cle. Recalling (3.25)–(3.26), Γ is parametrized by ζ : [0, 2π] → Γ and the pa-
rameter domain [0, 2π] is partitioned into four subintervals Λi : i = 1, . . . , 4,
where Λ1, Λ2 correspond to the near-shadow boundary zones (which shrink
to zero as k → ∞), Λ3 corresponds to a subset of the illuminated zone
and the remaining interval of parameter space, Λ4, corresponds to the deep
shadow zone. Since the solution is exponentially small in the deep shadow,
it is approximated by zero there, and thus only integrals over the domains

Λj × Λj′ for j, j′ = 1, 2, 3 (4.42)

have to be considered. These domains are depicted in Figure 4.1(a), where
we have written Λ1 = [a, b], Λ2 = [c, d] and Λ3 = [b, c]. In the case of the
‘diagonal domains’ in (4.42) (i.e., those with j = j′), the integrand in (4.40)
generally has a singularity at s = t. These domains are subdivided into two
triangles along the diagonal (Figure 4.1(a)), thus confining the singularity
to the boundary, as turns out to be important later.
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under the transformation (4.43)

Figure 4.1. Domains of integration for a smooth convex obstacle.

It is shown in Kim (2012) (see also Domı́nguez et al. 2009) that Ψ[s]

has stationary points only when (s, t) ∈ Λ1 × Λ1, with t ≥ s and when
(s, t) ∈ Λ3 × Λ3 with t ≤ s (curves of stationary points are depicted in
Figure 4.3(a)). Thus the transformation

τ = Ψ[s](t) (4.43)

provides a well-defined change of variable for all the domains above the
diagonal depicted in Figure 4.1(a) except for the triangle AFG (and analo-
gously provides also a well-defined change of variable for all domains below
the diagonal except for the triangle CEH). The change of variable (4.43)
transforms the rectangular and triangular domains above the diagonal in
Figure 4.1(a) into curvilinear domains as depicted in Figure 4.1(b). Here
s varies on the horizontal axis and τ varies on the vertical axis. Since (in
the smooth convex case), Ψ vanishes at s = t (see (4.41)), the diagonal line
s = t in Figure 4.1(a) maps to the line τ = 0 in Figure 4.1(b). The top curve
in Figure 4.1(b) is the image of the line t = d under the transformation,
namely the curve τ = Ψ[s](d) = Ψ[d](s).
Let us consider, as a particular example, the integral (4.40) over the

domain s ∈ Λ2 = [b, c], t ∈ Λ3 = [c, d] (shaded in Figure 4.1), and making
the change of variable (4.43), we arrive at the formula

Jk =

∫ c

b

∫ d

c
g(s, t) exp(ikΨ(s, t)) dt ds

=

∫ c

b

∫ Ψ[d](s)

Ψ[c](s)
g̃
(
s, τ

)
exp(ikτ) dτ ds, (4.44)
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Figure 4.2. Transformed domain of integration
Λ2 × Λ3 for a smooth convex obstacle.

with

g̃(s, τ) = g(s,Ψ−1[s] (τ))/|Ψ
′
[s](Ψ

−1
[s] (τ))|. (4.45)

A blow-up of the image of the rectangle (s, t) ∈ Λ2×Λ3 under the transfor-
mation (4.43) is shown in Figure 4.2(a).
To obtain a set of integrals which can be approximated by the FCC rule,

the final step is then to change the order of integration in (4.44), thus
pushing all the oscillation in the integrand into the outer integral (over
the τ variable). The inner limits of integration typically depend on inverse
functions and are highly geometry-dependent. In the particular case of
(4.44) (see also Figure 4.2(a)), we have to break the outer integral up into
five pieces:

Jk =

5∑
j=1

∫ τj

τj−1

Fj(τ) exp(ikτ) dτ, (4.46)

where τ0 = τmin, τ5 = τmax, and Fj , j = 1, . . . , 5, are real-valued functions
on [τj−1, τj ]. For example,

F2(τ) =

∫ (Ψ[d])−1(τ)

(Ψ[c])−1(τ)
g̃(s, τ) ds.

For this example a graph of {Fj(τ) : j = 1, 2, 3, 4, 5} is given in Figure 4.2(b).
The integrals (4.46) are now computable by the FCC rules described in Sec-
tion 4.3. The functions Fj may have either logarithmic singularities (from
the fundamental solution appearing in g̃) or else algebraic singularities due
to the fact that the functions Ψ[c] and Ψ[d] can have turning points. (In the
particular example depicted in Figure 4.2 there is a logarithmic singularity
at τ0 and square-root singularities at τ3 and τ5, due to the turning-points
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Figure 4.3. Locations of stationary points and oscillations
of integrand for a smooth convex obstacle.

there.) The composite FCC rules described in Section 4.3 have a conver-
gence rate which remains optimal even in the presence of these singularities,
provided the mesh grading is appropriately chosen (see (4.38)).
As mentioned earlier (see also Figure 4.3(a)), the change of variable (4.43)

is not valid in Λ1 × Λ1 when t > s or in Λ3 × Λ3 when t < s, due to
the appearance of stationary points. However, Λ1 and Λ3 are both small
neighbourhoods of the shadow boundary (recall that ζ(t1) and ζ(t2) are the
shadow boundary points, with t1 and t2, marked in Figure 4.3), with length
which shrinks to zero as k → ∞. It turns out that in these problematic re-
gions the phase has sufficiently many decaying derivatives as k → ∞ that in
fact the integrand in (4.44) is not oscillatory at all, and the integral can be
well approximated by standard Clenshaw–Curtis rules, for example. This is
explained in some detail in Kim (2012) and is illustrated in Figure 4.3(b).
Here the domain above the main diagonal is the one with the stationary
points and the integrand is slowly varying. (By contrast the domain below
the main diagonal has an oscillatory integrand, but this causes us no diffi-
culty since the change of variable (4.43) has no stationary points here and
so this integral can be treated with the transformation (4.43) and then FCC
rules, as described above.)
We now consider the case of a convex polygon. For this example, the

evaluation of (4.19) can be considered under two distinct scenarios: the case
that Γj and Γj′ are on the same side of the polygon, and the case that Γj and
Γj′ are on different sides of the polygon. For both cases, the basic strategy
is identical to that for the smooth convex obstacles described above, namely
to use a change of variables in order to transform the integral into a form
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Figure 4.4. Oscillatory integration on the convex polygon:
the case where Γj and Γj′ are supported on different sides.

amenable to evaluation via the FCC quadrature rules of Section 4.3. Further
details for this example can be found in Melenk and Langdon (2007, 2012).
First we consider the case for which Γj and Γj′ each lie on the same

side of the polygon. Without loss of generality, we assume that the side on
which they lie is parametrized by ζ(s) = {(s, 0) : s ∈ [0, 1]}, and we suppose
further that Γj = {(s, 0) : s ∈ [s0, s1]} and Γj′ = {(t, 0) : t ∈ [t0, t1]}, where
0 < s0 < t0 < s1 < t1 < 1, so that Γj and Γj′ overlap (the most general
situation). In this case the integral (4.40) (with Ψ(s, t) given by (4.41)) is
given explicitly by

Jk =

∫ s1

s0

∫ t1

t0

g(s, t) exp(ik(|s− t|+ θs+ ρt)) dt ds = J
[1]
k + J

[2]
k + J

[3]
k ,

where θ ∈ [−1, 1], ρ ∈ {−1, 1}, and

J
[1]
k =

∫ t0

s0

∫ t1

t0

g(s, t) exp(ik((θ − 1)s+ (ρ+ 1)t)) dt ds,

J
[2]
k =

∫ s1

t0

∫ s1

t0

g(s, t) exp(ik(|s− t|+ θs+ ρt)) dt ds,

J
[3]
k =

∫ s1

t0

∫ t1

s1

g(s, t) exp(ik((θ + 1)s+ (ρ− 1)t)) dt ds.

The integrals J
[1]
k and J

[3]
k can be trivially put into the form (4.30); supposing

for example that ρ = 1 and θ �= 1, we have

J
[1]
k =

∫ t0

s0

(∫ t1

t0

g(s, t) exp(2ikt) dt

)
exp(ik(θ − 1)s) ds,

and both the inner and outer integrals can be evaluated by the FCC rules of
Section 4.3 (noting that, in this case, g(s, t) is singular at the point s = t =

t0). Evaluation of the integral J
[2]
k follows in an identical fashion, splitting
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the square (s, t) ∈ [t0, s1] × [t0, s1] into the two triangles corresponding to
s > t and s < t, and evaluating both the inner and outer integrals of each
via the FCC rules of Section 4.3, using a Duffy transformation to deal with
the singularity on the triangle boundaries corresponding to s = t.
Next we consider the case for which Γj and Γj′ lie on different sides of

the polygon. Under the assumption that these sides are not parallel to each
other (if the two sides are parallel, similar ideas can be applied, although
in that case stationary points may occur; see Melenk and Langdon 2012
for details), we may assume, without loss of generality, the geometrical
configuration shown in Figure 4.4, with Γj = {(s, 0) : s ∈ [s0, s1]} and Γj′ =
{(t cosα, t sinα) : t ∈ [t0, t1]}. In this case the integral (4.40) (with Ψ(s, t)
given by (4.41)) is given explicitly by

Jk =

∫ s1

s0

∫ t1

t0

g(s, t) exp(ik(
√

s2 − 2st cosα+ t2 + θs+ ρt)) dt ds,

where θ ∈ [−1, 1] and ρ ∈ {−1, 1}. As above, we will utilize the change of
variables (4.43); in this case t �→ τ , where

τ =
√

s2 − 2st cosα+ t2 + θs+ ρt =: Ψ[s](t) = Ψ[t](s), (4.47)

and we then have ∫ s1

s0

∫ Ψ[t1](s)

Ψ[t0](s)
g̃
(
s, τ

)
exp(ikτ) dτ ds,

with g̃ again given by (4.45). It is shown in Melenk and Langdon (2012)
that, for θ ∈ (−1, 1),

∂τ

∂s
= 0 at s =

(
cosα− θ

√
sin2 α

1− θ2

)
t,

and ∂2τ/∂s2 > 0 for all t > 0 (if θ = ±1 then ∂τ/∂s �= 0). This can
be clearly seen in Figure 4.5, where we plot the image of the rectangle
[0, 4] × [1, 2] under the transformation (4.47), for θ = 0.5, α = π/4 and
ρ = 1. As for the case of the smooth convex obstacle outlined above, we
again proceed by breaking the outer integral up into five pieces, analogous
to (4.46) (as shown with the dotted lines in Figure 4.5), and evaluating each
of the pieces via a composite FCC rule, grading towards the singularities.
We do not give any further details here. The functions corresponding to
Fj in (4.46) have a logarithmic singularity (from the fundamental solution
appearing in g̃) if s0 = t0 = 0, that is, if Γj and Γj′ meet at a corner, and

algebraic singularities where Ψ[t0] and Ψ[t1] have turning points. The change
of variables (4.47) has no stationary points for the geometrical configuration
shown in Figure 4.4.
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Figure 4.5. The image of the rectangle
[0, 4]× [1, 2] under the transformation (4.47).

4.5. Oscillatory integration in non-variational hybrid schemes

The major advantage of the Galerkin approach in the design of hybrid meth-
ods is that the variational framework allows the establishment of error es-
timates, and most importantly, as we will see in Section 6, these error esti-
mates can be explicit in the wavenumber k. The error estimates permit the
development of more efficient methods, for example giving guidance on how
to tune the coupling parameter η in the combined potential formulation.
However in practical codes, especially those which are based on second-

kind formulations, collocation and Nyström methods often play a promi-
nent role and it is often claimed that these are cheaper to implement than
Galerkin methods, due to the apparent reduction in the amount of numerical
integration which has to be done.
In collocation methods the solution is approximated by a linear combi-

nation of basis functions and the coefficients in the expansion are found by
forcing the residual to vanish at a suitable set of points (equivalent to an
application of an interpolatory – rather than orthogonal – projection onto
the approximation space). Therefore the introduction of hybrid basis func-
tions in collocation methods is straightforward.
The classical ‘Nyström scheme’ was originally formulated for second-

kind integral equations with continuous kernels, and combined a standard
quadrature approximation of the integral operator with collocation at the
quadrature points: see, e.g., Atkinson (1997) and the (much earlier) refer-
ences therein. In the modern literature the term ‘Nyström’ is now often used
to describe various methods based on combining quadrature and collocation,
even if the collocation points have no relation to the quadrature points.
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In this subsection we describe three families of hybrid methods (par-
ticularly appropriate for computing scattering by smooth convex obsta-
cles), which are based either on a collocation, Nyström or practical discrete
Galerkin approach, focusing particularly on the numerical integration prob-
lems which arise and how these are resolved. These are: (i) the Nyström
methods of Bruno et al. (Bruno et al. 2004, Bruno and Geuzaine 2007),
which are implemented using a number of innovative ideas including an
extension of the method of stationary phase; (ii) the collocation meth-
ods of Huybrechs et al. (Huybrechs and Vandewalle 2007b, Asheim and
Huybrechs 2010b), which employ a variation on the method of steepest de-
scent to compute the integrals; (iii) the spherical-harmonics-based discrete
Galerkin method of Ganesh and Hawkins (2011).
Let us start our discussion by recalling the direct combined potential

integral equation (4.2), with solution v expressed using the ansatz (3.14).
Then the integral equation to be solved for V is of the form (3.11), that is,(

1

2
I + D̃k

′ − iηS̃k

)
V = f, (4.48)

where S̃k and D̃k
′
are the modulated integral operators given by (3.12) and

(3.13). Following the discussion in Section 4.1.2, the integral operators S̃k

and D̃k
′
both have an action of the form

(RV )(x) =

∫
Γ
g(x, y) exp(ikΨ(x, y))V (y) ds(y), x ∈ Γ, (4.49)

where, analogously to (4.19), g(x, y) is smooth, except at the diagonal x = y,
and non-oscillatory.
In a collocation approach, the action of an operator of the form (4.49) on

suitable basis functions has to be computed for some discrete set of collo-
cation points x. (For example, at least in 2D, the FCC methods described
in Section 4.3 could be employed for this task.) In a Nyström approach, a
quadrature approximation of the integral operator of the form (4.49) is first
devised, taking as input a suitable set of point values of V . This yields cor-
responding approximations of the integral operators in (4.48). The equation
(4.48) could then be solved for example by an iterative method which only
required the action of these operators. In this way it is possible to devise a
Nyström method without needing to adopt the classical collocation method
of solving for the Nyström solution.
The work of Bruno et al. (2004) and Bruno and Geuzaine (2007) adopts

a Nyström approach. We summarize this for the 3D case. The first step is
to cover the scattering surface Γ with an atlas of overlapping charts, each
assumed to be the image of a rectangle in R

2, under a local invertible map
(here assumed smooth). Then introduce a partition of unity subordinate to
this covering and note that determining any function V on Γ is equivalent
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to determining χV for each member χ of the partition of unity. Using the
local parametrization, determining χV on Γ is equivalent to determining
it on the parameter rectangles. Since χV is smooth and vanishes on the
boundary of its parameter rectangle, the FFT can be used to obtain V at
any point on Γ quickly from point values on uniform grids in parameter
space. (The actual algorithm is quite technical and is described in detail in
Bruno and Geuzaine 2007, §3.2.)
Now, turning to computation of the action of the integral operator R

in (4.49), the starting point is the observation that as k → ∞, for each
x ∈ Γ, RV (x) is dominated by contributions from V and its derivatives at
the critical points (namely the singular point y = x =: x0 and any points
x1, . . . , xn where the phase Ψ is stationary, that is, where ∇yΨ(x, y)|y=xi =
0). The stationary points could be determined by Newton’s method with
starting guesses obtained by geometrical arguments (at least when Γ is
convex). Then the integral operator R is approximated by

RV (x) ≈
n∑

i=0

∫
Γi

g(x, y) exp(ikΨ(x, y))ci(y)V (y) ds(y),

where each Γi is a neighbourhood of xi with k-dependent radius chosen to
shrink to zero with a rate depending on whether i = 0 (singular point) or
i = 1, . . . , n (stationary points), and ci is a smooth ‘windowing function’
with support in Γi.
Finally, given that values of V at all points on Γ are cheap to compute

(see above), the integrals over each Γi are obtained by integrating in po-
lar coordinates around each xi. This has the benefit that the Jacobian of
the polar coordinate transformation cancels the singularity in the singu-
lar integral (over Γ0) but also oscillations in the transformed integrand are
prominent only in the radial direction and so this reduces the complexity
of the computation of the contributions to RV . Full details are in Bruno
and Geuzaine (2007), and related results using the same ideas are described
in Bruno and Reitich (2007). (The observation that such changes of vari-
ables can cancel weak singularities in boundary integral operators goes back
at least to Wienert (1990); see also Ganesh, Graham and Sivaloganathan
(1998) and Graham and Sloan (2002).)
The key novelty of the collocation method employed in Huybrechs and

Vandewalle (2007b) is the sparsity of the resulting linear system. This is
achieved via the use of locally supported basis functions, coupled with the
observation that integrals for which the integrand does not contain singu-
larities (those for which the collocation point lies outside the support of the
basis function) and for which the phase does not contain stationary points,
decay rapidly as k grows. The integrals that remain, which contain compli-
cated phase functions, are evaluated using a special quadrature rule, that
combines features of generalized Filon quadrature (Iserles 2005, Iserles and
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Nørsett 2005, Olver 2007, Olver 2010) and the numerical method of steepest
descent (Huybrechs and Vandewalle 2006, Asheim and Huybrechs 2010a).
Crucially, this rule requires only local approximation of the amplitude near
special points, and this localization is what allows the sparse formulation to
hold. The method described in Huybrechs and Vandewalle (2007b) is not
supported by a rigorous analysis, but the results suggest that this algorithm
is comparable in accuracy to others described in this subsection, appearing
to offer arbitrary accuracy with a computational cost that is independent of
k, and with the added advantage of a sparse rather than a full linear system.
The work in Asheim and Huybrechs (2010b) builds upon these ideas,

making the observation that, for complicated scattering configurations, if
one is only interested in the solution on a particular part of the boundary,
then reasonable accuracy can be achieved via a consideration of mainly just
local effects, leading to substantial cost savings compared to algorithms for
which the solution is sought throughout the domain.
An alternative but closely related approach to the hybrid numerical-

asymptotic schemes described in this article is the partition-of-unity-based
method with plane wave enrichment, developed by workers such as Bettess
and Trevelyan for the solution of general Helmholtz problems for which, in
general, identification of the leading-order asymptotic behaviour would be
extremely challenging (see, e.g., Perrey-Debain et al. 2004 and the references
therein). In recent work, Honnor, Trevelyan and Huybrechs have applied
the integration rules developed by Huybrechs and Vandewalle (2006, 2007a)
in the implementation of these methods (Honnor et al. 2010, Trevelyan,
Honnor and Huybrechs 2007) to good effect.
Another integration scheme for these problems was proposed in Trevelyan

and Honnor (2009), with the main idea there being to attempt to line up
the direction of the oscillations with the coordinate axes, so as to convert
multidimensional oscillatory integrals into oscillatory integrals for which the
oscillation is only in one direction. This idea is similar in some ways to the
change of variables / FCC approach described in Section 4.4, and has been
shown to lead to a signficant reduction in computational cost compared to
standard (Gaussian) quadrature.
A fully discrete hybrid Galerkin method for scattering by smooth 3D

obstacles (diffeomorphic to the sphere) is introduced in Ganesh and Hawkins
(2011). The idea is to approximate V in (4.48) globally using spherical
harmonics. This provides an accurate approximation away from the shadow
boundary, but is not so effective in the vicinity of the shadow boundary.
However, it is argued in Ganesh and Hawkins (2011) that this does not
matter in the context of achieving reasonable (global) results, since the
amplitude of the oscillations is small near the shadow boundary; numerical
results suggest that this amplitude is of the order of a hundredth of the
maximum amplitude of V over the entire boundary. A Galerkin scheme is
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then used to discretize the integral equation, leading to quadruple integrals
to be evaluated over the entire surface of the scatterer. The outer Galerkin
integrals are discretized by a discrete sum defined using a Gauss-rectangle
quadrature rule (similar to the quadrature scheme of Ganesh and Graham
(2004), where a fully discrete scheme for low- to mid-range frequency three-
dimensional scattering was proposed). The rectangle rule is exponentially
accurate for smooth periodic functions (in the azimuthal direction), and
the Gauss rule is superalgebraically accurate in the latitudinal direction;
indeed this scheme is exact for products of spherical harmonics up to a
given order. To maintain global accuracy, the number of quadrature points
for these outer integrals must grow with O(k2/3).
The inner integrals are then approximated using surface patches, defined

for three different types of critical points, namely: the observation point
(where the integrand has a removable singularity); the stationary points;
and so-called ‘steepness points’, which correspond to points around which
the gradient of the phase is non-zero but small. These points represent, in
some sense, the next term in an asymptotic expansion of a method of sta-
tionary phase type of approximation. Each of these three types of critical
point has a spherical cap placed around it, and the integral is evaluated
numerically on this cap, with the radius of the patch depending both on the
nature of the critical point and on the distance to the shadow boundary.
The singular critical points are evaluated via a rotation and translation pro-
cedure, with the Jacobian of the polar coordinate transformation cancelling
the singularity in a very similar way to that described above for the scheme
of Bruno and Geuzaine (2007). The remaining integrations are carried out
via a rectangle rule in the azimuthal direction, and a uniform partition in
the non-periodic direction. On each interval of the uniform partition, stan-
dard quadrature is applied if the integrand is slowly oscillating, and Filon
quadrature (as described in Section 4.3, but using a cubic polynomial in-
terpolatory rule) is applied if the remaining integrand is highly oscillatory.
Results are presented for spherical and non-spherical convex scatterers, for
a range of wavenumbers 1 ≤ k ≤ 100000, and it appears that accuracy
(either high- or low-order prescribed tolerance) can be maintained for only
a mild growth of O(k2/3) in the number of unknowns as k increases.

5. Conditioning and coercivity

In Section 2 we met various standard integral equation formulations of scat-
tering problems and saw that, in many cases, for every k > 0, the BVPs
were well-posed, with the relevant integral operators bounded as mappings
between appropriate Sobolev spaces. In this section we aim to determine ex-
plicitly the dependence of the integral operators on k, in order to understand
better their behaviour for high frequencies. (In many cases the dependence



196 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

on k is known for the whole frequency range k > 0, but we focus on the
high-frequency case, which is the subject of the article.) Since the integral
operators depend on k in a complicated non-linear way, determining this k-
dependence is, in many cases, a challenging problem. We restrict ourselves
to discussing mainly the exterior Dirichlet problem (2.12) (which includes
the sound-soft scattering problem (2.15)), although some of the bounds we
obtain on integral operators will be applicable to other BVPs.
In the context of the three questions posed in Section 1, this section will

provide the remaining ingredients to prove k-explicit error estimates of the
form (1.7), addressing Q3; these ingredients are then assembled in Section 6.
In this section, (·, ·) will denote the L2(Γ) inner product and ‖ · ‖ will

denote either the L2(Γ) norm of an element of L2(Γ) (as in Section 3), or
the L2(Γ) → L2(Γ) norm of an operator. We will mainly be concerned
with the combined potential operators A′k,η and Ak,η, defined by (2.69) and

(2.72) respectively, but we will also give results, where available, for the
new class of integral operators introduced in Section 2.9, namely A′k,η,Z
defined by (2.99), a special case of which is the star-combined operator Ak

(2.103). Recall from Remark 2.24 that ‖A′k,η‖ = ‖Ak,η‖, and similarly for

their inverses. Thus any results on the L2(Γ) norms of A′k,η and (A′k,η)
−1

also hold for Ak,η and A−1k,η, respectively. For the same reasons, if A′k,η is
coercive, then Ak,η is coercive with the same coercivity constant.

The outline of the section is as follows: we begin in Section 5.1 with a
summary of the main bounds on ‖A′k,η‖ and ‖(A′k,η)−1‖, and thus on the

condition number of A′k,η,

cond(A′k,η) = ‖A′k,η‖‖(A′k,η)−1‖. (5.1)

These bounds immediately suggest how to choose the parameter η to min-
imize the condition number of A′k,η for k large. The next two subsections,
Section 5.2 and Section 5.3, give a summary of relevant results and tech-
niques from scattering theory that are key components of the bounds on
‖(A′k,η)−1‖ (together with the representation of (A′k,η)

−1 in Theorem 2.33),

and of the methods used to establish coercivity of A′k,η and Ak. There have
been several investigations of conditioning and coercivity in the special cases
when Γ is the circle or sphere. This is because for these two domains the
integral operators diagonalize in the Fourier and spherical harmonic bases
respectively, and thus bounds on the quantities of interest, e.g., the norms
of the operators, can be obtained by bounding eigenvalues of the operators.
We discuss the conditioning and coercivity results obtained in this way
for these two special domains in Section 5.4. Sections 5.5 and 5.6 discuss
bounds on ‖A′k,η‖ and ‖(A′k,η)−1‖, respectively, for more general domains
than the circle and sphere. Section 5.7 discusses conditions under which
A′k,η is coercive, and the corresponding bounds on its coercivity constant.
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Establishing coercivity of A′k,η and the related star-combined operator Ak

are vital requirements for the error analysis in Section 6. We note that,
whereas bounds on ‖A′k,η‖ can be obtained by norm estimation techniques

that apply to general oscillatory integral operators, the bounds on ‖(A′k,η)−1‖
and the coercivity constant rely heavily on methods and results from clas-
sical scattering theory.
Similarly to Section 3, for two quantities D and E which may depend on

k we write D � E if D ≤ C E for some constant C that is independent of
k. Also we write D ∼ E if D � E and E � D.

5.1. Summary of the main results on the conditioning of A′k,η and Ak,η

Some examples of the behaviour of ‖A′k,η‖ and ‖(A′k,η)−1‖ for different do-
mains are shown in Figure 5.1. The following is a short summary of the
main bounds on A′k,η and (A′k,η)

−1 discussed in this section.

• For a general Lipschitz domain (in 2D or 3D),

1

2
≤ ‖A′k,η‖ = ‖Ak,η‖ � 1 + k(d−1)/2

(
1 +

|η|
k

)
, (5.2)

for all k > 0. The upper bound is sharp in 2D if the domain contains a
straight line segment. (See Theorem 5.14 and Lemmas 5.17 and 5.18.)

Rectangular cavity

Circle Rectangle

Elliptical cavity

‖(A′
k,k)

−1‖ ∼ 1

‖A′
k,k‖ ∼ k1/2

‖(A′
km,km

)−1‖ � eγkm, γ > 0

‖A′
k,k‖ ∼ k1/3

‖(A′
k,k)

−1‖ ∼ 1

‖A′
k,k‖ ∼ k1/2

‖(A′
km,km

)−1‖ � k
9/10
m

‖A′
k,k‖ ∼ k1/2

Figure 5.1. Examples of the behaviour of ‖A′
k,k‖ and ‖(A′

k,k)
−1‖ as k → ∞.

Here km denotes a specific sequence of wavenumbers, which are different for
the rectangular and elliptical cavities (see Section 5.6.2 for more details).
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• For a star-shaped (in the sense of Definition 5.5 below) Lipschitz do-
main (in 2D or 3D),

2 ≤ ‖(A′k,η)−1‖ = ‖A−1k,η‖ � 1 +
1 + k

|η| , (5.3)

for all k > 0 (see Theorem 5.22 and Lemma 5.17). For a general
(smooth) non-trapping domain (in the sense of Definition 5.4 below)
the upper bound is multiplied by a factor of k2+(d−1)/2, although this
should be considered a preliminary bound and not a definitive one.
Indeed, numerical experiments suggest that the upper bound in (5.3)
holds for some non-trapping domains that are not star-shaped. The
precise definitions of trapping and non-trapping are given in Defini-
tion 5.4, but, roughly speaking, a trapping domain is one that contains
an open cavity that can ‘trap’ high-frequency waves.

• There exist trapping domains such that, for some γ > 0,

‖(A′km,η)
−1‖ = ‖A−1km,η‖ � exp (γkm)

(
1 +

|η|
km

)−1
,

for some sequence km → ∞; an example is the so-called elliptical cavity
domain in Figure 5.1 (see Theorem 5.24).

Remark 5.1. The commonly recommended choices of η in the literature
are to take η proportional to k for all but small values of k, and then η either
constant (for d = 3) or proportional to (log k)−1 (for d = 2) for k small. Up
until the last few years, these choices have been based on investigations when
Γ is the circle or sphere (see the references in Section 5.4) or computational
experience (Bruno and Kunyansky 2001).
The bounds (5.2) and (5.3) show that the choice η ∼ k is optimal for

large k in the sense that it minimizes the rate of growth with respect to k
of the upper bound on cond(A′k,η). Thus

cond(A′k,k) � k(d−1)/2, as k → ∞ (5.4)

for star-shaped Lipschitz domains. This bound is sharp for any star-shaped
polygon.
The upper bound in (5.2) is not sharp as k → 0. However, sharp bounds

on ‖A′k,η‖ can be obtained in the k → 0 limit which back up the previously

recommended choices of η for small k mentioned above (Betcke et al. 2011,
§2.6, §2.7).
Remark 5.2. A natural question is whether or not the norm bounds given
above continue to hold if the operators are approximated by their discrete
counterparts, and so to what extent the bounds above are relevant to under-
standing conditioning at a discrete level. For conventional Galerkin bound-
ary element discretizations this question has been addressed to a large extent
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in Betcke et al. (2011), in particular showing that (5.4) holds at a discrete
level for a variety of 2D star-shaped domains.

Remark 5.3. For reasons of space we do not treat in this article the
important implications of condition number estimates and coercivity for the
behaviour of iterative solvers for the linear systems that arise in Galerkin
methods. A recent review of these issues in the context of BIEs for high-
frequency scattering is that of Antoine and Darbas (2012).

5.2. Relevant classical scattering results

In this subsection we collect some classical results about the high-frequency
Helmholtz equation. Whereas in Section 3 we discussed the high-frequency
asymptotics of the solution, here we discuss some classical results that bound
the solution in terms of the data (in suitable norms).
These results are taken from a large body of work concerned with both

the Helmholtz equation and the wave equation. The problem involving
the Helmholtz equation that has received most interest is the question of
how the solutions behave as k → ∞. For scattering problems involving
the wave equation the most-studied problem is the long-time behaviour of
the energy in a neighbourhood of the obstacle. These two problems are
obviously related, since when one takes the Fourier transform in time of the
wave equation one obtains the Helmholtz equation; however, to understand
rigorously the relationship between the two problems one must understand
how solutions of the wave equation with singularities in the initial data (such
as a delta function) behave when they hit the obstacle. Understanding this
so-called propagation of singularities was one of the main motivations for
the development of the tools of microlocal analysis.
Some classic books and monographs describing this body of work in scat-

tering theory from different perspectives are Babich and Buldyrev (2008),
Borovikov and Kinber (1994), Hörmander (1985a, 1985b), Lax and Phillips
(1989), Melrose (1995), Morawetz (1975b) and Vainberg (1989) (with the
Russian texts translations of earlier Russian originals).
A key concept in scattering theory is the geometrical classification of

domains as either trapping or non-trapping. We give the non-technical def-
inition; see, for instance, Lax and Phillips (1989, Epilogue). For a more
mathematical, but technical, definition see Melrose and Sjöstrand (1982,
Definition 7.20) or Melrose (1979, Definition 1.3). In this definition and the
rest of the section, as in Section 2, BR := {x ∈ R

d, |x| < R}.

Definition 5.4. (Trapping and non-trapping for smooth domains)
Assume that Ω+ is smooth, that is, Γ is C∞. For any R > 0 such that
Ω− ⊂ BR, consider all possible rays starting in Ω+ ∩ BR (i.e., starting
from every point and travelling in every possible direction). Whenever a
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ray hits Γ, continue it according to the law of reflection (angle of incidence
equals angle of reflection) until it leaves BR. We call Ω+ trapping if there
are arbitrarily long paths or closed paths of rays; otherwise Ω+ is called
non-trapping.

(Note that Definition 5.4 does not cover rays that hit the boundary at
a tangent, and there are additional subtleties with these. Indeed, Taylor
(1976) showed that, in some cases, one cannot uniquely define the reflection
of rays tangent to the boundary.)
We have defined trapping and non-trapping for C∞ domains since the

propagation of singularities of the wave equation on C∞ domains is fully
understood by the results of Melrose and Sjöstrand (1978, 1982). However,
when Ω+ is not C∞, and especially when it is not C1, understanding how
a ray reflects is more complicated. Following the development of the very
effective but non-rigorous Geometrical Theory of Diffraction (Keller 1962),
there has been much work on rigorously understanding the propagation of
singularities on domains with corners and edges. The recent papers by
Melrose, Vasy and Wunsch (2008, 2012) both contain good overviews of
this work.
To illustrate the difficulty involved in formulating a definition of trapping

for non-smooth domains, consider the particular example of rays hitting
a convex polygon. When a ray hits a corner it produces diffracted rays
emanating from the corner, and in particular some that travel along the
sides of the polygon (understanding these rays on the boundary is implicit
in the approximation results for the convex polygon in Section 3.3). This
means that there exist ‘glancing rays’ that travel around the boundary of
the polygon (hitting a corner and then either continuing on the next side or
travelling back) and do not escape to infinity; thus the exterior of a convex
polygon is, in this sense, a trapping domain. At each diffraction from a
corner, however, these rays lose energy, and thus the trapping is in a weaker
sense than having a closed path of rays (as in Definition 5.4).
We state below some results about solutions of the Helmholtz equation

in non-trapping domains (Theorems 5.6 and 5.7) that depend on the prop-
agation of singularities results of Melrose and Sjöstrand (1978, 1982) for
C∞ domains. Using the recent results about propagation of singularities on
manifolds with corners and edges from the programme of work by Melrose,
Vasy and Wunsch, it is reasonable to believe that analogous (or slightly
weaker) results to Theorems 5.6 and 5.7 would hold for the exterior of a
non-trapping polygon (in the weaker sense discussed above), for example.
However, although the relevant technical tools now exist, such results have
not yet been proved. (Actually, we note that, in the special case of the
exterior of a polygon, either the results of Gérard and Lebeau (1993), about
propagation of singularities from wedges with analytic boundaries, or the
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results of Hillairet (2005), about propagation of singularities on Euclidean
surfaces with conic singularities, may be sufficient to achieve this goal, again
with some non-trivial technical work outstanding.)
A slightly different, but related, question is whether there exists the ap-

propriate analogue of the propagation of singularities results of Melrose and
Sjöstrand (1978, 1982) for, say, C2 domains (instead of C∞ domains), pos-
sibly allowing for higher-order diffractive effects. To the authors’ knowledge
this does not appear to be the case, although we note that Ivrii’s work
on the Weyl law and spectral asymptotics on domains slightly better than
C1 (Bronstein and Ivrii 2003, Ivrii 2003) contains some results for non-
tangent rays.
The preceding paragraphs hopefully give an indication of some of the

subtleties associated with the concepts of trapping and non-trapping on non-
smooth domains. For the remainder of this section we will consider domains
such as the rectangular and elliptical cavities in Figure 5.1 as trapping
domains, despite not satisfying Definition 5.4, since they are not C∞, since
for these obstacles there exist closed paths of rays that hit only smooth
parts of the boundary.
We have just encountered a slight ‘culture clash’ between the classic scat-

tering literature and the numerical analysis literature: classical scattering
theory is happiest in smooth domains, whereas from the point of view of
practical applications we want to consider domains with corners and edges.
What then should we aim for in the numerical analysis of scattering prob-
lems? An important class of C∞ domains for which the non-trapping con-
dition holds consists of domains that are star-shaped in the following sense.

Definition 5.5. (Star-shaped) We say that Ω− is star-shaped with re-
spect to the point x0 ∈ Ω− if there exists c > 0 such that (x − x0) · n ≥ c
for almost every x ∈ Γ, where n is the normal vector pointing outwards
from Ω−. We say that Ω− is star-shaped if it is star-shaped with respect to
some x0 ∈ Ω−.

If Ω− is star-shaped and C∞ then Ω+ is non-trapping in the sense of
Definition 5.4 (Lax and Phillips 1989, Chapter 5, Proposition 3.1) (star-
shapedness guarantees that the rays can only be reflected a finite number of
times before escaping from the obstacle). Since the normal vector is defined
almost everywhere on Lipschitz boundaries, star-shapedness is a well-defined
property for Lipschitz domains, and thus a reasonable aim from the point
of view of numerical analysis of scattering problems is to prove results for
star-shaped Lipschitz domains, and then also for (smooth) non-trapping
domains.
Another ‘culture clash’ is that classical scattering theory is happiest in

3D (essentially because the fundamental solution for the Helmholtz equation
Φk(x, y) is an analytic function of k in 3D, but not in 2D). However, from a
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numerical analysis perspective one often starts in 2D, where computations
are easier, and then progresses to 3D.
One way to understand the significance of trapping and non-trapping is

the following. Recall that the Helmholtz operator with k > 0 in a bounded
domain can have non-trivial solutions for certain homogeneous boundary
conditions (these are eigenfunctions of the Laplacian). In an unbounded
domain the Helmholtz equation with k > 0 cannot have any non-trivial
solutions satisfying homogeneous boundary conditions, provided an appro-
priate radiation condition is prescribed (Corollary 2.9). However, as k → ∞,
solutions of the Helmholtz equation behave more and more like rays (this is
the whole notion of ray theory), and thus if the domain is trapping then, for
certain k, there will be solutions of the Helmholtz equation localized in the
trapping part of the obstacle and behaving almost like non-trivial solutions
satisfying homogeneous boundary conditions. This informal discussion can
be made mathematically precise through the concepts of resonances and
quasimodes (see the references in Section 5.6.2).
In Section 5.6.2 we take a closer look at the type of behaviour that so-

lutions of the Helmholtz equation can exhibit in trapping domains (and
define the concepts of a resonance and a quasimode); for the remainder of
this subsection we look at bounds on the solution operator of the Helmholtz
equation in non-trapping domains.

Theorem 5.6. (Vainberg 1975) Let Ω+ be a non-trapping domain (in
the sense of Definition 5.4) in 2D or 3D. If g ∈ L2(Ω+) has compact support,
and v ∈ H2

loc(Ω+) satisfies

∆v + k2v = g,

the Sommerfeld radiation condition (2.9), and either

γv = 0 or ∂nv = 0 on Γ,

then, given any R > 0 such that Ω− ⊂ BR, for every k0 > 0,

k‖v‖L2(Ω+∩BR) + ‖v‖H1(Ω+∩BR) +
1

k
‖v‖H2(Ω+∩BR) � ‖g‖L2(Ω+), (5.5)

for k ≥ k0.

We will not go into detail about how this bound was obtained, referring
the reader to the original paper by Vainberg (1975) and also the accounts
in Vainberg (1999) and Vainberg (1989) for this information, but we will
make two brief remarks: firstly, that the bound is sharp in terms of the
powers of k in its k-dependence, and secondly that it relies on the results
on propagation of singularities in Melrose and Sjöstrand (1978, 1982). See
also Remark 5.9 for more discussion on this type of bound.
Whereas Theorem 5.6 obtained bounds on solutions to the inhomoge-

neous Helmholtz equation in Ω+, we now discuss bounds on the Dirichlet
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to Neumann map for the homogeneous Helmholtz equation (1.1) in Ω+ (the
map P+

DtN introduced in Section 2.7). Via results in Section 2.7 (in partic-
ular Theorem 2.33) these will help us obtain bounds on ‖(A′k,η)−1‖. The
following theorem giving bounds on this map has recently been obtained
from Theorem 5.6.

Theorem 5.7. (Lakshtanov and Vainberg 2012) Let Ω+ be a non-
trapping domain (in the sense of Definition 5.4) in 2D or 3D. If u is a
solution of (1.1) in Ω+ satisfying the Sommerfeld radiation condition (2.9),
then, for every k0 > 0,

‖∂nu‖H−1/2(Γ) � k3‖γu‖H1/2(Γ),

and

‖γu‖H1/2(Γ) � k‖∂nu‖H−1/2(Γ),

for all k ≥ k0.

We note that this paper also contains analogous bounds for k ∈ C with
0 < arg k < π/2 that hold for general Lipschitz obstacles.
Using certain ‘multiplier methods’, applicable only to bounding ∂nu in

L2(Γ) (to be explained in more detail in Section 5.3), one can obtain the
following bound on P+

DtN that is better than the first bound in Theorem 5.7
from the point of view of k-dependence.

Theorem 5.8. Let Ω− be a Lipschitz star-shaped domain in 2D or 3D. Let
u be a solution of (1.1) in Ω+ satisfying the Sommerfeld radiation condition
(2.9). Then, if γu ∈ H1(Γ),

‖∂nu‖L2(Γ) � ‖∇Γγu‖L2(Γ) + k‖γu‖L2(Γ), (5.6)

for all k > 0 (where ∇Γ is the surface gradient operator defined in (A.14)).

The bound (5.6) was essentially proved in Morawetz and Ludwig (1968);
the authors only considered the smooth star-shaped case, but the arguments
are valid for Lipschitz domains with a little extra technical work (for exam-
ple, (5.6) was proved in the case that Γ is Lipschitz and piecewise smooth
in Chandler-Wilde and Monk (2008)).
Using a mixture of the arguments of Lakshtanov and Vainberg (2012) and

the multiplier methods used to prove Theorem 5.8, Spence (2012) proved
that, when Ω+ is non-trapping, for every k0 > 0,

‖∂nu‖L2(Γ) � k2‖γu‖H1(Γ), (5.7)

for all k ≥ k0. However, a sharper bound than (5.7) can almost certainly
be obtained (at least in 2D) by translating the results of Morawetz (1975a)
into this setting.
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Remark 5.9. (Resolvent estimates) The bound in Theorem 5.6 is a
bound on the operator R(k) := (∆ + k2)−1, that is, the resolvent of the
Laplacian. We now briefly discuss bounds of this type because (a) they are
a crucial component of scattering theory, and (b) some of the recent devel-
opments in the error analysis of BIEs for the Helmholtz equation for large
k provide an alternative perspective on these bounds.

(a) Rewriting (5.5) in terms of R(k), it becomes

‖χR(k)χ‖L2(Rd)→Hj(Rd) � kj−1, j = 0, 1, 2, (5.8)

for any χ ∈ C∞0 (Rd), and this is the form in which resolvent estimates usu-
ally appear in the scattering theory literature. (The bound (5.8) is known
as a ‘local resolvent estimate’ because of the pre- and post-multiplication of
R(k) by a cut-off function.) The simplest situation where one encounters
a bound of this form is that of the Helmholtz equation in R

d (the resol-
vent of the so-called ‘free Laplacian’). In this case the estimate (5.8) ap-
pears in, for example, Vainberg (1975, Theorem 3) and Burq (2002, §2.1).
Generalizations of this estimate (which remove the ‘local’ nature at the
cost of working in more technical function spaces) appear in, for example,
Hörmander (1983b, Theorem 14.3.7) and Perthame and Vega (1999) (note
that Theorem 14.3.7 of Hörmander (1983b) is for fixed k, but a rescaling of
the independent variable yields the result for arbitrary k). In the case of the
Laplacian in the exterior of a bounded obstacle, resolvent estimates were
obtained by Vainberg (1975, Theorem 7) (quoted as Theorem 5.6 above)
and Morawetz (1975a, Theorem I.2D) (although the latter is not quite in
the form of (5.8)).

(b) The error analysis for the Helmholtz equation recently developed by
Melenk and co-workers, and reviewed in the BIE context in Section 6.3,
has at its heart an additive splitting of the solution into a part with finite
regularity but k-independent bounds, and a part that is analytic with k-
explicit bounds for all its derivatives. In R

d this splitting leads to an alter-
native proof of the classical local free resolvent estimate (5.8) (Melenk and
Sauter 2010, Lemma 3.5). See also Esterhazy and Melenk (2012, §3) for an
overview of this work.

5.3. Rellich- and Morawetz-type identities

In this subsection we discuss the so-called Rellich- and Morawetz-type iden-
tities. We do this because many of the results about ‖(A′k,η)−1‖ and co-

ercivity of A′k,η that we discuss in Sections 5.6 and 5.7 have been proved
using these techniques, and several key results that we quoted in Section 2
have been proved using them, notably the regularity result in Theorem 2.12
which follows from Nečas (1967) and the results of Verchota (1984).
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The method of multipliers is one of the few truly general techniques in
PDE theory. It consists of multiplying the PDE by a judiciously chosen func-
tion and integrating (often by parts). In our case we consider the Helmholtz
equation, written as Lu = 0 with L = ∆+ k2, and restrict attention to the
case where the multiplier is a function of u, namely Nu, where N is some
linear operator.
In this framework Green’s first identity (given in the Appendix as equa-

tion (A.26)) with v = u is equivalent to the choice Nu = u. Rellich-type
identities are obtained by choosing Nu to be some derivative of u: for exam-
ple, the derivative in the radial direction in the case of star-shaped domains
(so Nu = x · ∇u) or a derivative along the vertical coordinate axis in the
case of domains that are the hypograph of a function.
The multiplier x·∇u was originally introduced by Rellich (1940) to obtain

an expression for the eigenvalues of the Laplacian in star-shaped domains
as an integral over the boundary (as opposed to the usual expression as an
integral over the domain used, for example, in the Rayleigh–Ritz method).
Following on from their work using the Rellich multiplier for Laplace’s equa-
tion (Payne and Weinberger 1955), Payne and Weinberger (1958) general-
ized the resulting identity to second-order elliptic systems with variable
coefficients. This general identity, in which the multiplier is an arbitrary
derivative of u (that is Z ·∇u for some arbitrary vector field Z) was indepen-
dently introduced by Hörmander (1954). We note that the Rellich identity
with multiplier x ·∇u is often known as the Derrick–Pohozaev identity (see,
for example, Evans (1998, §9.4.2)). This is because it was independently
introduced by both Pohozaev (1965) and Derrick (1964) in their studies
of the possible non-existence of solutions of ∆u + λf(u) = 0. (Actually,
Derrick’s proof of the identity was not via the multiplier x · ∇u, but via a
scaling argument: see Berestycki and Lions (1983, §2.1) for a nice account
of both proofs.)
Morawetz-type identities consist of taking certain linear combinations of

both derivatives of u and u itself (that is, linear combinations of the Rellich
and Green multipliers). These are discussed in more detail for the Helmholtz
equation in Section 5.3.1; see, for example, Morawetz (1961, 1968), Strauss
(1975) and Morawetz, Ralston and Strauss (1977) for their use in the context
of wave equations.
Rellich- and Morawetz-type identities have been used in many different

contexts since their introduction; in the following three subsections we dis-
cuss three uses relevant to this article.

(1) Bounding the Dirichlet to Neumann map for second-order elliptic PDEs
(including the Laplace and Helmholtz equations), Section 5.3.1.

(2) Bounding the energy norm of solutions of the Helmholtz equation,
Section 5.3.2.
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(3) Proving coercivity of integral operators related to the Helmholtz equa-
tion, Section 5.3.3.

Remark 5.10. Here we have understood Rellich- and Morawetz-type iden-
tities in the context of multiplier methods. An alternative approach is to
view them as consequences of Noether’s theorem (relating symmetry groups
and conservation laws); see, for example, Olver (1993, Notes to Chapter 4).

5.3.1. Bounding the Dirichlet to Neumann map
For simplicity, let d = 2 (the three-dimensional case, d = 3, is slightly more
complicated) and consider the simplest Rellich-type multiplier: Nu = x·∇u.
Multiplying Lu = 0 by Nu and integrating by parts leads to the following

identity for solutions of Lu = 0:

∇ ·
(
2Re

(
x · ∇u∇u

)
+
(
k2|u|2 − |∇u|2

)
x
)
= 2k2|u|2 (5.9)

(for details see, e.g., Spence et al. 2011, Lemma 2.1). Assuming Lu = 0
in Ω−, integrating this identity over Ω− and using the divergence theorem
yields∫

Γ

[
(x · n)

(
|∂nu|2 + k2|u|2 − |∇Γu|2

)
+ 2Re

(
x · ∇Γu∂nu

)]
ds

= 2k2
∫
Ω−

|u|2 dx. (5.10)

In the simplest possible case of k = 0 (i.e., the Laplace equation) the right-
hand side of (5.10) is zero, and so if min(x · n) > 0 then (5.10) can be used
to bound ‖∂nu‖2L2(Γ) by ‖∇Γu‖2L2(Γ) and vice versa. Indeed, from (5.10) it

follows that

min
x∈Γ

(x·n)‖∂nu‖2L2(Γ) ≤ max
x∈Γ

(x·n)‖∇Γu‖2L2(Γ)−2Re

∫
Γ
x·∇Γu∂nu ds. (5.11)

Using the standard inequality 2ab ≤ εa2 + b2/ε on the final term yields
‖∂nu‖2 � ‖∇Γu‖2. All this relies on Ω− being star-shaped with respect to
the origin (recall Definition 5.5). For more general domains one must use
a more general vector field Z in the multiplier with Z · n > 0 on Γ, and
then control the resulting non-divergence terms, but a similar result can be
obtained; see, for example, McLean (2000, Theorem 4.2.4).
A key advantage of identities such as (5.10) is that, modulo some non-

trivial technical work, they hold when Γ is Lipschitz. Indeed this method
of bounding the Dirichlet to Neumann map was used by Nečas (1967) in
his proof of Theorem A.5 of the Appendix, by Jerison and Kenig, who
independently discovered the Rellich identity (5.9) in their famous work on
the Laplacian on Lipschitz domains (see, e.g., Kenig 1994), and implicitly
by Verchota (1984) in his proof that 1

2I −D0 is invertible in L2(Γ) when Γ
is Lipschitz.
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Whereas Nečas, and Jerison and Kenig applied the identity (5.9) in an
interior domain, Verchota needed to apply (5.9) both in Ω− and the exterior
domain Ω+. When (5.9) is applied in Ω+, in order for there to be no
contribution from infinity, one requires the surface integral over a large ball
to tend to zero as the radius R of the ball tends to infinity. This integral is
equal to∫

ΓR

[
R
(
|∂nu|2 + k2|u|2 − |∇Γu|2

)
+ 2Re

(
x · ∇Γu∂nu

)]
ds, (5.12)

where ΓR := ∂BR. When k = 0 and u is a solution of the Laplace equation
in Ω+ that vanishes at infinity, (5.12) tends to zero as R → ∞. However,
when u is a solution of the Helmholtz equation that satisfies the radiation
condition (2.9), the integral (5.12) does not tend to zero (this is because the
derivatives of the Helmholtz solution decay more slowly at infinity than the
derivatives of the Laplace solution). Thus, if one seeks to bound the exterior
Dirichlet to Neumann map for the Helmholtz equation using (5.9), the sign
of the volume terms in (5.10) is such that the terms on Γ bound ‖∂nu‖2L2(Γ)

in terms of ‖∇Γu‖2L2(Γ) but (5.12) does not tend to zero as R → ∞, and

this non-zero contribution cannot be immediately controlled.
Because of this, Morawetz and Ludwig (1968) introduced the multiplier

Nu = rMu, where

Mu :=
x

r
· ∇u− iku+

d− 1

2r
u, (5.13)

and r = |x|. This leads to an identity very similar to the Rellich identity
(5.9), namely that, for solutions of Lu = 0,

∇·
(
2Re

(
rMu∇u

)
+
(
k2|u|2−|∇u|2

)
x
)
=
(
|∇u|2−|ur|2

)
+|ur−iku|2, (5.14)

where ur = (x · ∇u)/r. As with the Rellich identity, the non-divergence
terms are all positive, and when integrated over Ω+ the resulting integral
over Γ is the same as in (5.10), except that the left-hand side now contains
an extra term proportional to Re (u∂nu) (which can be controlled using the
same inequality that we used to deal with the final term in (5.11)). In
contrast to the Rellich identity, however, the choice of terms subtracted
from x · ∇u in the multiplier (5.13) means that the analogue of the integral
over ΓR (5.12) tends to zero as R → ∞. This is because, if u satisfies the
radiation condition (2.9), the multiplier rMu is lower order at infinity than
x · ∇u: the first two terms in the multiplier Mu defined in (5.13) equal the
quantity in the radiation condition (2.9), and the term d−1

2r u subtracts off
the next term in the asymptotic expansion, so that

Mu(x) = O

(
1

r(d+3)/2

)
as r → ∞
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(compared to ur−iku = O(r−(d+1)/2) from (2.10)). Thus, the identity (5.14)
can be used to obtain a bound on the Dirichlet to Neumann map for the
Helmholtz equation in Ω+, ultimately resulting in Theorem 5.8. Following
the introduction of the multiplier Mu in Morawetz and Ludwig (1968),
more general multipliers were then used by Morawetz (1975a) to obtain
estimates for the Helmholtz equation (as a stepping stone to estimates for
the wave equation).
One area where Rellich identities have been used extensively to treat time

harmonic scattering problems is rough surface scattering. A standard model
of this phenomenon is the Helmholtz equation posed in the infinite region
above the graph of a function f : Rd−1 → R. Here the radiation condition is
more subtle than in the bounded obstacle case, and the notion of ‘outgoing’
must be formulated in terms of the Fourier transform of the solution at a
certain height above the surface; see Chandler-Wilde and Monk (2005) and
the references therein.
The appropriate Rellich identity to use in this case is that with multiplier

e · ∇u, where e is a unit vector in the vertical d-coordinate direction: this
ensures that e·n > 0 on the boundary (in this case, the graph of the function
f). When this identity is applied in the analogue of Ω+ (the region above
the graph of f), we again want there to be no contribution from infinity;
this is the case if an integral analogous to (5.12) tends to zero as R → ∞
(where R is now the height above the graph of f). Similar to the bounded
obstacle case, this integral does not tend to zero as R → ∞. However,
whereas in the bounded obstacle case this problem can be fixed by adding
terms to the Rellich multiplier x · ∇u to mirror the radiation condition,
adding terms to the Rellich multiplier e · ∇u does not appear helpful in
the rough surface case (this is related to the more complicated behaviour of
the scattered field at infinity when the scatterer is unbounded). Neverthe-
less, the integral analogous to (5.12) can be controlled using bounds on the
Fourier transform of the solution above the surface (Chandler-Wilde and
Monk 2005, Lemma 2.2), and thus a Dirichlet to Neumann map estimate
can still be obtained (Chandler-Wilde, Heinemeyer and Potthast 2006). It
is shown in Spence (2012) that the analogue of these bounds in the bounded
obstacle case (Chandler-Wilde and Monk 2008, Lemma 2.1) is almost ex-
actly equivalent to using the Morawetz–Ludwig multiplier (5.13).

5.3.2. Bounding the energy norm of solutions of the Helmholtz equation

By slightly changing the Rellich multiplier x · ∇u one can ensure that the
non-divergence terms in the resulting identity become the energy norm of
the solution u, that is, ‖u‖1,k,D, where

‖u‖21,k,D := ‖∇u‖2L2(D) + k2‖u‖2L2(D) (5.15)
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(where D is either Ω− or Ω+). Indeed, the multiplier Nu = x · ∇u+αu for
α a real constant yields

∇ ·
(
2Re

(
x · ∇u+ αu

)
∇u+

(
k2|u|2 − |∇u|2

)
x
)

= (d− 2− 2α)|∇u|2 + (2α− d)k2|u|2, (5.16)

where d is the dimension. (This identity can also be understood as adding
a multiple of the pointwise form of Green’s identity to the Rellich identity,
and indeed this is the way it has been understood in most of the instances of
its use.) Choosing 2α = d−1 means that the non-divergence terms in (5.16)
become−‖u‖21,k,D. Although of obvious independent interest, bounds on the
energy norm can be translated into bounds on the inf-sup constant for the
standard variational formulations of the Helmholtz equation that are the
starting point for finite element discretizations; see, e.g., Chandler-Wilde
and Monk (2008, Lemma 3.4).
The fact that Rellich identities can give bounds on the energy norm was

used for the Helmholtz equation in interior domains by Makridakis, Ihlen-
burg and Babuška (1996, Proposition 2.1), Melenk (1995), Cummings and
Feng (2006) and Hetmaniuk (2007). In exterior domains, Chandler-Wilde
and Monk (2008) used them to prove the bound (5.5) without the third
term on the left-hand side when Ω− is a star-shaped domain in 2D and 3D,
obtaining an explicit value for the hidden constant on the right-hand side of
the bound. (In this application the problem that (5.12) does not tend to zero
as R → ∞ was overcome via Chandler-Wilde and Monk 2008, Lemma 2.1.
An effective alternative is to use the Morawetz–Ludwig multiplier (5.13);
see Spence 2012.) For rough surface scattering modelled by the Helmholtz
equation, bounds on the energy norm of the solution were obtained via
Rellich identities by Chandler-Wilde and Monk (2005), Claeys and Haddar
(2007) and Lechleiter and Ritterbusch (2010). Finally, we note that Rellich
identities were used to prove analogous results for the equations of linear
elasticity by Cummings and Feng (2006), and for the Maxwell equations by
Hiptmair, Moiola and Perugia (2011b) and Haddar and Lechleiter (2011).

5.3.3. Proving coercivity of integral operators

As discussed in Section 5.3.1 above, the Rellich identity was a key compo-

nent of Verchota’s bound on ‖
(
1
2I − D0

)−1‖ (Verchota 1984). In essence,
Verchota’s argument can be seen as applying the Dirichlet to Neumann map
bounds in Ω− and Ω+, that follow from (5.11), to the particular solution of
the Laplace equation u = S0φ. Verchota combines these bounds with the
jump relations (2.41) to obtain bounds on ‖(12I −D′0)−1‖ = ‖(12I −D0)

−1‖.
Recently it has become clear that the exact structure of the Rellich-

identity terms on Γ when u = Skφ can be used to prove the stronger
property (compared to invertibility) of coercivity in the sense of (2.124)
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(Spence et al. 2011). This discovery was motivated by the relatively well-
known fact that applying Green’s first identity (A.26) with u = Skφ in Ω−
and Ω+, and then using the jump relations (2.41), yields

Re (−i(Skφ, φ)L2(Γ)) ≥ 0, (5.17)

for all φ ∈ L2(Γ); see, e.g., Engleder and Steinbach (2007, Lemma 3.1)
or Spence et al. (2011, §1.3). (A different proof of this result is given in
Nédélec 2001, §3.4.4.) Given that this use of Green’s first identity gives
information about part of the combined potential operator A′k,η (namely the

part involving Sk), a natural question is whether repeating the argument
with a different identity can obtain information about more, or even all,
of A′k,η.
Repeating the argument leading to (5.17) with Green’s identity replaced

by the Morawetz–Ludwig identity (5.14) yields the inequality

Re
((
x · nD′k + x · ∇ΓSk − iηS

)
φ, φ

)
L2(Γ)

≥ 0, (5.18)

for all k > 0 with the particular choice of η(x) = k|x| + i(d − 1)/2; this
shows that the star-combined operator (2.103) is coercive uniformly in k for
all star-shaped Lipschitz domains (see Theorem 5.26 below).
Looking at the terms on the left-hand side of (5.18), we see that if the

vector field x in the Morawetz–Ludwig identity is replaced by a more general
vector field Z(x), and if Z(x) is equal to the normal vector on Γ (so that
Z · ∇ΓSk = 0 and Z · n = 1), then the left-hand side becomes Re (D′k −
iηS)φ, φ)L2(Γ). Thus, if Z(x) is also such that the inequality in (5.18) is
maintained after replacing x by Z(x), then this inequality shows that the
standard combined-potential operator A′k,η is coercive, that is, for some
αk,η > 0,

|(A′k,ηφ, φ)| ≥ αk,η‖φ‖2, (5.19)

for all φ ∈ L2(Γ) (and hence Ak,η is also coercive by the considerations
leading to Remark 2.24). Necessary conditions for the inequality analogous
to (5.18) to hold are that the non-divergence terms of the analogue of the
identity (5.14) are non-negative, and also Z(x) must be proportional to x
as r → ∞ for there to be no contribution from infinity (the analogue of
(5.12) must tend to zero as R → ∞). In this way, one can prove A′k,η is

coercive by showing there exists a vector field Z(x) satisfying the constraints
outlined above (Spence, Kamotski and Smyshlyaev 2012). This is analogous
to Morawetz’s reformulation of the energy decay of solutions to the wave
equation in terms of the existence of an appropriate multiplier in Morawetz
(1975a); however, we note that the multipliers that need to be constructed
to prove coercivity satisfy more stringent requirements than Morawetz’s
multipliers; see Spence et al. (2012). Coercivity results obtained using this
technique are discussed in Section 5.7.
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5.4. Bounds obtained by Fourier analysis

The majority of this subsection discusses investigations of conditioning and
coercivity in the case where Γ is either a circle or a sphere, in which case a
complete theory is possible due to the diagonalization of the operators in the
Fourier (d = 2) or spherical harmonic (d = 3) bases. However, we want to
emphasize at the beginning that these are not the only domains where these
(in some sense) explicit methods can be used. Indeed, the real requirement
is that the domain is one in which the Helmholtz equation is separable, in
which case classical analytical techniques of applied mathematics can be
brought to the problem. For example, boundary integral operators on the
ellipse are considered in Kress and Spassov (1983) and Rodin and Steinbach
(2003) for the Laplace equation, and in Betcke, Phillips and Spence (2012b)
for the Helmholtz equation. The separability requirement can be relaxed
slightly, but then the analytical techniques become more involved and only
yield approximate results; see, e.g., the investigations of the conditioning
of first-kind BIEs for the Helmholtz equation in several canonical domains
(including the exterior of a crack) in Warnick and Chew (1999, 2001, 2004).

Remark 5.11. One particularly noteworthy investigation using Fourier
analysis is Ha-Duong’s work on scattering by a flat screen (in 3D) and
a crack (in 2D). Coercivity for both Sk and Hk, as mappings between the
appropriate trace spaces, was proved in Ha-Duong (1990), but under the as-
sumption that Im (k) > 0 (for an alternative proof, which essentially repeats
the argument using Green’s identity leading to (5.17) but with Im k > 0, see
Ha-Duong 2003). Frequency-explicit coercivity estimates for Hk for k > 0
were shown in Ha-Duong (1992), and a non-frequency-explicit coercivity es-
timate for Sk for k > 0 was stated in Costabel (2004, Proposition 2.3) but
without proof. These results have recently been sharpened and extended in
Chandler-Wilde and Hewett (2012).

The case where Γ is the circle or sphere. As with the rest of this section we
focus on the exterior Dirichlet problem (2.12) (which includes the sound-
soft scattering problem (2.16)). Partial results for the analogous formula-
tion of the Neumann problem, that is, (2.73) and (2.77) with β = 0, are
given in Kress (1985), Amini (1990) and Amini (1993). The conditioning of
the combined-potential integral equations for electromagnetic scattering in
these domains was studied for small k in Kress (1985), and the conditioning
of certain ‘regularized’ formulations of the acoustic Dirichlet problem was
considered in Buffa and Sauter (2006) (these ‘regularized’ formulations were
discussed briefly in Section 2.11).
When Γ is the circle or sphere, the analysis is simplified by the fact that

D′k = Dk and thus A′k,η = Ak,η (Kress 1985).
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Suppose Γ is the unit circle, with parametrization ζ(θ) = (cos θ, sin θ).
With this parametrization L2(Γ) is isometrically isomorphic to L2[0, 2π].
We can write any ϕ ∈ L2[0, 2π] = L2(Γ) as

ϕ(θ) =
1

2π

∑
m∈Z

ϕ̂(m) exp(imθ), where ϕ̂(m) :=

∫ 2π

0
ϕ(θ) exp(−imθ) dθ,

in which case the L2-inner product and norm are given by

(ϕ, ψ) =
1

2π

∑
m∈Z

ϕ̂(m)ψ̂(m) and ‖ϕ‖2 = 1

2π

∑
m∈Z

|ϕ̂(m)|2.

On the circle the operators Sk, Dk, and hence Ak,η are convolution op-
erators and all act diagonally on the basis {exp (imθ)}m∈Z with the corre-
sponding eigenvalues given by

λSk(m) =
πi

2
H

(1)
|m|(k)J|m|(k), (5.20a)

λDk(m) =
πik

2
H

(1)
|m|(k)J

′
|m|(k)−

1

2
, (5.20b)

λAk,η(m) =
π

2
H

(1)
|m|(k)

(
ikJ ′|m|(k) + ηJ|m|(k)

)
. (5.20c)

By this we mean that

Rφ(θ) =
1

2π

∞∑
m=−∞

λR(m)eimθφ̂(m),

for R = Sk, Dk, or Ak,η; see, e.g., Kress (1985, equation (4.4)) or Domı́nguez
et al. (2007, Lemma 1)). Thus λR(m) is the eigenvalue associated with the
eigenfunction exp(imθ).
On the sphere the eigenvalues for these operators (in the spherical har-

monic basis) are proportional to the expressions (5.20) with m replaced by
m+1/2 (where the constant of proportionality is independent of k and m);
see, e.g., Kress (1985), Domı́nguez et al. (2007).
Since the eigenfunctions exp(imθ), m ∈ Z, are an orthonormal basis of

L2[0, 2π] = L2(Γ), bounding norms can be recast as bounding eigenvalues.
In particular, with N0 := N ∪ {0},

‖R‖ = sup
m∈N0

|λR(m)|, ‖R−1‖ =
(

inf
m∈N0

|λR(m)|
)−1

. (5.21)

Obtaining a bound on the coercivity constant of Ak,η in (5.19) can also be
translated into obtaining a bound on the eigenvalues. Indeed, the variational
form obtained when solving Ak,ηϕ = g with the Galerkin method (see (1.6))
can be rewritten in the Fourier basis as

ak,η(ϕ, ψ) = (Ak,ηϕ, ψ) =
1

2π

∑
m∈Z

λAk,η(m)ϕ̂(m)ψ̂(m). (5.22)
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If, for example, αk,η > 0, where

αk,η := inf
m∈N0

Re (λAk,η(m)), (5.23)

then for ϕ ∈ L2(Γ),

Re (ak,η(ϕ,ϕ)) =
1

2π

∑
m∈Z

Re (λAk,η(m))|ϕ̂(m)|2 ≥ αk,η‖ϕ‖2; (5.24)

so that αk,η is a coercivity constant for A′k,η. (Another potential way of
getting a lower bound for the coercivity constant would be to consider the
imaginary parts of λAk,η(m). However, Figure 5.2 shows that the imaginary
parts are not bounded away from zero even in a case where the operator is
coercive.)
Using (5.21), and bounding above the appropriate combinations of Bessel

and Hankel functions, the following upper bounds on ‖Sk‖, ‖Dk‖, and ‖Ak,η‖
can be obtained.

Theorem 5.12. For Γ the circle or sphere, for k > 0,

‖Sk‖ � k−2/3, ‖Dk‖ = ‖D′k‖ � 1, (5.25)

so that

‖Ak,η‖ � 1 + |η|k−2/3. (5.26)

The bound for ‖Sk‖ in (5.25) was proved for the circle and sphere by
Giebermann (1997), Domı́nguez et al. (2007) and Banjai and Sauter (2007).
The bound for ‖Dk‖ in (5.25) was proved by Banjai and Sauter (2007), with
Giebermann (1997) and Domı́nguez et al. (2007) proving the weaker bound
‖Dk‖ � k1/3. (To be precise we note that Domı́nguez et al. (2007) do not
explicitly state the bound for ‖Sk‖, but obtain the appropriate bound on
the eigenvalues (5.20a), and Banjai and Sauter (2007) state the bound for
‖Sk‖ for the sphere only, but due to the fact that the eigenvalues on the
circle are very similar to those on the sphere their result is easily extended
to the circle case.)
The bound (5.26) indicates that with the usual choice of η = k, ‖Ak,η‖ �

1 + k1/3. The lower bounds obtained by more general methods in Sec-
tion 5.5.2 show that this upper bound is sharp. The bound (5.26) also
shows that the choice η ∼ k2/3 means that ‖Ak,η‖ is bounded uniformly in

k. Although this might at first suggest that η = k2/3 is a better choice than
η = k, the former choice apparently leads to ‖A−1k,η‖ growing like k1/3 (this
is suggested by Theorem 5.22 and numerical experiments of Betcke et al.
2011) and thus the condition number of Ak,k2/3 in the case of a circle and
sphere grows at the same rate as k → ∞ as that of Ak,k.
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Theorem 5.13. (Domı́nguez et al. 2007) When Γ is the circle, with
αk,η defined by (5.23), there exists a k0 > 0 such that

αk,k ≥ 1

2
,

for all k ≥ k0, so that Ak,k is coercive with a coercivity constant of 1/2.
When Γ is the sphere, (5.19) holds for η = k for sufficiently large k, with

αk,k ≥ 1

2
−O

(
1

k2/3

)
, as k → ∞.

These lower bounds on the eigenvalues, first conjectured by Giebermann
(1997), are much harder to prove than the upper bounds of Theorem 5.12.
Recall that αk,η in (5.19) and ‖(A′k,η)−1‖ are related by

‖(A′k,η)−1‖ ≤ 1/αk,η (5.27)

(this follows immediately from equation (2.125)). Thus the bounds of The-
orem 5.13 immediately imply that

‖A−1k,k‖ ≤ 2

for all k ≥ k0 for the circle, and

‖A−1k,k‖ ≤ 2 +O

(
1

k2/3

)
, as k → ∞,

for the sphere.

5.5. Bounds on norms of boundary integral operators

We now discuss bounds on the norms of Sk, Dk, D
′
k, Ak,η and A′k,η for much

more general domains than just the circle and sphere. (Recall from Re-
mark 2.24 that ‖Dk‖ = ‖D′k‖ and ‖Ak,η‖ = ‖A′k,η‖.)

5.5.1. Upper bounds

Theorem 5.14. (Chandler-Wilde et al. 2009) If Γ is Lipschitz then

‖Sk‖ � k(d−3)/2, ‖Dk‖ � 1 + k(d−1)/2, ‖D′k‖ � 1 + k(d−1)/2, (5.28)

for k > 0; thus

‖A′k,η‖ = ‖Ak,η‖ � 1 + k(d−1)/2
(
1 +

|η|
k

)
for k > 0 (uniformly in η).
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These bounds were obtained by using the following idea. If T is an integral
operator on Γ with kernel t(x, y) then

‖T‖L1(Γ)←L1(Γ) = ess sup
y∈Γ

∫
Γ
|t(x, y)| ds(x),

‖T‖L∞(Γ)←L∞(Γ) = ess sup
x∈Γ

∫
Γ
|t(x, y)| ds(y)

(provided these integrals exist); see, e.g., Jörgens (1982). Thus, by the
Riesz–Thorin interpolation theorem,

‖T‖L2(Γ)←L2(Γ) ≤
(
‖T‖L1(Γ)←L1(Γ)‖T‖L∞(Γ)←L∞(Γ)

)1/2
;

see, e.g., Stein and Weiss (1971, Chapter V, Theorem 1.3). Furthermore, if
|t(x, y)| ≤ t̃(x, y), where t̃ is such that t̃(x, y) = t̃(y, x), then

‖T‖L2(Γ)←L2(Γ) ≤ ess sup
x∈Γ

∫
Γ
t̃(x, y) ds(y). (5.29)

In the case of Sk the bound (5.29) is applied with T = Sk (with t̃(x, y)
chosen as |Φk(x, y)|), whereas forDk andD′k it is applied to the perturbation
Dk −D0 (since the singularity of these double-layer operators is too strong
for the operators themselves to be bounded on L1(Γ) and L∞(Γ) for general
Lipschitz Γ). In the 2D case the bounds on Dk and D′k in (5.28) are then
proved using bounds on (the derivatives of) Hankel functions similar to
those in Lemma 4.6.
It is important to note that these bounds ignore the oscillation in k. For

example, the method described above gives the bound, for k > 0,

‖Sk‖ ≤ ess sup
y∈Γ

∫
Γ
|Φk(x, y)| ds(y) (5.30)

= ess sup
y∈Γ

∫
Γ

1

4π|x− y| ds(y) � 1, for d = 3.

Despite this apparent crudeness the bound (5.30) is sharp in its k-depen-
dence for many geometries in 2D (and so are the bounds on ‖A′k,η‖ and

‖Ak,η‖); we will see this below in Lemma 5.18 when we discuss lower bounds.
The same idea can be used to bound the surface gradients of Sk, Dk−D0,

and D′k − D′0 and this gives bounds on the operators Sk, Dk, and D′k as
mappings from L2(Γ) into H1(Γ) (provided Γ is smooth enough for these
operators to be bounded), again using bounds similar to those in Lemma 4.6
in the 2D case.

Theorem 5.15. (Graham et al. 2012) If Γ is Lipschitz then

‖Sk‖H1(Γ)←L2(Γ) � 1 + k(d−1)/2, (5.31)
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for all k > 0, and if Γ is C2,µ, for some µ ∈ (0, 1), then

‖Dk‖H1(Γ)←L2(Γ) � 1 + k(d+1)/2, ‖D′k‖H1(Γ)←L2(Γ) � 1 + k(d+1)/2,

for all k > 0.

We remark that the requirement that Γ is C2,µ ensures that the mappings
D0, D

′
0 : L2(Γ) → H1(Γ) are bounded; see Kirsch (1989, Theorem 4.2),

Colton and Kress (1998, Theorem 3.6).
The bounds of the previous theorem are an important ingredient both

in the proof of k-explicit quasi-optimality for the h-version of the BEM
discussed in Section 6.1, and in the upper bounds on ‖(A′k,η)−1‖ in Sec-
tion 5.6.1.
In Section 2.9 we introduced the integral operator A′k,η,Z , defined by (2.99)

for k > 0, η ∈ L∞(Γ), and Z ∈ (L∞(Γ))d. This definition involves D′k and
Sk (like A′k,η) but also ∇ΓSk. Supplementing the bounds (5.28) with (5.31)
we obtain that

‖A′k,η,Z‖ � 1 + k(d−1)/2
(
1 +

‖η‖∞
k

)
(5.32)

for all k > 0.
Finally, a technique for obtaining upper bounds on ‖Sk‖ and ‖Dk‖ that

does take into account the oscillatory nature of the kernels is the following
standard idea from harmonic analysis (see, e.g., Stein 1993, Chapter 7, §2),
whose use in this context was suggested in Chandler-Wilde and Graham
(2009). Observe that, for example,

‖Sk‖ = ‖S∗kSk‖1/2,
where S∗k is the Hilbert space adjoint of Sk (so its kernel is the complex
conjugate of the kernel of Sk). Now S∗kSk is an integral operator whose
norm can be estimated using (5.29) above. The kernel of S∗kSk is itself an
integral, and this can be estimated using standard techniques for oscillatory
integrals. The use of this method of estimating norms is ongoing research,
but an initial bound obtained by this technique is the following.

Theorem 5.16. Let Ω− be a strictly convex C2 domain with strictly pos-
itive curvature in 3D. Then given ε > 0 there exists a k0 > 0 such that

‖Sk‖ � 1

k1/20−ε
,

for k ≥ k0.

This final bound should be contrasted with the cruder bound ‖Sk‖ � 1
for d = 3 obtained in Theorem 5.14 above. This shows that taking into
account the oscillatory nature of the kernels can, at least for some domains
(and especially in 3D), provide better bounds.
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5.5.2. Lower bounds

The technique used so far to obtain lower bounds on ‖Sk‖, ‖Dk‖, and ‖A′k,η‖
is to design a particular φk ∈ L2(Γ), depending on k and the geometry
of the obstacle, to make ‖Skφk‖/‖φk‖ (or the analogous expressions with
Sk replaced by Dk or A′k,η) as large as possible. This technique strongly
depends on the geometry of the obstacle, and has almost exclusively to date
been used in 2D. The first bound we discuss is an exception in that it holds
both in 2D and 3D. It relies on the fact that A′k,η is a compact perturbation

of the identity on C1 domains.

Lemma 5.17. (Chander-Wilde et al. 2009, Theorem 4.3) In both
2D and 3D, if part of Γ is C1 then ‖Ak,η‖ ≥ 1/2 and ‖(A′k,η)−1‖ ≥ 2.

A variety of lower bounds on ‖Sk‖ and ‖Dk‖ were obtained in Chandler-
Wilde, Graham, Langdon and Lindner (2009). We give four examples.

Lemma 5.18. (Chandler-Wilde et al. 2009, Theorem 4.2) In the 2D
case, if Γ is Lipschitz and contains a straight line section, then there exists
k0 > 0 such that

‖Sk‖ � 1

k1/2
(5.33)

for k ≥ k0, and

‖A′k,η‖ = ‖Ak,η‖ ≥ |η|
k1/2

− 1 +O

(
|η|
k

)
for k ≥ k0, uniformly in η > 0.

The lower bounds of Lemma 5.18 shows that the upper bounds on ‖Sk‖
and ‖Ak,η‖ (for η � k) in Theorem 5.14 are sharp in the 2D case if part of
Γ contains a straight line segment.
The following two lemmas show that the upper bounds when Γ is a circle,

(5.25), are sharp.

Lemma 5.19. (Chandler-Wilde et al. 2009, Theorem 4.4) In the
2D case, if Γ is Lipschitz and C2 in a neighbourhood of some point on the
boundary then there exists k0 > 0 such that

‖Sk‖ � 1

k2/3

for k ≥ k0.

Lemma 5.20. (A special case of Chandler-Wilde et al. 2009, The-
orem 4.7) If Γ is C1 then there exists k0 > 0 such that

‖Dk‖ � 1

for k ≥ k0.
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Lemma 5.21. (A special case of Chandler-Wilde et al. 2009, The-
orem 4.6) If Γ is a 2D polygon then there exists k0 > 0 such that

‖Dk‖ � k1/4

for k ≥ k0.

5.6. Bounds on inverses

5.6.1. Upper bounds on ‖(A′k,η)−1‖
The bounds on ‖A′k,η‖ in Section 5.5 were obtained directly from the def-
inition of the integral operator, with the fact that this operator is used to
solve the Helmholtz equation entering only via the fact that its kernel is
given in terms of the fundamental solution (1.2). In contrast, the bounds
on ‖(A′k,η)−1‖ that we discuss in this subsection are obtained by using The-

orem 2.33, which expresses (A′k,η)
−1 in terms of solution maps to BVPs

involving the Helmholtz equation.
The known upper bounds on ‖(A′k,η)−1‖ are collected in the following

theorem.

Theorem 5.22. If Ω− is a star-shaped Lipschitz domain in 2D or 3D,
then

‖(A′k,η)−1‖ � 1 +
1 + k

|η| , (5.34)

for k > 0 (Chandler-Wilde and Monk 2008), and if Ω+ is a non-trapping
domain (in the sense of Definition 5.4) in 2D or 3D then, for every k0 > 0,

‖(A′k,η)−1‖ � k2+(d−1)/2
(
1 +

k

|η|

)
(5.35)

for k ≥ k0 (Spence 2012).

This theorem is proved using Theorem 2.33, which gives a bound on
‖(A′k,η)−1‖ in terms of bounds on the exterior Dirichlet to Neumann map,
and on the interior impedance to Dirichlet map. To bound the exterior
Dirichlet to Neumann map we use Theorem 5.8 (in the star-shaped case)
and equation (5.7) (in the non-trapping case). To bound the interior im-
pedance to Dirichlet map when Ω− is star-shaped we use the Rellich identity
(using the ideas in Section 5.3.1), and for more general domains we use a
weaker bound obtained using Green’s representation theorem along with the
bounds of Theorem 5.15; for details see Chandler-Wilde and Monk (2008)
and Spence (2012).
An explicit value for the hidden constant in the bound (5.34) is given in

Chandler-Wilde and Monk (2008, Theorem 4.3). For example, for a square
of side length 2a, with the choice η = k, ‖(A′k,η)−1‖ < 51

4 if ka ≥ 1, for a
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cube of side 2a, again with η = k, ‖(A′k,η)−1‖ < 8 for ka ≥ 1. The hidden

constant in (5.35) ultimately depends on the hidden constant in (5.5), which
is in principle computable.
Regarding the sharpness of the bounds of Theorem 5.22, if k/|η| = O(1)

as k → ∞, then Lemma 5.17 implies that (5.34) is sharp in its k-dependence.
The bound (5.35) for the non-trapping case is almost certainly not sharp,
with the numerical experiments of Betcke et al. (2011) and Betcke and
Spence (2011) indicating that the stronger bound (5.34) holds for several
2D non-trapping and non-star-shaped domains, at least for moderate values
of k. (Betcke and Spence (2011) investigate the coercivity constant of A′k,η,
which implies bounds on ‖(A′k,η)−1‖ via (5.27).)

5.6.2. Lower bounds on ‖(A′k,η)−1‖
From the analysis and numerical experiments described above it is not im-
plausible to conjecture that the upper bound (5.34) on ‖(A′k,η)−1‖ holds
whenever Ω+ is non-trapping in both 2D and 3D.
This motivates the question: ‘How fast can ‖(A′k,η)−1‖ grow when Ω+ is

trapping?’ This question was investigated in both 2D and 3D in Chandler-
Wilde et al. (2009) and Betcke et al. (2011), with further work in Betcke,
Chandler-Wilde, Graham and Langdon (2012a). In this subsection we dis-
cuss two theorems taken from the first two of these papers. These theorems
give examples of 2D trapping domains for which ‖(A′k,η)−1‖ grows through
some increasing sequence of wavenumbers; analogous results for certain 3D
trapping domains can be found in Betcke et al. (2012a). In these theorems
the � notation means that the implied constants in (5.36) and (5.37) below
are both independent of m.

Theorem 5.23. (Chandler-Wilde et al. 2009, Theorem 5.1) If Ω+

contains a square of side length 2a, two parallel sides of which form part of
Γ (an example is the rectangular cavity in Figure 5.1), and if km = mπ/2a,
m ∈ N, then

‖A−1km,η‖ � (kma)9/10
(
1 +

|η|
km

)−1
. (5.36)

Theorem 5.24. (Betcke et al. 2011, Theorem 2.8) If, for some a1 >
a2 > 0, Ω+ contains the ellipse E := {(x1, x2) : (x1/a1)2 + (x2/a2)

2 < 1},
and if Γ coincides with the boundary of this ellipse in neighbourhoods of
the points (0,±a2), then there exists a sequence 0 < k0 < k1 < k2 < · · · ,
with km → ∞ as m → ∞, such that, for some γ > 0,

‖A−1km,η‖ � exp (γkm)

(
1 +

|η|
km

)−1
(5.37)

(an example of such a domain is the elliptical cavity in Figure 5.1).
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Numerical evidence for both these estimates was given in Betcke et al.
(2011), with evidence for (5.36) also given in Löhndorf and Melenk (2011,
Example 4.7).
These two theorems are proved by looking at particular solutions of the

Helmholtz equation, in the rectangular cavity and elliptical cavity respec-
tively, and translating the properties of the solutions into properties of the
integral operator A′k,η. In order to understand the solutions that we use
to prove the theorems, we first need to discuss briefly the concepts of reso-
nances and quasimodes.

A resonance of the exterior Dirichlet problem (2.12) is a complex wave-
number kres such that there exists a non-trivial solution ures of the Helmholtz
equation in Ω+ satisfying (2.10) and zero Dirichlet boundary conditions.
From Corollary 2.9 we know that resonances cannot occur for Im k ≥ 0
(because in this case if u = 0 on Γ then u = 0 in Ω+), and thus any
resonances must lie in the lower half complex plane (actually Corollary 2.9
only considers real k, but the result also holds for Im k ≥ 0). Note that (2.10)
implies that, for Im k < 0, the solution ures(x) must grow exponentially as
r → ∞.
The location of resonances in the lower half complex plane and their

relationship to trapping are classic questions in scattering theory, with ap-
propriate generalizations of these questions still active research topics today.
In the 1967 first edition of Lax and Phillips (1989) it was conjectured that:

(1) for any non-trapping domain there are no resonances in a strip
{k : −α ≤ Im{k} ≤ 0} for some constant α > 0;

(2) for any trapping domain there is a sequence of resonances {km}∞m=1

such that Im{km} → 0 as m → ∞.

The first conjecture (intimately linked to the question of local energy decay
for solutions of the wave equation that was mentioned briefly in Section 5.2)
was proved to be true in Vainberg (1975) and Melrose (1979) (using the
results of Melrose and Sjöstrand 1978). However, an example of a trapping
domain for which there are no resonances in a strip below the real axis was
given in Ikawa (1983), and thus the second conjecture is false. The second
conjecture is true if one restricts attention to trapping domains that contain
a trapped ray that is stable under perturbation – a so-called ‘elliptic’ trapped
ray (this was proved by Stefanov and Vodev using the link with quasimodes;
see the references in the discussion of quasimodes below). Thus the elliptical
cavity domain in Figure 5.1 contains a sequence of resonances converging
to the real axis, but the square cavity domain in the same figure need not.
More details about these results can be found in Lax and Phillips (1989,
Epilogue), Vainberg (1999), Melrose (1995), for example. (The 2D case is
more subtle than the 3D case due to the presence of a branch point in the
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fundamental solution (1.2) at k = 0.) A nice non-technical discussion of
resonances is given in Zworski (1999).
A related concept is that of a quasimode. In the context of acoustic scat-

tering, a quasimode is a solution of the inhomogeneous Helmholtz equation
for k > 0 where the source is small relative to the solution. (We index ev-
erything by m at this stage since in what follows we will always consider a
family of quasimodes with wavenumbers km strictly increasing as m → ∞.)
We call vm a quasimode if, for some compactly supported gm ∈ L2(Ω+),

∆vm + k2mvm = gm,

where km > 0, vm satisfies zero Dirichlet boundary conditions and the
Sommerfeld radiation condition (2.9), and, for some R > 0 such that Ω− ⊂
BR, the bound

‖vm‖L2(Ω+∩BR) � L(km)‖gm‖L2(Ω+) (5.38)

holds where the factor L(km) is ‘large’. Thus, one can think of k2m as being
‘nearly’ an eigenvalue of the Laplacian.
How large can we expect L(km) to be? Theorem 5.6 tells us that a solution

v of the Helmholtz equation in a non-trapping domain with zero Dirichlet
boundary conditions and source g satisfies

‖v‖L2(Ω+∩BR) �
1

k
‖g‖L2(Ω+).

Thus a bound of the form (5.38) cannot hold, even with L(km) constant,
for non-trapping domains.
One intuitively expects that, if there is a resonance kres in the lower half

complex plane close to the positive real axis, then there will be a quasimode
with km > 0 close to kres. This intuition turns out to be correct, and the
relationship between resonances and quasimodes was elucidated in Stefanov
and Vodev (1995), Stefanov and Vodev (1996), Tang and Zworski (1998)
and Stefanov (1999, 2003). For more information on quasimodes in general
see, e.g., Lazutkin (1999).
Theorems 5.23 and 5.24 are proved by constructing quasimodes with

L(km) =

{
1 for the square cavity domain,

exp (βkm) for some β > 0, for the elliptical cavity domain.

The construction of the quasimodes in the square cavity domain given in
Chandler-Wilde et al. (2009) is based on the fact that u(x) = sin(kmx1) with
km = mπ/a, m ∈ N is an eigenfunction of the 1D Laplacian with eigenvalue
k2m on [0, a] under Dirichlet boundary conditions. The quasimode vm is then
defined by χ(x)u(x), where χ(x) is a smooth function with compact support
in the cavity. In a similar way, the quasimodes in the elliptical cavity domain
constructed in Betcke et al. (2011) are based on the fact that, for the ellipse
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{(x1/a1)2 + (x2/a2)
2 < 1}, with a1 > a2 > 0, there are eigenfunctions of

the Laplacian that become exponentially localized about the stable periodic
orbit {(0, x2) : |x2| ≤ a2} as km → ∞.
Given a domain with a family of quasimodes satisfying (5.38), one can

show that

‖(A′k,η)−1‖ �
(
L(km)

kd−2m

− 1

k
(d−1)/2
m

)(
1 +

|η|
km

)−1
. (5.39)

In the case of the elliptic cavity, this bound combined with the exponential
growth of L(km) establishes Theorem 5.24, that is, (5.37) holds for any
γ < β. Since L(km) does not increase for the square cavity, a more subtle
argument is needed to obtain the growth in Theorem 5.23.
In the rest of this subsection we briefly sketch how the bound (5.39) is

obtained, in large part following Betcke et al. (2011, §2.5). We also indicate
how to prove Theorem 5.23 given that the bound (5.39) is too crude to
achieve this.
Given a quasimode vm such that both vm and gm are compactly sup-

ported, first define vIm as the Newtonian potential

vIm(x) :=

∫
Ω+

Φk(x, y)gm(y) dy, x ∈ R
d.

(The I superscript indicates that we will think of vIm as an incident field for
a Helmholtz scattering problem; in particular note that vIm is an incident
field in the sense of Definition 2.11.) Now, by standard properties of the
Newtonian potential (see, e.g., McLean 2000, Chapter 6, Sauter and Schwab
2011, Chapter 3),

∆vIm + k2mvIm =

{
gm in supp(gm) ⊂ Ω+,

0 otherwise.

Define vSm by vSm = vm−vIm (the superscript S indicates that we think of vSm
as the scattered field). Then vSm satisfies the sound-soft scattering problem
(2.16) for incident field vIm. It follows from Theorem 2.46 that

A′k,η

(
∂vm
∂n

)
= fm,

where

fm :=

(
∂vIm
∂n

− iηvIm

)∣∣∣∣
Γ

.

To prove the bound (5.39), we need only show that∥∥∥∥∂vm∂n

∥∥∥∥
L2(Γ)

�
(
L(km)

kd−2
− 1

k
(d−1)/2
m

)(
1 +

|η|
km

)−1∥∥fm∥∥L2(Γ)
. (5.40)
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This bound follows from combining (5.38) with the bounds∥∥∥∥∂vm∂n

∥∥∥∥
L2(Γ)

� ‖vm‖L2(Ω+)

(
k(3−d)/2m − 1

L(km)

)
(5.41)

and

‖gm‖L2(Ω+) � k−(d−1)/2m

(
1 +

|η|
k

)−1
‖fm‖L2(Γ). (5.42)

The bound (5.41) can be established by using Green’s integral representation
theorem to write vm in Ω+ in terms of the Newtonian potential of gm and
the single-layer potential of ∂vm/∂n (the analogue of Theorem 2.21 for the
inhomogeneous Helmholtz equation; see, e.g., McLean 2000, Theorems 7.5
and 9.6), using bounds on the norms of the potentials as mappings from Γ
to Ω+ similar to those obtained in Section 5.5.1, and finally using (5.38) to
relate the norm of gm to that of vm. The bound (5.42) can be established
by using the definition of vIm in terms of the Newtonian potential, and then
results on the norms of the potentials used for the first bound (for details
see Betcke et al. 2011, §2.5).
As noted above, the lower bound on ‖(A′k,η)−1‖ is too crude to prove

Theorem 5.23. Instead the result can be obtained by directly obtaining a
bound from below on ‖∂vm/∂n‖L2(Γ), and a bound from above on ‖fm‖L2(Γ).
The former follows trivially from the definition of vm, whereas the latter
requires carefully estimating the oscillatory integrals in the definition of vIm
(for details see Chandler-Wilde et al. 2009, §5).

5.7. Bounds on coercivity constants

The results obtained by Fourier analysis show that Ak,k is coercive for suf-
ficiently large k when Γ is the circle and sphere. Given that it is sur-
prising that coercivity holds, even in these special cases (as discussed in
Section 2.11), a numerical investigation of the conditions under which co-
ercivity holds was undertaken in Betcke and Spence (2011). Before we
report the results of that investigation we discuss the information about
αk,η, the coercivity constant of A′k,η in (5.19), that can be obtained through

its relationship with ‖(A′k,η)−1‖ (5.27). The fact that ‖(A′k,η)−1‖ ≥ 2 from

Theorem 5.17 means that αk,η ≤ 1/2. Furthermore, Theorems 5.23 and 5.24
imply that, for the rectangular and elliptical cavities respectively,

αkm,η � k−9/10m

(
1 +

|η|
km

)
, αkm,η � exp (−γkm)

(
1 +

|η|
km

)
(5.43)

(where the km are different for each domain). Thus, with the standard
choice η ∼ k, even if coercivity holds for some k, it cannot hold uniformly
as k → ∞ for these two domains.
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Figure 5.2. Eigenvalues and boundary of the numerical range
of the boundary integral operator A′

k,k when Γ is the unit
circle (a) and the equilateral triangle with side length 1 (b) for
k = 50, where × marks the origin.

Coercivity constants for a range of 2D domains were computed using the
connection between the coercivity constant of an operator and its numerical
range in Betcke and Spence (2011). Recall that the numerical range of a
bounded linear operator T on a Hilbert space V is defined by

W (T ) := {(Tφ, φ) : φ ∈ V , ‖φ‖ = 1}.
From this definition it is straightforward to see that if T is coercive with
coercivity constant α then α = infz∈W (T ) |z|. Thus T is coercive if and only

if 0 /∈ W (T ).
Standard algorithms from numerical linear algebra exist for computing

the numerical range of finite-dimensional operators. Betcke and Spence
(2011) used these to compute the numerical range of Galerkin discretizations
of A′k,k and proved that these numerical ranges converge to W (A′k,k) (in an

appropriate sense) as the dimension of the Galerkin approximation space
tends to infinity.
Figure 5.2 shows both the boundary of the numerical range and the eigen-

values ofA′k,k when Γ is the unit circle and the equilateral triangle for k = 50.

The circle plot shows that Ak,k is coercive with constant 1/2, confirming
Theorem 5.13. The triangle plot shows that A′k,k is also coercive in this case.
A striking difference between these two plots is that for the circle the nu-
merical range is the convex hull of the eigenvalues, but for the triangle this
is not the case. Recalling the result that the closure of the numerical range
of a normal operator is the convex hull of its spectrum (see, e.g., Gustafson
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Figure 5.3. A particular rectangular cavity
domain. The open cavity has a width of π/5.

and Rao 1997, Theorem 1.4-4), this indicates that A′k,k is a normal opera-
tor on the circle but not on the triangle. From the other computations in
Betcke and Spence (2011) it appears that in 2D A′k,η is normal if and only

if Γ is a circle. Proving one direction is easy: the fact that A′k,η and its
adjoint both diagonalize in the Fourier basis mean that they commute, and
thus A′k,η is normal (this is also true for the sphere). Proving the converse
is more difficult, and at the time of writing still an open problem. However,
the analogous result for Sk has been proved in Betcke et al. (2012b), and
this paper also contains an investigation of the non-normality of A′k,η using

tools such as pseudospectra (as advocated by Trefethen and Embree 2005).
From the computations in Betcke and Spence (2011) it was conjectured

that A′k,k is coercive whenever the domain is non-trapping. Indeed these

computations show A′k,k to be coercive uniformly in k for k between 10 and

100 for several non-trapping domains (including non-smooth ones such as
an L-shaped polygon), but not coercive for the particular rectangular cavity
domain in Figure 5.3. (Computations for higher k were not performed,
because of the large matrix dimensions: here the Galerkin discretizations
of A′k,k used a piecewise polynomial basis and followed the ‘ten points per

wavelength’ convention.)
The numerical range of A′k,k for k = 4 and 5, when Ω− is the trapping

domain shown in Figure 5.3, is shown in Figure 5.4. These wavenumbers
were chosen because k = 5 is the first of the sequence of wavenumbers for
which quasimodes of the exterior Helmholtz problem in this domain can be
constructed, with a corresponding resonance in the lower half-plane close
to the real axis (recall the discussion in Section 5.6.2). Although A′k,k is

invertible for every k > 0. Figure 5.4 shows that A′5,5 is not coercive,
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Figure 5.4. The numerical range of A′
k,k when Ω− is the

trapping domain from Figure 5.3 in the cases k = 4 (a) and
k = 5 (b), where × marks the origin.

whereas A′4,4 is. Thus, not only is A′k,k not uniformly coercive as k → ∞,

as shown by (5.43), but it is not coercive for at least one finite value of k.
Interestingly, the spectra of A′k,k for k = 4 and 5 are almost the same,

and in particular are both contained in the right half-plane. This illustrates
the fact that the spectrum does not determine the behaviour of non-normal
operators, as explained in more detail in Trefethen and Embree (2005).
We now discuss two theorems about coercivity; the first regarding A′k,η,

and the second regarding the star-combined operator Ak defined in (2.103).
The first theorem says that, with a choice of η proportional to k, A′k,η is
coercive on smooth convex domains once k is large enough.

Theorem 5.25. (Spence et al. 2012) Let Ω− be a strictly convex C3

domain with strictly positive curvature in either 2D or 3D. Then there exists
a constant η0 such that, given δ > 0, there exists k0 > 0 (depending on δ)
such that, for η = η0k and k ≥ k0,

Re (A′k,ηφ, φ)L2(Γ) ≥
(
1

2
− δ

)
‖φ‖2L2(Γ), (5.44)

for all φ ∈ L2(Γ). This bound also holds with A′k,η replaced by Ak,η.

This result essentially includes the earlier results of Domı́nguez et al.
(2007) for the circle and sphere, as special cases.
The second theorem shows that, when Ω− is star-shaped, if we are pre-

pared to use the star-combined operator Ak, which is a slight modification
of A′k,η (as discussed in Section 2.9), coercivity holds uniformly for all k > 0
with only the requirement that Γ is Lipschitz.
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Theorem 5.26. (Spence et al. 2011) Suppose that Ω− is a bounded
Lipschitz domain that is star-shaped with respect to the origin. Then, for
all φ ∈ L2(Γ),

Re (Akφ, φ)L2(Γ) ≥ α‖φ‖2L2(Γ), (5.45)

where the star-combined operator Ak is given by

Ak = (x · n)
(
1

2
I +D′k

)
+ x · ∇ΓSk − iηSk (5.46)

with the function η chosen as

η = k|x|+ i
d− 1

2
, (5.47)

and the k-independent coercivity constant α is given by

α =
1

2
ess inf
x∈Γ

(x · n(x)) > 0. (5.48)

Note that Theorem 2.37 (about the invertibility of Ak) follows from (5.45)
using the analogue of (5.27) (with A′k,η replaced by Ak).

These two theorems were proved using Rellich–Morawetz-type identities
and the ideas in Section 5.3.3. Proving that A′k,η, or some modified version

of A′k,η, is coercive is still open in the general non-trapping case.

6. Error analysis

In this section we return to the problem of proving, explicitly in k, the con-
vergence of various boundary element methods for the Helmholtz equation.
The key first step in doing this is to obtain the quasi-optimal error estimate
(1.7) with explicit estimates for C and N0 in terms of k (Q3 of the Intro-
duction). Then k-explicit convergence rates are obtained by estimating the
best approximation error infwn∈VN ‖v−wN‖ explicitly in k (recall that for a
function w ∈ L2(Γ), ‖w‖ denotes ‖w‖L2(Γ) unless otherwise specified). We
discuss this question for the direct and indirect combined potential equa-
tions and the star-combined equation, namely

Ak,ηv :=

(
1

2
I +Dk − iηSk

)
v = f, (6.1)

A′k,ηv :=

(
1

2
I +D′k − iηSk

)
v = f, (6.2)

(for real η �= 0), and

Akv := (x · n)
(
1

2
I +D′k

)
v + x · ∇ΓSkv − iηSkv = f, (6.3)



228 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

where η is the smooth function of x ∈ Γ given by (2.102). These equations
are well-posed in L2(Γ); see Theorems 2.27 and 2.37. Specifically, this
section contains the following.

• For general piecewise polynomial Galerkin methods, k-explicit quasi-
optimality results for (6.1) and (6.2) on smooth (but otherwise general)
boundaries Γ are given in Sections 6.1 and 6.3. In addition a k-explicit
estimate of the best approximation error infwn∈VN ‖v−wN‖ for a par-
ticular class of boundaries Γ in the case of the sound-soft scattering
problem (2.16) is given in Section 6.2.

• For a range of hybrid Galerkin methods taken from those discussed
in Section 3, k-explicit quasi-optimality and convergence estimates are
given in Section 6.4.

For second-kind integral equations such as (6.2) and (6.1), there are sev-
eral classical approaches to error analysis, all based on viewing the inte-
gral operator as a compact k-dependent perturbation of a well-posed k-
independent operator. The classical choice for the latter operator is 1

2I,
although a different choice is made in Löhndorf and Melenk (2011): see
Section 6.3. The abstract theory of projection methods (e.g., Atkinson
1997) then provides an error analysis, which covers not only the Galerkin
method but also collocation and even Nyström methods. Another (closely
related) classical approach is via the general variational theory of Galerkin
methods, based on the discrete inf-sup condition. Here approximations such
as collocation can be treated through an application of the Strang lemma
(Ciarlet 2002). Up until recently, neither of these classical approaches has
easily lent itself to explicit estimation of C and N0 in (1.7) in terms of k, so
recent research has had to develop new ideas for this task. A recent contribu-
tion is Banjai and Sauter (2007), along with the already-mentioned Löhndorf
and Melenk (2011). In earlier work, for the particular integral equation
(3.30) studied in Section 3.2, a complete k-explicit error analysis was de-
veloped in Chandler-Wilde et al. (2002) for a simple h-version piecewise-
polynomial discrete collocation method, in particular showing that (1.7)
holds with C independent of k, provided that kh is below some threshold.
In Section 6.1 we discuss the application of the classical projection analysis

for general smooth Γ and for the h-version BEM in 2D and 3D following
Graham, Löhndorf, Melenk and Spence (2012). In this analysis, not only
must the mesh diameter h decrease with some negative power of k to ensure
that the Galerkin equations are solvable (‘mesh threshold’), but also C in
(1.7) may grow with k. The key ingredients for this theory are bounds on the
inverse of Ak,η (respectively A′k,η) given in Theorem 5.22 and estimates for

the smoothing properties of the compact parts of Ak,η, A
′
k,η as mappings

from L2(Γ) to H1(Γ) given in Theorem 5.15. At the end of Section 6.1,
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we compare the results obtained for the h-version BEM via the projection
analysis with those obtained using the Galerkin variational framework in
Banjai and Sauter (2007). In Section 6.2 we combine the quasi-optimal
error estimate from Section 6.1 with an estimate of the best approximation
error to obtain a convergence rate for a special case of (6.2) approximated
with a low-order BEM.
The standard piecewise polynomial methods considered in Sections 6.1,

6.2 and 6.3 are not ‘high-frequency’ methods since they use only conven-
tional piecewise polynomial basis functions, and the particular character of
these basis functions is heavily exploited in the analysis. Nevertheless the
derivation of k-explicit error estimates for such methods is a topic of recent
research interest so it has a natural place in this review. In this case, the
highly oscillatory nature of the solution means that the mesh diameter must
decrease with increasing k. The general convention is that

h � k−1 (6.4)

(i.e., a fixed number of grid points per wavelength) should be sufficient for
adequate approximation of the solution. While the analysis of Section 6.1
suggests that a somewhat smaller h is required for quasi-optimality (1.7)
to hold independently of k, the example in Section 6.2 proves that (6.4) is
indeed sufficient for accurate best approximation in the special case of scat-
tering from a smooth convex obstacle, using low-order conventional BEM.
In Section 6.3 we give an overview of the substantial progress made in

Melenk (2012) and Löhndorf and Melenk (2011), concerning the analysis
of hp-BEM (i.e., boundary elements of order p on meshes of diameter h,
with refinement in both h and p allowed). This theory provides sufficient
conditions that ensure (1.7) holds, with C independent of k, for general
analytic boundaries Γ. These conditions are satisfied if, for example, hk/p
is sufficiently small and p grows logarithmically in k.
An alternative and very powerful way to obtain quasi-optimality is to

establish the (rather strong) property of coercivity for the relevant bound-
ary integral operator. Despite the fact that the Helmholtz equation with
high wavenumber is typically viewed as highly indefinite, some correspond-
ing boundary integral formulations have remarkable coercivity properties,
as discussed in Section 5.7. These allow us to establish quasi-optimality
for Galerkin methods using any approximating subspace without a mesh
threshold and would provide alternative proofs of quasi-optimality for h- or
hp-BEM. However, more importantly for this article, this approach gives us
the only currently known way of establishing quasi-optimality for the hybrid
methods introduced in Section 3. This error analysis for hybrid spaces is
discussed in Section 6.4.
The error analysis of this section assumes that all (highly oscillatory) Ga-

lerkin integrals are computed exactly. Estimates for fully discrete Galerkin
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methods which combine results of this section with some of the quadra-
ture error estimates from Section 4 to provide rigorous fully discrete error
estimates for some hybrid methods are presented in Kim (2012).
Concerning notation in this section, for the h-version BEM (where the

polynomial degree p of the basis functions is fixed), the approximating space
is denoted by Vh, while for the hp version, we denote it by Vh,p. We do not
give a formal definition of such families of spaces here, but refer the reader
for example to Sauter and Schwab (2011, §4.1) or Löhndorf and Melenk
(2011, §3.3). We implicitly assume that the meshes are quasi-uniform and
that exact representation of Γ is used. Since we work in L2(Γ), our boundary
element spaces may be either continuous or discontinuous piecewise poly-
nomials. In Section 6.4 we will be concerned with hybrid spaces, which in
general depend on piecewise polynomials of various degrees and also on k.
In this case the relevant spaces, already described in detail in Section 3, will
be denoted in the abstract way as VN . Similar to Sections 3 and 5, for two
quantities D and E which may depend on h, p, and k, in this section we
write D � E if D ≤ C E for some constant C which is independent of h, p,
and k (hence C is also independent of N , the dimension of VN ). Also we
write D ∼ E if D � E and E � D.

6.1. k-explicit error estimates for the h-version of the BEM

In this subsection we write the combined potential operators on the left-
hand side of (6.2) and (6.1) in abstract form as λI + Lk, where λ = 1/2.
We also make the assumption that η ∈ R is chosen so that

C−1 ≤ η/k ≤ C (6.5)

for some constant C > 0, and the parameter η does not appear explicitly
in the abstract notation Lk. Thus, in abstract form, we are solving the
equation

(λI + Lk)v = f. (6.6)

Recall that since λI + Lk denotes one of the operators Ak,η, A
′
k,η defined

by (6.1) and (6.2) this operator is always invertible on L2(Γ) when Γ is
Lipschitz; see Theorem 2.27. Moreover, the bounds on ‖A−1k,η‖ presented in
Theorem 5.22 are a key ingredient to the theory below.
Now let us consider the h version of the Galerkin method, that is, we seek

an approximation vh ∈ Vh, ⊂ L2(Γ), the space of piecewise polynomials of
some fixed degree p ≥ 0 on shape-regular meshes of diameter h, with h
decreasing to zero. The Galerkin equations may be written((

λI + Lk

)
vh, wh

)
=
(
f, wh

)
, for all wh ∈ Vh. (6.7)

With Ph being the orthogonal projection from L2(Γ) onto Vh, the Galerkin
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equations (6.7) are equivalent to the operator equation(
λI + PhLk

)
vh = Phf. (6.8)

We begin with a simple classical lemma.

Lemma 6.1. Suppose for some δ > 0,

‖(I − Ph)Lk‖‖(λI + Lk)
−1‖ ≤ δ

1 + δ
. (6.9)

Then the Galerkin equations have a unique solution and satisfy the quasi-
optimal error estimate

‖v − vh‖ ≤ λ(1 + δ)‖(λI + Lk)
−1‖ inf

wh∈Vh
‖v − wh‖. (6.10)

Proof. Since δ > 0, the hypothesis implies that

‖I − (λI + Lk)
−1(λI + PhLk)‖ ≤

(
δ

1 + δ

)
< 1.

Using the fact that (I − A) is invertible if ‖A‖ < 1 (with ‖(I − A)−1‖ ≤
(1 − ‖A‖)−1), the previous bound implies that (λI + Lk)

−1(λI + PhLk) is
invertible, with

‖(λI + PhLk)
−1(λI + Lk)‖ ≤ 1

1− δ/(1 + δ)
= 1 + δ.

Thus (λI + PhLk) is invertible and

‖(λI + PhLk)
−1‖ ≤ (1 + δ)‖(λI + Lk)

−1‖.
Since we also have

v − vh = v − (λI + PhLk)
−1Phf

= (λI + PhLk)
−1(λv − Ph(f − Lkv))

= λ
(
λI + PhLk

)−1
(I − Ph)v,

the required estimate (6.10) follows readily.

The following corollary is the consequence of Lemma 6.1 when we have
at our disposal an estimate of the smoothing power of Lk.

Corollary 6.2. Suppose

N(k) := ‖Lk‖H1(Γ)←L2(Γ) < ∞. (6.11)

Then, for all δ > 0 there exists Cδ > 0 such that the condition

hN(k)‖(λI + Lk)
−1‖ ≤ Cδ (6.12)

is sufficient to ensure that the quasi-optimal estimate (6.10) holds.
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Proof. By standard approximation theory (see, for example Sauter and
Schwab (2011, §§4.3.4, 4.3.5)),

‖(I − Ph)Lk‖ � hN(k), (6.13)

and so the result then follows from Lemma 6.1 (with Cδ taken to be δ/(1+δ)
multiplied by the hidden constant in (6.13)).

While Lemma 6.1 and Corollary 6.2 provide general criteria which ensure
that the quasi-optimality estimate (6.10) holds, a bit more work is needed
to obtain k-explicit requirements on h. Combining Theorems 5.14 and 5.15
from Section 5.5 and recalling the choice (6.5) of η, we see that for s ∈ [0, 1],
and provided C2,µ, for some µ ∈ (0, 1), then for all k0 > 0

‖Lkv‖s � kβd+s‖v‖, where βd = (d− 1)/2, (6.14)

for k ≥ k0 where ‖ · ‖s denotes the norm in Hs(Γ). (Theorem 5.14 gives
this estimate for s = 0, Theorem 5.15 gives it for s = 1, and the case
of s ∈ (0, 1) follows by interpolation.) Using this estimate with s = 1,
we obtain directly the following result that quantifies the mesh threshold
required for quasi-optimality.

Theorem 6.3. Suppose that (6.14) holds for s = 1. Then, for each δ > 0
there exists Cδ > 0 (independent of h and k) such that the condition

h ≤ Cδ k
−(βd+1)‖(λI + Lk)

−1‖−1 (6.15)

ensures that the Galerkin equations have a unique solution satisfying the
quasi-optimality estimate (6.10).

Remark 6.4. For star-shaped domains, Theorem 5.22 gives us the upper
bound ‖(λI+Lk)

−1‖ � 1, and combining this with Theorem 6.3 immediately
shows that the quasi-optimality estimate (6.10) holds for star-shaped C2,µ

domains provided h � k−3/2 in 2D, and provided h � k−2 in 3D. While
these requirements are somewhat stronger than the convention (6.4), they
are sufficient to ensure that quasi-optimality holds with the constant in front
of the best approximation error in (6.10) independent of k, at least for these
domains.

In fact, as we shall now show, with a bit more work and with an additional
assumption, one can sharpen the quasi-optimality estimate (6.10) to show
that the Galerkin solution is asymptotically just as good as the best possible
approximation to v from Vh, that is, we shall show that

‖v − vh‖
infwh∈Vh ‖v − wh‖

→ 1 as h → 0. (6.16)

Theorem 6.5. Suppose (6.11) holds, and suppose also that

M(k) := ‖(λI + L∗k)
−1Lk‖H1(Γ)←L2(Γ) < ∞, (6.17)
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where L∗k is the adjoint of Lk. Then the condition (6.12) is sufficient to
ensure that the Galerkin equations have a unique solution, and furthermore
there exists a C0 independent of h and k such that if

C0 hC(k) ≤ 1 (6.18)

where

C(k) = N(k) + (λ+ ‖Lk‖)M(k),

then

inf
wh∈Vh

‖v − wh‖ ≤ ‖v − vh‖ ≤ [1 + C0 hC(k)] inf
wh∈Vh

‖v − wh‖. (6.19)

Proof. If we apply Ph to (6.6) and subtract the resulting equation from
(6.8), we obtain

λ(vh − Phv) = PhLk(v − vh). (6.20)

Then, writing

‖v − vh‖2 = (v − vh, v − Phv) + (v − vh, Phv − vh), (6.21)

we essentially now have to show that the second term on the right-hand side
goes to zero more quickly than ‖v − vh‖2. This is done by taking the inner
product of (6.20) with v − vh to obtain

λ(v − vh, Phv − vh) = −(v − vh, PhLk(v − vh))

= (v − vh, (I − Ph)Lk(v − vh))

− (v − vh, Lk(v − vh)). (6.22)

Using Cauchy–Schwarz and (6.13), the first term on the right-hand side of
(6.22) may be estimated as

|(v − vh, (I − Ph)Lk(v − vh))| � hN(k) ‖v − vh‖2. (6.23)

The second term on the right-hand side of (6.22) may be rewritten as

(v − vh, Lk(v − vh)) = ((λI + Lk)
−1(λI + Lk)(v − vh), Lk(v − vh))

= ((λI + Lk)(v − vh), (λI + L∗k)
−1Lk(v − vh))

= ((λI + Lk)(v − vh), (I − Ph)(λI + L∗k)
−1Lk(v − vh)),

where the last line uses Galerkin orthogonality (6.20), that is, Ph(λI +
Lk)(v − vh) = 0. (This is the classical ‘superconvergence argument’ for
second-kind integral equations; see, e.g., Chandler 1980.) Hence, using
Cauchy–Schwarz and (6.13) again, we have

|(v − vh, Lk(v − vh))| � h (λ+ ‖Lk‖)M(k) ‖v − vh‖2. (6.24)
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Thus, using (6.23) and (6.24) in (6.22) and using the definition of C(k), we
obtain

|(v − vh, Phv − vh)| � hC(k) ‖v − vh‖2.

Finally, combining this with (6.21) and using Cauchy–Schwarz, we obtain(
1− (C0/2)C(k)h

)
‖v − vh‖ � ‖v − Phv‖,

for some constant C0. If the threshold (6.18) holds then this yields the
result (6.19).

We now investigate how C(k) in the condition (6.18) depends on k. For
simplicity we assume that Γ is C2,µ for some µ ∈ (0, 1), and thus the bound
(6.14) holds. In this case the condition (6.12) for existence and uniqueness
of a solution to the Galerkin equations is contained within the condition
(6.15).
For a bound on the k-dependence of C(k) we need to bound M(k). This

is possible using the bounds on ‖(λI+Lk)
−1‖ (and thus on ‖(λI+L∗k)

−1‖),
but the resulting bounds on M(k) are unlikely to be sharp. For example in
the case Γ is star-shaped (so ‖(λI + Lk)

−1‖ � 1), consider u and g related
by

(λI + L∗k)
−1Lku = g.

Then (λI + L∗k)g = Lku and λ‖g‖1 � kβd+1
(
‖g‖ + ‖u‖

)
. Moreover, ‖g‖ �

‖Lku‖ � kβd‖u‖, and so

M(k) � k2βd+1.

Thus, using (6.11) and (6.14), C(k) � k3βd+1 and the condition (6.18)
becomes

hk3βd+1 � 1,

that is, hk5/2 � 1 in 2D, and hk4 � 1 in 3D. Finally, we can obtain con-
ditions under which we have asymptotic optimality, i.e., (6.16): from the
estimate (6.16) we see this is the case if hC(k) → 0 as k → ∞.
In summary, the standard projection method argument shows that under

the mesh threshold (6.15), that is, hk3/2 � 1 in 2D and hk2 � 1 in 3D, we
have quasi-optimality with C in (1.7) independent of k for C2,µ star-shaped
domains. The superconvergence argument shows us that, under the stronger
conditions that h decreases faster than k−5/2 in 2D (i.e., hk5/2 = o(1) as
k → ∞) and k−4 in 3D, (6.16) holds.

We now discuss the relation of the above results to the error analysis
of Banjai and Sauter (2007), which is obtained using the variational ap-
proach. In particular, Corollary 3.3 of that reference proves that, in the
case of piecewise constant BEM (i.e., the approximating space is Vh with
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polynomial degree p = 0), the Galerkin equations have a unique solution
and satisfy the error estimate

‖v − vh‖ � Cc inf
wh∈Vh

‖v − wh‖, (6.25)

provided that

hCcM(k) is sufficiently small. (6.26)

Here M(k) is defined by (6.17) and Cc is the continuity constant of the
sesquilinear form induced by λI + Lk, so that

|((λI + Lk)u,w)| ≤ Cc‖u‖ ‖w‖. (6.27)

Using (6.14) in the case s = 0, to bound Cc, we obtain from the results of
Banjai and Sauter (2007) that

‖v − vh‖ � kβd inf
wh∈Vh

‖v − wh‖, (6.28)

provided

hkβdM(k) is sufficiently small.

This can be compared to the conclusion of Remark 6.4 which says that if
Γ is C2,µ with µ ∈ (0, 1) (so that Theorem 6.3 holds) and star-shaped (so
that ‖(λI + Lk)

−1‖ � 1) then

‖v − vh‖ � inf
wh∈Vh,p

‖v − wh‖ provided h � k−(βd+1). (6.29)

An additional result in Banjai and Sauter (2007) is that, when Γ is the
unit sphere, and with the choice η ∼ k2/3, it turns out that ‖Lk‖ � 1 (see
Theorem 5.12 above), and hence Cc � 1 with this choice of η. Banjai and
Sauter (2007) then made the additional assumption (backed up by some
numerical evidence) that, for the unit sphere and with this choice of η,

M(k) � k (6.30)

(where M(k) is defined in (6.17)). Under this assumption, the stronger
estimate

‖v − vh‖ � inf
wh∈Vh

‖v − wh‖ provided hk � 1 (6.31)

follows from (6.25) and (6.26). However, it is not clear if (6.30) holds.
If (6.31) holds, then the h-version BEM could be described as not suffering

from the so-called ‘pollution effect’, a phenomenon widely studied in a finite
element context; see, for example, Babuška and Sauter (2000). For h-version
finite element methods the pollution effect has the consequence that the
number of degrees of freedom per wavelength must increase as k increases,
to maintain accuracy of the finite element solution. However, this effect
can disappear when hp refinement is carefully applied; see, for example,
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Ainsworth and Wajid (2010) and Melenk and Sauter (2011). Analogously,
although the property (6.31) has not yet been proved to hold for the h-BEM,
its analogue has recently been proved for the hp-BEM in Löhndorf and
Melenk (2011) (that is, they proved that quasi-optimality, with a constant
independent of k, holds for the hp-BEM provided the number of degrees of
freedom per wavelength is above a certain threshold). We discuss this work
in Section 6.3.

6.2. Best approximation error with piecewise polynomials in a particular
case

To convert the quasi-optimality property (1.7) into an estimate of the con-
vergence rate for the Galerkin solution, we need to estimate the best approx-
imation error appearing on the right-hand side of (1.7). As discussed above,
the convention for ensuring this approximation error is suitably controlled
is that h should satisfy (6.4). If Vh denotes a space of piecewise polynomials
of fixed degree p, an estimate which would justify this convention would be

inf
wh∈Vh

‖v − wh‖L2(Γ) � (hk)p+1 ‖v‖L2(Γ), (6.32)

for sufficiently large k. In the following lemma we show that, in a relevant
special case, (6.32) does indeed hold.

Lemma 6.6. Suppose Ω− is a 2D strictly convex domain with C∞ bound-
ary Γ and strictly positive curvature. Suppose that u is the solution of the
sound-soft scattering problem (2.16) and v = ∂u/∂n. Then, for all fixed
η ∈ R\{0}, (6.32) holds for p = 0.

Proof. We use the standard approximation result that

inf
w∈Vh

‖v − w‖L2(Γ) � h‖v‖H1(Γ) (6.33)

and seek a k-explicit estimate on ‖v‖H1(Γ).
Domı́nguez et al. (2007, Theorem 5.4, Corollary 5.5) have proved that

there exists k0 > 0 such that, for all k ≥ k0,

v(x) = k V (x, k) exp(ikx · â), (6.34)

where (see also Theorem 3.5 above), V satisfies

‖V (·, k)‖L2(Γ) � 1 and ‖∇ΓV (·, k)‖L2(Γ) � 1.

Now, since v = ∂u/∂n, v also satisfies the integral equation (1.5) with η = 0
and f given by (1.4), that is,(

1

2
I +D′k

)
v =

∂uI

∂n
= ik (n · â) exp(ikx · â).
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Now, using Theorem 5.14,

(1 + k1/2)‖v‖ �
∥∥∥∥(1

2
I +D′k

)
v

∥∥∥∥ = ‖f‖ = k‖n · â‖.

Since n · â does not vanish identically on Γ, we then have ‖v‖ � k1/2. (Note
that, for Γ a circle or sphere, this argument gives the stronger bound ‖v‖ � k
provided we use the bound on ‖D′k‖ in (5.25).)
Now, differentiating (6.34), we obtain

∇Γv(x) = k
(
iv(x)(â− (â · n)n) +∇ΓV (x, k) exp(ikx · â)

)
,

and thus
|v|H1(Γ) ≤ k

(
‖v‖+ ‖∇ΓV (·, k)‖

)
.

Since the first term on the right-hand side grows like k1/2 and the second
term is bounded in k, it follows that |v|H1(Γ) � k‖v‖ for sufficiently large k,
and the result follows on combination of this with (6.33).

Whereas the previous lemma used asymptotic results about the solution
of the sound-soft scattering problem to prove (6.32) for a specific Γ, it is
possible to prove a weaker version of (6.32) for much more general Γ using
only the fact that v = ∂u/∂n solves the integral equation (6.2), with f given
by (1.4), and the bounds of Theorem 5.15.

Lemma 6.7. (Graham et al. 2012) Let v = ∂u/∂n, where u is the so-
lution to the sound-soft scattering problem (2.16) (so v satisfies (6.2) with
f given by (1.4); see also (2.114)). If Γ is C2,µ, for some µ ∈ (0, 1), then for
all k0 > 0,

inf
wh∈Vh

‖v − wh‖L2(Γ) � hk(d+1)/2‖v‖L2(Γ) (6.35)

for all k ≥ k0.

The proof of this lemma bounds ‖v‖H1(Γ) by ‖v‖L2(Γ) using only the

second-kind structure of the integral equation (6.2) and the L2(Γ) → H1(Γ)
bounds on D′k and Sk in Theorem 5.15 (see Graham et al. 2012 for the
details). Thus this method also gives an analogous result for the indirect
integral equation (6.1), even though the physical meaning of its solution
is much less clear than for the direct equation (as discussed after Theo-
rem 2.33).

Lemma 6.8. (Graham et al. 2012) Let v be the solution to the indi-
rect boundary integral equation (6.1) with f = −uI (thus from (2.71) the
scattered field uS is then equal to (Dk − iηSk)v). If Γ is C2,µ, for some
µ ∈ (0, 1), then for all k0 > 0,

inf
wh∈Vh

‖v − wh‖L2(Γ) � hk(d+1)/2‖v‖L2(Γ) (6.36)

for all k ≥ k0.
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At first sight it may appear strange that the bounds (6.35) and (6.36)
hold for all (sufficiently smooth) domains, without any consideration of
trapping or non-trapping (which, as we saw in Section 5, can affect the
conditioning substantially). However, as mentioned above, all these bounds
do is estimate ‖v‖H1(Γ) by ‖v‖L2(Γ), with no information about how large
the latter may be (when Ω− is star-shaped we know ‖v‖L2(Γ) is bounded
polynomially in k by Theorem 5.22, whereas for certain trapping domains
it is exponentially large by Theorem 5.24).

6.3. Recent results of Löhndorf and Melenk

Considerable progress on k-explicit error analysis for (6.1) and (6.2) was re-
cently made by Löhndorf and Melenk (2011), who explore conditions under
which the quasi-optimality estimate

‖u− uh‖ ≤ C inf
vh∈Vh,p

‖u− vh‖ (6.37)

holds with C independent of h, p and k, where the approximating space in
the Galerkin method is the space Vh,p, of piecewise polynomials of degree
p on a quasi-uniform mesh of diameter h, and refinement with respect to
both h and p is allowed.

To give an example of the results in Löhndorf and Melenk (2011), let us
restrict to the indirect boundary integral equation (6.1), and assume that

‖(A∗k,η)−1‖ � 1 (6.38)

(as holds, for example, for Lipschitz star-shaped domains by combining
Theorem 5.22 with equation (2.65) and the remarks following it). Then a
main result (namely Theorem 3.17) in Löhndorf and Melenk (2011) proves
that for analytic surfaces Γ, there exist C, ε, σ > 0 independent of h, p and
k such that, provided(

h

σ + h

)p+1

+

(
kh

σp

)p+1

≤ εk−5, (6.39)

then (6.37) holds with C independent of h, p and k.
Because of the superalgebraic convergence with respect to p on the left-

hand side of (6.39), it is fairly straightforward to see that condition (6.39)
is satisfied and thus quasi-optimality (without pollution) is obtained if

kh

p
� 1 and p � log k. (6.40)

Note that this mesh threshold condition is much less stringent than that
which had to be imposed in the analysis of the standard h version in the
previous subsection. For example, Theorem 6.3 requires hk3/2 (respectively
hk2) to be sufficiently small in 2D (respectively 3D) for quasi-optimality to



High-frequency acoustic scattering 239

be guaranteed in the case when ‖A−1k,η‖ � 1. Moreover, it is additionally

shown in Löhndorf and Melenk (2011) that the modest conditions on h and
p in (6.40) remain sufficient for (6.37), even if the right-hand side of (6.38)
is allowed to grow in k with polynomial order. (Such growth occurs, for
example, in a range of ‘trapping’ domains: see Section 5.6.2.) Analogous
results also hold for the hp-BEM applied to the direct formulation (6.2).
The proof that (6.39) implies (6.37) has required the development in

Löhndorf and Melenk (2011) and Melenk (2012) of substantial new technical
tools for the Helmholtz equation. We only attempt a brief overview of these
tools here.
The first step in the proof of (6.37) is to make a decomposition of the

operator Ak,η in (6.1) in the form

Ak,η =

(
1

2
I +D0 + iS0

)
+Rk + k[Ak]. (6.41)

The k-independent first term (in round brackets) has a bounded inverse in
L2(Γ). The second term Rk satisfies the estimates

‖Rk‖H1(Γ)←L2(Γ) � k and ‖Rk‖L2(Γ)←L2(Γ) ≤ q, (6.42)

where q ∈ (0, 1) may be chosen as small as we like. (Recalling (6.14), the
norm of the compact part of Ak,η from L2(Γ) to H1(Γ) generally grows with
order kβd+1, so the left-hand estimate in (6.42) gives a better rate of growth
than this for Rk.)
In the third term in (6.41), Ak is an operator which maps L2(Γ) into

functions which are analytic in a neighbourhood of the surface Γ, but may
not be continuous across Γ, and [·] denotes the jump of such a function
across Γ. (Recall that Γ is assumed analytic in this theory.) Decompositions
such as this are discussed in depth in Melenk (2012), where an analogous
decomposition is also presented for A−1k .
The second step in the proof that (6.39) implies (6.37) is to combine these

decompositions with the variational theory of the Galerkin method for (6.2)
to show (Löhndorf and Melenk 2011, Theorem 3.8) (recalling assumption
(6.38)) that there exists a positive constant ε so that (6.37) holds provided

ξ(h, p, k) ≤ k−7/2ε,

where (with a slight change of the notation in Löhndorf and Melenk 2011),
ξ(h, p, k) is a bound on the rate of convergence of hp approximation of k[u]
and [∂u/∂n] over all u in a certain space of analytic functions defined on a
neighbourhood of Γ. Note that the quantity which we have here denoted
ξ is closely related to the quantities denoted ηi, i = 1, 2 in Löhndorf and
Melenk (2011).
Finally the result is obtained by estimating ξ using the technology for

quantifying hp approximation of analytic functions. Löhndorf and Melenk
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(2011, Lemma 3.16) have shown that provided kh/p is sufficiently small,
then

ξ(h, p, k) � k3/2
{(

h

σ + h

)p+1

+

(
kh

σp

)p+1}
.

Thus the proof that (6.39) implies (6.37) follows.
To summarize, we note that in Section 6.1 the essential mechanism driving

the analysis is that the operator Lk appearing in λI + Lk has a suitable
smoothing property (here we just need a k-explicit bound on the norm
of Lk, operating from L2(Γ) to H1(Γ)). The procedure of Löhndorf and
Melenk (2011) is structurally similar: the decomposition in (6.41) is one
where Ak,η is decomposed into an invertible operator plus an (extremely)
smoothing one. Ultimately, it is this smoothing property that leads to the
condition (6.39).

6.4. Error estimates for hybrid numerical-asymptotic methods

The methods used to prove stability and convergence in the previous two
subsections are heavily dependent on the fact that the basis functions in
the Galerkin method are piecewise polynomial. For example the standard
error estimate for piecewise polynomials in (6.13) plays a crucial role in
Corollary 6.2 and also in Theorem 6.5: see (6.24).
In this subsection we are primarily concerned with proving estimates for

hybrid methods whose basis functions are not usually piecewise polyno-
mial. To do this we revert to classical Galerkin estimates provided by Céa’s
lemma; this was stated in a rather general form as Lemma 2.48, and we
restate it here for this particular case.

Lemma 6.9. (Céa’s lemma) Suppose we have a problem which can be
written in weak form as follows. Seek v ∈ L2(Γ) such that

a(v, w) = (f, w), for all w ∈ L2(Γ), (6.43)

and assume that a satisfies the conditions

boundedness |a(u,w)| ≤ Bk ‖u‖ ‖w‖, (6.44)

coercivity |a(u, u)| ≥ αk ‖u‖2, (6.45)

for all u,w ∈ L2(Γ). Let VN be any subspace of L2(Γ) (which may depend
on discretization parameters such as h or p and also, possibly, on the wave
number k). Then consider the following approximate problem. Seek vN ∈
VN such that

a(vN , wN ) = (f, wN ), for all wN ∈ VN .

This problem has a unique solution vN which satisfies the error estimate

‖v − vN‖ ≤
(
Bk

αk

)
inf

wN∈VN
‖v − wN‖.
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We will apply this lemma to the Galerkin formulation in L2(Γ) of the
combined potential equations (6.1) and (6.2), that is, we consider the case
where the bilinear form a in (6.43) is

ak,η(u,w) := (Ak,ηu,w), or a′k,η(u,w) := (A′k,ηu,w). (6.46)

Moreover, we shall consider also formulations based on the star-combined
formulation (6.3), where a is

ak,∗(u,w) := (Aku,w). (6.47)

Using the continuity and coercivity results of Sections 5.5 and 5.7, we can
now give some theorems on quasi-optimality for the Galerkin method.

Theorem 6.10. Let Ω− be a C3 strictly convex domain with strictly pos-
itive curvature in 2D or 3D. Suppose the equation (6.43) is solved with
f ∈ L2(Γ) and the bilinear form a taken to be either a = ak,η, a = a′k,η or

a = ak,∗. Then there exists an η0 > 0 (independent of k) and a k0 > 0 such
that if η = η0k, then

‖v − vN‖ � k(d−1)/2 inf
wN∈VN

‖v − wN‖, for all k ≥ k0 and for all N.

Proof. By Theorem 5.25 there exists an η0 independent of k such that the
operators Ak,η and A′k,η are coercive for η = η0k and for all k greater than

some k0. In addition, Theorem 5.14 states that with this choice of η, ‖Ak,η‖
and ‖A′k,η‖ are O(k(d−1)/2); thus the result follows from Céa’s lemma.

Theorem 6.11. Let Ω− be a Lipschitz star-shaped domain in 2D or 3D.
If the equation (6.43) is solved with a = ak,∗, then for all k > 0 and all N

‖v − vN‖ � (1 + k(d−1)/2) inf
wN∈VN

‖v − wN‖.

Proof. The proof follows from the uniform coercivity of the star-combined
operator, given in Theorem 5.26, and the upper bound of O(k(d−1)/2) on its
norm given in (5.32).

Combining the previous two theorems with the best approximation results
in Section 3 we can prove a number of results on the convergence rates of
the hybrid numerical-asymptotic methods discussed in Section 3. Some
examples are given below.

Theorem 6.12. Let Ω− be a smooth (C∞) strictly convex domain with
strictly positive curvature in 2D. Suppose that the sound-soft scattering
problem (2.16) is solved with the Galerkin method using the standard com-
bined potential formulation (2.114) and the hybrid approximation space
defined in Section 3.1 (originally introduced in Domı́nguez et al. 2007). Let
p denote the degree of the polynomials used in each of the three zones (so
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p is proportional to the total number of degrees of freedom of the method),
and let n be an integer with 6 ≤ n ≤ p+ 1. Then there exist η0, k0, δ, and
c0, all greater than zero, such that, if the coupling parameter η is chosen to
be η = η0k, then

‖v − vN‖ � k19/18
{(

k1/9

p

)n

+ k4/9 exp(−c0 k
δ)

}
, (6.48)

for all k ≥ k0, where c0 and δ only depend on Γ. Thus, provided p grows
slightly faster than O(k1/9), the error is bounded as k → ∞.

In the following three theorems (all concerning polygons),

M(u) := sup
x∈Ω+

|u(x)|,

as in Theorem 3.9. As discussed below this theorem, the best currently
available bound on M(u) is that it is O(k1/2 log1/2 k) as k → ∞, but nu-
merical experiments suggest it is in fact O(1). For this reason, the bounds
in the following theorems will be explicit in M(u). Regarding notation, in
what follows N denotes the total number of degrees of freedom, p the degree
of polynomial approximation on each element, and ns the number of sides
of the polygon (as in Sections 3.2–3.4).

Theorem 6.13. Let Ω− be a convex polygon. Suppose that the sound-
soft scattering problem (2.16) is solved with the Galerkin method using the
star-combined potential formulation (6.47) and the hybrid approximation
space defined in Section 3.3.1 (originally introduced in Chandler-Wilde and
Langdon 2007). Then, with the same notation as in Theorem 3.11, we have
that, for all k0 > 0,

‖v − vN‖ � kM(u)(ns log(kL))
1/2

(
ns log(kL)

N

)p+1

, (6.49)

for all k ≥ k0.

Theorem 6.14. Let Ω− be a convex polygon. Suppose that the sound-
soft scattering problem (2.16) is solved with the Galerkin method using the
star-combined potential formulation (6.47) and the hp-type hybrid approxi-
mation space defined in Section 3.3.4 (originally introduced in Hewett et al.
2012). Then there exists a τ > 0 such that, for all k0 > 0,

‖v − vN‖ � k3/2M(u) exp (−pτ) (6.50)

for all k ≥ k0. Thus, if p grows logarithmically with k then the error
decays exponentially. (Note that this is a simplified bound, with the power
of k independent of corner angles. A similar philosophy is adopted in the
following theorem.)
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Theorem 6.15. Let Ω− be a non-convex polygon of the type considered in
Section 3.4. Suppose that the sound-soft scattering problem (2.16) is solved
with the Galerkin method using the star-combined potential formulation
(6.47) and the hp-type hybrid approximation space defined in Section 3.4
(originally introduced in Chandler-Wilde et al. 2012a). Then there exists a
τ > 0 such that, for all k0 > 0,

‖v − vN‖ � k2M(u) exp (−pτ) (6.51)

for all k ≥ k0. Thus, if p grows logarithmically with k, then the error decays
exponentially.

As mentioned at the beginning of this section, all these error estimates
assume that the Galerkin equations are solved exactly for vN . In practice,
the matrix entries of the sesquilinear form are highly oscillatory integrals,
as discussed in Section 4. Fully discrete error estimates for hybrid methods
in the case of a smooth convex obstacle have been obtained in Kim (2012),
by combining Theorem 6.12 with the analysis from Section 4.4 and the
quadrature error estimates from Section 4.3 and using the Strang lemma.

6.5. Alternative ways to measure the error

In this section we have concentrated on measuring the accuracy of vN by
considering

‖v − vN‖. (6.52)

In this subsection we discuss alternative measures of the error, which basi-
cally involve multiplying (6.52) by different powers of k. We consider only
the case where v = ∂u/∂n, with u the solution of the sound-soft scattering
problem (2.16); the considerations for other Dirichlet boundary conditions,
and for impedance boundary conditions, may be different.
Since v itself depends on k, rather than controlling the absolute error

(6.52), it might seem more sensible to control relative error measures such as

‖v − vN‖
‖v‖ or

‖v − vN‖
‖vI‖ ,

where vI = ∂uI/∂n (we saw this earlier in Section 6.2). The advantage of
the second of these is that the behaviour of ‖vI‖ is known, that is, ‖vI‖ ∼ k
as k → ∞ for an arbitrary obstacle. For smooth convex obstacles, the
Kirchhoff approximation shows that on the lit side ‖v‖ grows in proportion
to ‖vI‖ ∼ k, and thus it is reasonable to believe (and proved in Lemma 6.6
for the case of a circle) that ‖v‖ ∼ k. (Note that the asymptotics from
Domı́nguez et al. (2007) used in Lemma 6.6 show that ‖v‖ � k, and this
lemma showed that ‖v‖ � k1/2.) Thus, the second measure of error, and
also the first in at least the case that Γ is a circle, becomes

k−1‖v − vN‖. (6.53)
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As a third possibility, in certain cases where we use the ansatz (3.1), we
always know the leading-order part of the solution V0 (this could be zero),
thus what is really being computed in the BEM is the difference v− V0. To
assess the performance of methods in this case, we can compute the relative
L2 error defined as

‖(v − V0)− (vN − V0)‖
‖v − V0‖

=
‖v − vN‖
‖v − V0‖

. (6.54)

An alternative is to take the view that the computation of v = ∂u/∂n is
an intermediate step, and that the real goal is to compute u accurately in
the domain Ω+, by substituting the Galerkin approximation vN to ∂u/∂n
into Green’s integral representation (2.107). Denoting the resulting approx-
imation to u by uN , we may seek to control

‖u− uN‖Lp(G)

‖u‖Lp(G)
or

‖u− uN‖Lp(G)

‖uI‖Lp(G)
, (6.55)

where G ⊂ Ω+ is some particular region of interest.
Applying the Cauchy–Schwarz inequality to the expression for u − uN

given by Green’s integral representation yields the upper bound

|u(x)− uN (x)| ≤ c(x)‖v − vN‖L2(Γ), c(x) :=

{∫
Γ
|Φ(x, y)|2 ds(y)

}1/2

.

(6.56)
The k-dependence of ‖u‖Lp(G) is, in general, unknown, but ‖uI‖Lp(G) is

independent of k. In 3D, c(x) is also independent of k, but in 2D c(x) ∼
k−1/2. Thus, if one seeks to achieve small values for the second measure
of relative error in (6.55) by controlling ‖v − vN‖L2(Γ), one needs to ensure
that

k−(3−d)/2‖v − vN‖L2(Γ) (6.57)

is small. The scaling by k−(3−d)/2 in (6.57) is actually rather natural in that
it makes the expression (6.57) dimensionless.
In many applications it is not the solution u in Ω+ that is required, but

the far-field pattern of uS , F (x̂), defined in (2.10). In the case of sound-soft
scattering, it follows from (2.107) that

uS = −Sk
∂u

∂n
,

and an explicit formula for the far-field pattern of this is (2.23), with φ =
∂u/∂n. If we define FN to be (2.23) with φ replaced by vN (a Galerkin
approximation to ∂u/∂n), then we are again led to the consideration of
(6.57), since by the Cauchy–Schwarz inequality we have

|F (x̂)− FN (x̂)| � k−(3−d)/2‖v − vN‖L2(Γ). (6.58)
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We could also measure relative errors of F on S
d−1 analogously to (6.55),

that is,

‖F − FN‖Lp(Sd−1)

‖F‖Lp(Sd−1)

. (6.59)

Remark 6.16. Finally we note that obviously the Hölder inequality could
have been used instead of the Cauchy–Schwarz inequality in both (6.56) and
(6.58) to give |u(x)−uN (x)| and |F (x̂)−FN (x̂)| in terms of other Lp norms
of v− vN (with different powers of k). There is currently no theory on how
‖v − vN‖Lp(Γ) behaves, except for the case p = 2. Note that the numerical
results in Section 7.5 (in particular Tables 7.7 and 7.10) show that the error
‖v − vN‖L1(Γ) can be considerably less than ‖v − vN‖L2(Γ) (see also Hewett
et al. 2012). Regarding the prospects of extending the theory, it is fairly
straightforward to modify the best approximation results of Section 3 to
apply in Lp(Γ) rather than L2(Γ). (Via (A.25), such estimates can moreover
be used to get best approximation results in negative Sobolev norms, for
example in H−1/2(Γ).) However, it is unclear how to prove a version of the
k-explicit quasi-optimality results, such as Theorem 6.11, in Lp(Γ) rather
than L2(Γ).

7. Numerical results

In this section we present numerical results for a range of scattering prob-
lems, using the hybrid approximation spaces described in Section 3. In
cases where the theory of Section 6 is applicable, the experiments confirm
the validity of the error estimates proved in that section. The experiments
also show that hybrid methods are effective computational algorithms in
cases where a full error analysis is not available. Further, we see that the
methods sometimes perform better than the theory predicts, with the num-
ber of degrees of freedom required to achieve a prescribed level of accuracy
growing, as k increases, more mildly than predicted, and in some cases
even decreasing.
These results confirm that hybrid methods achieve, at least for classes

of scattering problems, the objectives set out in Q1 in Section 1. For the
examples with smooth scatterers, which we implement making full use of
the numerical schemes for oscillatory integrals detailed in Section 4, we also
show computation times. Impressively, these remain bounded as k increases
at the same time as the accuracy increases, confirming that the objectives
set out in Q2 in Section 1 are also achieved.

7.1. Smooth convex obstacles

We thank T. Kim for the numerical results in this subsection. These illus-
trate the hybrid method described in Section 3.1, which was implemented
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Table 7.1. Error ep on unit circle with exact
solution given by a Fourier series.

p k = 125 k = 250 k = 500

4 3.49×10−2 3.05×10−2 2.71×10−2

8 8.34×10−3 3.96×10−3 3.04×10−3

12 1.03×10−2 2.99×10−3 1.22×10−3

16 1.33×10−2 4.44×10−3 1.58×10−3

22 1.74×10−2 6.27×10−3 2.42×10−3

Table 7.2. Error ep on unit circle with exact
solution taken to be v24.

p k = 1000 k = 4000 k = 16000

4 4.41×10−2 2.35×10−2 2.50×10−2

8 2.80×10−3 2.20×10−3 1.82×10−3

12 9.61×10−4 3.43×10−4 2.61×10−4

16 8.26×10−4 1.81×10−4 5.45×10−5

22 5.68×10−4 1.02×10−4 9.68×10−6

using the quadrature scheme described in Section 4.4. Throughout this sub-
section we compute the sound-soft scattering of an incident plane wave with
direction â = (1, 0) by a smooth convex obstacle. The integral equation we
solve is (2.114) with η = k. The boundary Γ will be parametrized by a
mapping ζ : [0, 2π] → Γ and the shadow boundary (3.6) consists of two
points xi = ζ(ti), i = 1, 2. With the Fock zones (3.25), (3.26) taken to be

Λ1 = [t1 − ak−1/3+δ, t1 + a′k−1/3+ε], Λ2 = [t2 − a′k−1/3+ε, t2 + ak−1/3+δ]
(7.1)

(with parameters described below), the approximating space is VN , as given
by (3.27). Since, in this subsection, the order of the numerical scheme is
determined by the polynomial degree p, we denote the space by Vp. The
Galerkin approximation of the factor V in (3.14) is then denoted Vp, and
the corresponding approximation of v is denoted vp.
Our first experiment is for the unit circle with ζ(t) = (cos t, sin t). In

Table 7.1 we tabulate the proxy for the relative error (recall the discussion
around (6.53))

ep =
1

k
‖v − vp‖ (7.2)

for various values of p and k. In this case the solution v = ∂u/∂n can
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Table 7.3. Approximate errors |Vp((−b, 0), k) + 2i|, for the elliptical
scatterer with b = 3, c = 1.

p k = 1000 k = 4000 k = 8000 k = 16000 Relative time

6 2.94×10−3 8.71×10−3 2.90×10−2 5.26×10−2 1
8 3.44×10−3 2.54×10−3 1.07×10−2 2.20×10−2 1.16

10 3.52×10−3 1.01×10−3 3.98×10−3 9.21×10−3 1.36
12 3.34×10−3 8.34×10−4 1.55×10−3 3.80×10−3 1.65
14 2.65×10−3 7.35×10−4 6.86×10−3 1.49×10−3 1.86
16 3.67×10−3 7.94×10−4 4.50×10−4 5.14×10−4 2.22
18 2.38×10−3 7.05×10−4 3.87×10−4 1.87×10−4 2.54

â b

c

Figure 7.1. Elliptical scatterer with semi-axes b, c.

be found exactly as a Fourier series, and the errors (7.2) can be computed
accurately by quadrature. The parameters for the Fock zones are a = 3.52,
a′ = 2.20, ε = 1/9, δ = 0. The table shows convergence as p increases, up
to a saturation error which decreases as k increases. This is caused by the
exponentially decaying k-dependent (but p-independent) term in the error
estimate (6.48). We also notice an improvement in accuracy for fixed p as
k increases, although the estimate in Theorem 6.12 does not predict this.
The Fourier series providing the exact solution is slow to converge for very
large k. We therefore illustrate the same convergence behaviour for larger
values of k in Table 7.2, where we give values of ep computed using v24 as
an approximation of the exact solution v. Here the exponentially decaying
k-dependent part of the error is not visible. In these examples the dimension
of the hybrid space and hence the size of the matrix being inverted is 3p+3.
Our second experiment is for an elliptical scatterer with semi-axes b, c, as

shown in Figure 7.1. The parameters for the Fock zones are a = 24, a′ = 16,
ε = 1/9 and δ = 0. Here the exact solution v is unknown, but comparing the
physical optics approximation (3.4) with the ansatz (3.7) (recall also (3.3))
it is known that the factor V ((−b, 0), k) approaches −2i with rate O(k−1)
as k → ∞. In Table 7.3 we give the values of the error |Vp((−b, 0), k) + 2i|
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Figure 7.2. Ellipse with b = 3, c = 1, k = 1000 and p = 12.

for the case b = 3, c = 1 for various values of k and polynomial degree p.
In this case the quadrature rules from Section 4.4 are set up once and used
for all values of k, so the computational times are fixed with respect to k.
(More details of the choice of parameters in the quadrature rules and how
to obtain fixed computation times with varying k are given in Kim (2012).)
In Table 7.3, for fixed small p, the errors grow slightly with k. For larger
p, the errors decrease as k → ∞. The column for k = 16000 shows an
experimental rate of decay of about O(exp(−0.45p)) as p → ∞. The final
column indicates the computation time as a proportion of the time taken
for p = 1 and shows an optimal growth rate of about O(p2). (Recall that
the stiffness matrix for the Galerkin method has dimension O(p).) For this
ellipse, in Figure 7.2(a) we illustrate the computed oscillatory solution v, and
in Figure 7.2(b) the corresponding slowly varying factor V (for k = 1000,
computed with p = 12).
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Table 7.4. The errors ep defined in (7.3).

Standard

p k = 200 k = 400 k = 600 Time (s)

4 1.47×10−2 3.09×10−2 3.49×10−2 84
8 2.18×10−3 4.16×10−3 4.99×10−3 101

12 1.53×10−3 6.83×10−4 7.87×10−4 135
16 2.25×10−3 6.59×10−4 3.73×10−4 184

Star-combined

p k = 200 k = 400 k = 600 Time (s)

4 1.62×10−2 3.54×10−2 4.09×10−2 118
8 2.91×10−3 5.83×10−3 6.24×10−3 136

12 3.04×10−3 9.85×10−4 9.97×10−4 180
16 2.72×10−3 8.36×10−4 6.97×10−4 238

The final example compares the standard combined potential formulation
(2.114) (with η = k) with the star-combined formulation (2.115). The
ellipse parameters are b = 2, c = 1 and the Fock zone parameters are
a = 4.91, a′ = 3.55, ε = 1/9, δ = 0. The stiffness matrices for the surface
gradient of the single-layer potential arising in the star-combined operator
were computed using the 2D version of the integration by parts procedure
in Section 4.1.3. In Table 7.4 we tabulate the relative error

ep =
‖v − vp‖

‖v‖ , (7.3)

with the ‘exact’ solution v obtained (for moderate k only) via the Nyström
method of Colton and Kress (1998, §3.5). The relative errors were estimated
using Simpson’s rule with a sufficient number of quadrature points. Again as
k increases, and for low p, the errors may increase slightly. This is consistent
with Theorem 6.12. Again, for larger p, the errors decrease as k grows, which
is a better result than the theory predicts. The star-combined method per-
forms comparably to the standard method. The computing times are longer
(timings are in seconds) due to the appearance of an additional integral op-
erator, namely ∇ΓSk, but the stronger theory for this method motivates its
investigation. The growth rate of the CPU time with increasing p in the
star-combined case is of the same order as in the standard case.
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Much more detail of these experiments, including an investigation of how
the choice of the intervals Λ1 and Λ2 should depend on the curvature of Γ
at the shadow boundary points, is given in Kim (2012).

7.2. Sound-soft convex polygon

For the case of a sound-soft convex polygon, we present numerical results
using the hp-version BEM described in Section 3.3.4. We consider scattering
by a square of side length 2π (so that the number of wavelengths per side is
equal to k), with both grazing and non-grazing incidence angles (showing the
robustness of the scheme with respect to angle of incidence). The scatterers,
the incident direction vectors and the corresponding total fields for k =
10 are all plotted in Figure 7.3. We solve the BIE (2.114), with η = k,
and demonstrate exponential decay of the error on the boundary as the
polynomial degree p increases, with only a very mild dependence on the
wavenumber k, consistent with the best approximation error estimate (3.48).
Rigorous error estimates for this method are presented in Theorem 6.14

only in the context of the star-combined formulation. However, our numer-
ical results, computed by solving the standard combined potential equation
(2.114), are empirically consistent with (6.50). In our experiments we take
the same degree p of polynomial approximation on each element, and the
same number of layers on each graded mesh (chosen proportional to p; see
also Section 3.3.4), using the same parameter choices as given in Hewett
et al. (2012, §7), to which we refer for details. The total number of degrees
of freedom for these examples is 16(p + 1)2. Since, as in Section 7.1, the
order of the numerical scheme is determined solely by the polynomial degree
p, we again denote our approximation of v = ∂u/∂n by vp.

(a) non-grazing incidence (b) grazing incidence

Figure 7.3. Scattering by a sound-soft square of side length 2π, k = 10.
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Figure 7.4. Scattering by a sound-soft square of side length 2π, for k = 160.

To illustrate the qualitatively different behaviour of the solution on sides
with grazing incidence, in Figure 7.4 we plot, for k = 160 and for cases (a)
and (b) of Figure 7.3, graphs of |(v − V0)(s)|/k against s, where V0 is the
known leading-order part of the solution (see (3.35) and (3.8)). The ‘exact’
solution v = ∂u/∂n is the numerical solution computed with 1024 degrees
of freedom (corresponding to p = 7). The solution in each case is singular
at the corners of the polygon, which are at s = sj := 2jπ, j = 0, . . . , 4
(note the logarithmic scale on the vertical axis, and also that the solution is
plotted for 100000 evenly spaced values of s). As s increases away from the
corners, for case (a) |(v − V0)(s)| decays like |s − sj |−3/2 on all four sides,

whereas for case (b) |(v− V0)(s)| decays like |s− sj |−3/2 on the illuminated

and the shadow sides, but like |s− s0|−1/2 and |s− s3|−1/2 on the two sides
with grazing incidence, as seen in Figure 7.4(b). This suggests that, for
n = 0, Theorem 3.10 is sharp in its dependence on t for the case of grazing
incidence, but not for non-grazing incidence. (For the impedance half-plane
problem we saw this difference between grazing and non-grazing explicitly
in (3.32) and (3.33), and we conjecture that similar estimates will hold for
the polygonal scatterer considered here.) The function |v − V0| is highly
oscillatory in the (apparently) shaded areas in Figure 7.4.
In Figure 7.5 we plot (on a logarithmic scale) a measure of relative L2 error

different from that in (7.3) (recall the discussion around (6.54)), namely

ep =
‖v − vp‖
‖v − V0‖

,

against p, for cases (a) and (b) and for a range of values of k. In each case
we take the ‘exact’ reference solution to be that computed with p = 7. Full
details of how ep is accurately computed are provided in Hewett et al. (2012).
The linear plots in Figure 7.5 clearly demonstrate exponential convergence
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Figure 7.5. Relative errors ep for scattering
by a sound-soft square of side length 2π.

with respect to the polynomial degree p, with only very mild growth in the
relative error ep as k increases. In particular it is clear from these figures
that ep remains bounded if p is increased by 1 each time k is increased by
a factor of 4. Thus increasing p proportional to log k is enough to maintain
accuracy. The scheme clearly copes well with grazing incidence; indeed,
because ‖v − V0‖ is bigger, if anything the problem with grazing incidence
is solved more accurately, as measured by ep, than the one with non-grazing
incidence.
Further numerical results for the same scheme, investigating how the error

depends on the geometry of the obstacle (particularly the sharpness of the
corners), and also demonstrating its accuracy for computing solutions in the
domain Ω+ and computing far-field patterns, can be found in Hewett et al.
(2012). These results exhibit computation times that grow approximately
logarithmically with k, illustrating the power of the quadrature schemes
described in Section 4.4.

7.3. Curvilinear polygon

For the case of a sound-soft curvilinear polygon, we present numerical results
using the scheme described in Section 3.3.2. The scatterer we consider is
depicted in Figure 7.6, where we show the incident direction and total field,
plotted for k = 20. The scattering obstacle consists of the intersection of
two circles of radius 3, forming a ‘lens’ shape (with internal corner angles
2π/3), and the incident field is such that the boundary between the shadow
and illuminated regions coincides with the corners of the obstacle.
Full details of this example are provided in Langdon et al. (2010), where

numerical results are presented for the case where the integral equation
(2.114), with η = k, is solved using the hybrid approximation space
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Figure 7.6. Scattering by a curvilinear polygon, k = 20; the dotted line
indicates the circle on which the total field is computed, for comparison
of errors between different discretizations, as described below.

described in Section 3.3.2 and the unknowns V , V ±m are approximated with
piecewise constant functions. These examples demonstrate that the number
of degrees of freedom N required to approximate v = ∂u/∂n to a prescribed
level of relative accuracy (using the measure (6.53)) appears to grow only
logarithmically with k as k increases, and that O(N−1) convergence is ob-
served for fixed k.
Here, we investigate the accuracy of the approximation to the solution in

the domain Ω+; specifically we compute the total field u = uI +uS (by sub-
stituting the approximation vN to v = ∂u/∂n = ∂nu into the representation
formula (2.107)) on the circle (of radius r = 3) surrounding the scatterer,
illustrated in Figure 7.6. With a slight abuse of notation, we denote the
solution at the point r(cos t, sin t) on the circle by uN (t), t ∈ [−π, π], where
t = 0 corresponds to the point on the circle in the deepest shadow (i.e.,
furthest to the right in Figure 7.6). Plots of |u(t)| for k = 20 and k = 320
(computed with N = 1792 and N = 2264 respectively) are shown in Fig-
ure 7.7, with the shadow region indicated.
In Figure 7.8 we plot the relative maximum error on the circle (recall

(6.55)),

eN =
maxt∈[−π,π] |u(t)− uN (t)|

maxt∈[−π,π] |u(t)|
,

against N for different values of k. The maxima in this formula were ap-
proximated by sampling t at 30k evenly spaced points on [−π, π]. The
algebraic decay of eN with increasing N is clear in Figure 7.8 (note the
logarithmic scale on each axis). Moreover, for fixed N , eN appears to grow
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Figure 7.7. Total field evaluated on the circle of Figure 7.6.
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Figure 7.8. Relative maximum errors on the circle of Figure 7.6.

only mildly as k increases. In Table 7.5 (overleaf) we show the gradient of
the best fitting (least-squares) linear approximations to the curves, for each
fixed value of k; as piecewise constant basis functions have been used, we
might expect these gradients to be approximately equal to one. The values
vary for different values of k, but the average convergence rate is close to
O(N−1) in each case.

For this example we also compute an approximation to the far-field pat-
tern F of uS on the unit circle S

1 (using the formula (2.23), with φ re-
placed by vN , as discussed in Section 6.5), and the estimated orders of
convergence as N → ∞ for various fixed k are given in Table 7.5 (and
see also Figure 7.10). With F (t) denoting the far-field pattern in the di-
rection (cos t, sin t), plots of F (t), t ∈ [−π, π] for k = 20 and k = 320
(again computed with N = 1792 and N = 2264 respectively) are shown in
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Figure 7.9. Far-field patterns, scattering by a curvilinear polygon.
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Figure 7.10. Relative absolute maximum errors in the
far-field pattern, scattering by a curvilinear polygon.

Figure 7.9, again with the shadow region indicated. In Figure 7.10 we plot
approximations to (recall (6.59))

eN =
‖F − FN‖L∞(S1)

‖F‖L∞(S1)
,

for various k and N . To approximate the uniform norms, we computed FN

at 30k evenly spaced nodes on the unit circle. Again, the algebraic decay
with respect to N for fixed k is clear (see Table 7.5), and the error for
fixed N remains roughly constant as k increases. We have no convergence
theory for this method, but the numerical results indicate that it works
well. In particular with k = 320 the scatterer contains 640 wavelengths but
about 100 degrees of freedom are sufficient to obtain 1% accuracy for the
far-field pattern.
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Table 7.5. Approximate orders of convergence
(with respect to N for fixed k) for the computation
of the total field in the domain (Figure 7.8) and
the far-field pattern (Figure 7.10).

Figure k = 80 k = 160 k = 320

Figure 7.8 −1.5 −1.2 −1.1
Figure 7.10 −1.7 −1.5 −1.5

7.4. Impedance convex polygon

Here we present results for scattering by a convex polygon with impedance
boundary conditions. The total field u is required to satisfy (2.13) with
h = 0 and β = 1, so that the scattered field uS satisfies (2.18) with h
given by (2.17). We use the hybrid method described in Section 3.3.3 (with
p = 0, that is, piecewise constant approximation to V ±m ) and, as in Sec-
tion 7.2, we consider scattering by a square of side length 2π, considering
incidence fields in both grazing and non-grazing directions. The problem
is solved using the BIE (2.111), with unknown v = γu. In fact this in-
tegral equation is not uniquely solvable for values of k that correspond to
irregular frequencies (recall Remark 2.45). All of the examples in this sub-
section are computed for such values of k, and, as we shall see, the loss of
uniqueness at the continuous level does not appear to lead to any problems
at the discrete level for the hybrid method. (This is in contrast to conven-
tional boundary element solvers, which are known to exhibit poor accuracy
near irregular frequencies.) A comparison of our numerical results with the
high-frequency asymptotics for the impedance wedge problem with grazing
incidence (contained in Osipov, Hongo and Kobayashi 2002) reveals that
our hybrid method provides an accurate solution (see Figure 7.13(b)).
In Figure 7.11(a) we plot the absolute errors ‖v−vN‖ (where v = γu is the

Dirichlet data of the total field on Γ) for the case of non-grazing incidence,
illustrating the convergence with respect to N (the total number of degrees
of freedom) for various fixed k. The ‘exact’ solution v was computed using a
large value of N (details are provided in Chandler-Wilde et al. 2012b). For
fixed k, the convergence appears to be O(N−1), and for fixed N it appears to
beO(k−1/2), both of which are consistent with the estimate (3.45) (assuming
M(u) = O(1)) in the case p = 0 (recall piecewise constant approximation to
V ±m is being used here). In Figure 7.11(b) we also plot the 2-norm condition
number of the Galerkin matrix arising from the hybrid method for each value
of k and N , showing that the conditioning improves as k increases (for fixed
N). Further results and discussion, including discussion of the apparently
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Figure 7.11. Scattering by a square with impedance
boundary conditions: non-grazing example.
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Figure 7.12. Scattering by a square with impedance
boundary conditions: relative errors eN , defined by (7.4).

advantageous aspects of hybrid methods when solving non-uniquely solvable
BIEs, are given in Chandler-Wilde et al. (2012b).
As for the sound-soft problem described in Section 7.2, we again have an

exact representation for the leading-order part of the solution V0 in (3.35)
(for details see Chandler-Wilde et al. 2012b, §2). In Figure 7.12 we show
the relative errors, defined (as in (6.54)) by

eN =
‖v − vN‖
‖v − V0‖

, (7.4)

for various k and for the cases of incident fields with both grazing and non-
grazing angles of incidence. A comparison of the relative errors for the two
examples reveals that the results are similar, with the approximation to the
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Figure 7.13. Grazing incidence example: behaviour of solution and
comparison with asymptotically derived formula. (a) Boundary
solution: k = 5 (top), k = 10 (second from top), k = 20 (second
from bottom), k = 40 (bottom). (b) Relative difference between
boundary solution and asymptotic behaviour for scattering by
wedge: k = 10 (top), k = 40 (middle), k = 160 (bottom).

grazing solution, as measured by eN , slightly more accurate, reflecting the
fact that ‖v − V0‖ is larger in the grazing incidence case.
Finally, we validate our computations via comparison with an asymptotic

approximation, valid in the case of an infinite right-angled wedge with im-
pedance boundary conditions, as derived by Osipov, Hongo and Kobayashi
(2002). Specifically, their results predict that, for grazing incidence and
when β = 1, on the edge that runs parallel to the incident direction (with t
here representing distance from the corner),

v(t)− V0(t) ∼
√
2√

πkt
exp(i(kt+ π/4)) =: Θk(t), as kt → ∞. (7.5)

In Figure 7.13(a) we show |v−V0| as a function of arc-length s on the whole
boundary, with the sides parallel to the incident direction corresponding to
s ∈ [0, 2π] and s ∈ [4π, 6π]. In Figure 7.13(b) we plot

|v(s)− V0(s)−Θk(s)|
|v(s)− V0(s)|

, (7.6)

on the interval s ∈ [λ, 2π − λ], where (recall Section 1) λ = 2π/k is the
wavelength (i.e., we exclude the region in the immediate vicinity of the
corner from this comparison). As k increases, the ratio (7.6) decreases
rapidly; for k = 160, it is of the order of 1% along almost the entire length
of the side of the polygon. Chandler-Wilde et al. (2012b, Figure 4) reveal
that, even for k = 40, the numerical and asymptotic solutions are almost
indistinguishable except in the immediate vicinity of the corner. These
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results provide strong support for the claim that the hybrid numerical-
asymptotic approximation space has picked out the ‘correct’ solution to the
integral equation, even in the absence of invertibility at the continuous level.

7.5. Non-convex polygon

For the case of a sound-soft non-convex polygon, we present numerical re-
sults for the solution of the BIE (2.114), with η = k, solved using the
hp scheme of Section 3.4. Rigorous error estimates for this method are pre-
sented in Theorem 6.15 only in the context of the star-combined formulation.
However, as in Section 7.2, the numerical results below indicate that solving
the standard combined potential equation (2.114) yields results consistent
with those proved in Theorem 6.15. Specifically, we see exponential decay
of the error on the boundary as the polynomial degree p increases, with only
a very mild dependence on the wavenumber k, consistent with (and in fact
rather better than, in terms of dependence on k) the best approximation
error estimate given in Theorem 3.13.
The scatterer is depicted in Figure 7.14, where we show the incident

direction and total field for k = 5 (a circle, on which we compute the total
field below, is also plotted in the figure). Full details of this example are
provided in Chandler-Wilde et al. (2012a). Note that for this example,
one (convex) side is entirely illuminated, two sides (one convex and one
non-convex) are entirely in shadow, and one (non-convex) side is partially
illuminated; the upper section of the vertical side in the figure is illuminated,
whilst the lower section is shadowed by the adjacent non-convex (horizontal)
side. This type of scenario involving partial illumination of a side is not
possible for convex polygonal scatterers, and is one of the reasons for the
more complicated asymptotics in this case (recall Figure 3.3).

Figure 7.14. Total field, scattering by a non-convex polygon.



260 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

Table 7.6. Non-convex polygon: absolute and relative errors, k = 5, 160.

k = 5 k = 160

p N ‖v − vp‖/k ep ep/ep−1 p N ‖v − vp‖/k ep ep/ep−1

1 56 1.7287 0.8108 − 1 56 0.3336 0.9280 −
2 120 1.3905 0.6522 0.80 2 120 0.2720 0.7564 0.82
3 208 1.1102 0.5207 0.80 3 208 0.2168 0.6029 0.80
4 320 0.8642 0.4053 0.78 4 320 0.1685 0.4686 0.78
5 456 0.6340 0.2974 0.73 5 456 0.1235 0.3434 0.73

Table 7.7. Non-convex polygon: absolute and relative
errors (L2 and L1), p = 4.

p = 4

k N N/(L/λ) ‖v − vp‖/k ep e1p

5 320 10.7 0.864 0.405 0.012
10 320 5.3 0.630 0.418 0.016
20 320 2.7 0.432 0.427 0.018
40 320 1.3 0.315 0.440 0.018
80 320 0.7 0.230 0.454 0.019
160 320 0.3 0.169 0.469 0.019

As in Section 7.2 we again take the same degree p of polynomial ap-
proximation on each element, and the same number of layers on each mesh
(chosen proportional to p). For all examples in this subsection, the total
number of degrees of freedom is N = 12p2 + 28p + 16, and since the order
of the numerical scheme is determined solely by the polynomial degree p,
we again denote our approximation of v = ∂u/∂n by vp. Also, as in both
Section 7.2 and Section 7.4, we again have an exact representation for the
leading-order part of the solution V0 in (3.49) (see Theorem 3.12). Our
measure of relative error is defined in this case (as in (6.54) and (7.4)) by

ep =
‖v − vp‖
‖v − V0‖

, (7.7)

where the ‘exact’ reference solution v is computed with p = 7 (and hence
N = 800) in each case.
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In Table 7.6 we show the scaled absolute L2 errors ‖v − vp‖/k, and the
relative L2 errors ep defined as in (7.7), for k = 5 and k = 160 and for p =
1, . . . , 5. The last column shows the ratio ep/ep−1, and the roughly constant
value of this ratio demonstrates exponential convergence with respect to p
for fixed k. Moreover, for fixed p, the scaled absolute errors decrease as
k increases (we return to this point below) and the relative errors remain
more or less bounded.
Further, in Table 7.7 we fix p = 4 and show the scaled absolute and rela-

tive errors for a range of values of k. In this table, N/(L/λ) (where L is the
length of the boundary) is the number of degrees of freedom per wavelength
(which, for conventional boundary element solvers would typically need to
be of the order of 10 or so for ‘engineering accuracy’). In the final column
of Table 7.7 we also show relative L1(Γ) errors, defined by

e1p =
‖v − vp‖L1(Γ)

‖v − V0‖L1(Γ)
. (7.8)

Our interest in these stems from the fact that the error in the far-field
pattern and in solutions in the interior of Ω+ can be estimated in terms of
the error in L1(Γ) (see Remark 6.16). Hence it is interesting to note that in
Table 7.7, the relative L1(Γ) error is (over 20 times) smaller in magnitude
than the relative L2(Γ) error. (Recall that ‖ · ‖ always denotes the L2

norm on Γ.) The theory in Chandler-Wilde et al. (2012a) and Hewett et al.
(2012) only proves L2(Γ) error bounds (and indeed these deteriorate in the
polygonal case if an interior corner angle at any corner decreases to zero),
and it remains an open question to explain theoretically the observation that
the far-field pattern, for example, remains well approximated, even in the
case of such extreme angles. (This would follow, as noted in Remark 6.16,
if error bounds in L1(Γ) could be established, uniform in the corner angles.)
In Table 7.8, we show the relative error of the solution in the domain,

‖u− up‖L2(G)

‖u‖L2(G)
(7.9)

(recall (6.55)), where G represents the circle plotted in Figure 7.14 (and
L2(G) is the L2 norm on the 1D manifold G), for k = 5 and k = 160, and
for p = 0, . . . , 5 (recall that the ‘exact’ reference solution is that computed
with p = 7; the L2 norms in (7.9) are computed using the trapezoidal
rule with 30 000 nodes). For fixed k, the relative error appears to decrease
exponentially with respect to p, and the errors for fixed p are comparable in
magnitude for the two values of k. Moreover, these errors are much smaller
than the L2(Γ) errors given in Tables 7.6 and 7.7, and are much closer in
size to the relative L1(Γ) errors presented above.
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Table 7.8. Relative L2 error (given
by (7.9)) for the solution computed
on the circle shown in Figure 7.14.

p N k = 5 k = 160

0 16 4.7× 10−2 1.3× 10−2

1 56 3.4× 10−3 4.3× 10−3

2 120 9.2× 10−4 2.6× 10−4

3 208 3.0× 10−4 9.4× 10−5

4 320 1.2× 10−4 4.0× 10−5

5 456 3.1× 10−5 1.6× 10−5

Table 7.9. Relative L2 error for the
computation of the far-field pattern,
non-convex polygon.

p Error, k = 5 Error, k = 160

0 6.7× 10−2 1.9× 10−2

1 5.0× 10−3 6.1× 10−3

2 1.4× 10−3 3.6× 10−4

3 4.6× 10−4 1.3× 10−4

4 1.8× 10−4 5.6× 10−5

5 4.8× 10−5 2.2× 10−5

In Table 7.9, we show the relative L2 error in the approximation of the
far-field patterns (recall (6.59)),

‖F − FN‖L2(S1)

‖F‖L2(S1)
, (7.10)

again for k = 5 and k = 160 (computed, as above, using the trapezoidal rule
with 30 000 nodes). The errors are comparable in magnitude and behaviour
with those found in Table 7.8 for the domain solution.
The results of Tables 7.6–7.9 suggest that, for fixed p, the accuracy of

our approximation to the solution on the boundary (measured by (6.53)),
the solution in the domain (measured by (7.9)) and the far-field pattern
(measured by (7.10)) all improve as k increases. We conclude this subsection
with a closer look at how the results in Table 7.7 compare with the best
approximation error estimate given in Theorem 3.13.
To investigate this, we make the hypothesis that error(k) := ‖v−vp‖/k ∼

kµ as k → ∞, where error(k) refers to the scaled absolute L2 error for a
particular value of k, and µ denotes the estimated order of growth (µ > 0)
or decay (µ < 0). Under this hypothesis, we estimate µ by calculating the
gradient of the best fitting least-squares linear approximation to log error(k)
as a function of log k. The results in Table 7.7 give an estimate µ ≈ −0.47.
Now Theorem 3.13 predicts that, for fixed p, the best approximation

satisfies

inf
wN∈VN

‖v − wN‖/k � M(u)kα−1/2,

where α = 1 − minm=1,...,ns(1 − π/ωm) ∈ (1/2, 1), with ωm the external
angles at the corners of the polygon. For the geometry of the example
considered here, minm=1,...,ns(1− π/ωm) ≈ 0.4638, and hence we expect

inf
wN∈VN

‖v − wN‖/k � M(u)k1/2−0.4638. (7.11)
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Figure 7.15. Total field, scattering by a
non-convex polygon, non-convex sides in shadow.

As discussed in Section 3.3.1, the dependence of the constant M(u) on the
wavenumber k is not yet fully understood. If (3.38) were sharp, we would

expect infwN∈VN ‖v − wN‖/k � k0.5362 log1/2 k. However, the results in
Table 7.7 suggest that the scaled absolute error ‖v− vp‖/k is decaying, not
growing, as k → ∞, and moreover our estimate µ ≈ −0.47 tallies remarkably
well with the best approximation estimate (7.11) under the assumptions that
M(u) = O(1), as k → ∞, and further that the extra factor of k1/2 in our
best approximation estimate (3.50) for non-convex polygons, compared to
our best approximation estimate (3.48) for convex polygons, is spurious.
To investigate this further, we conclude this subsection with a second

example on the same geometry but for which the two non-convex sides are
both in shadow. The incident direction and total field for k = 10 are shown
for this example in Figure 7.15. In Figure 7.16 we plot |(v − V0)(s)|/k
for k = 10 and k = 160. The corner between the two non-convex sides
is at s/(2π) = 1, the corners between convex and non-convex sides are
at s/(2π) = 0 (equivalently s/(2π) = 6) and s/(2π) = 2, and the corner
between the two convex sides is at s/(2π) = 4. The singularity in the
boundary solution at all corners except for the one between the non-convex
sides can be seen in each case (compare with Figure 7.4), as can the increased
oscillations for larger k (where there is a shaded region, that represents
high oscillation; note also that we are plotting |(v − V0)(s)|/k, with both
Re (v − V0) and Im (v − V0) oscillating very rapidly). The exact solution
is zero at the corner between the non-convex sides, and the apparent spike
there is an artefact of the logarithmic scale.
In Table 7.10 we show the scaled absolute and relative errors for this

example, computed with p = 4 as for the first example above, again for a
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Figure 7.16. Scattering by a non-convex
polygon, with non-convex sides in shadow.

Table 7.10. Non-convex polygon: scaled absolute
and relative errors (L2 and L1), p = 4; example
with non-convex sides in shadow.

p = 4

k N N/λ ‖v − vp‖/k ep e1p

5 320 10.7 0.461 0.279 0.011
10 320 5.3 0.338 0.290 0.013
20 320 2.7 0.249 0.302 0.015
40 320 1.3 0.184 0.316 0.016
80 320 0.7 0.135 0.329 0.017
160 320 0.3 0.100 0.344 0.016

range of values of k. In terms of k-dependence, the results in Table 7.10
closely mimic those in Table 7.7. Making the same hypothesis as above that
error(k) := ‖v − vp‖/k ∼ kµ as k → ∞, we obtain the estimate µ ≈ −0.44.
This provides further support for the suggestions that M(u) = O(1) as
k → ∞ and that the factor of k1/2 on the right-hand side of (3.50) is
spurious, as outlined above. These conclusions are further supported by
additional numerical results in Chandler-Wilde et al. (2012a), including an
example for which re-reflections occur (as in Figure 3.3(a)).

7.6. Three-dimensional screen

We thank D. P. Hewett for the numerical results in this subsection. Here
we consider the problem of scattering of an incident plane wave uI by a
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sound-soft three-dimensional screen, Γ = {(x1, x2, 0) : (x1, x2) ∈ (0, 1) ×
(0, 1)}. We denote the exterior domain by Ω+ = R

3\Γ. The precise BVP
that we wish to solve is as follows: find u ∈ C2(Ω+) ∩H1

loc(Ω+) such that
(1.1) is satisfied in Ω+, u = −uI on Γ, where uI(x) = exp(ikx · â), and u
satisfies the Sommerfeld radiation condition (2.9) with d = 3. The precise
sense in which the boundary condition holds needs to be expressed in terms
of carefully defined trace operators (see Chandler-Wilde and Hewett 2012
for details).
The equivalent 2D problem has been studied by Stephan and Wendland

(1984), and more recently by Davis and Chew (2008), who used hybrid
numerical-asymptotic methods. Our goal in this subsection is to show how
an ansatz of the form (3.1) can be used for this challenging 3D problem
to represent the key oscillatory components of the solution. (Some key
ingredients for a k-explicit error analysis of this problem are discussed briefly
in Remark 5.11.)
The BVP specified above is equivalent to the BIE (see, e.g., Sauter and

Schwab 2011, Stephan 1987)

uI(x) =

∫
Γ
Φk(x, y)[∂nu](y) ds(y), x ∈ Γ,

where [∂nu] denotes the jump in ∂u/∂n across Γ. For the equivalent 2D
problem (see Davis and Chew 2008), an appropriate approximation space is
that used on each side of a sound-soft convex polygon in the hybrid schemes
described in Sections 3.3.1 and 3.3.4 (see also Section 7.2 above). In this
case, the correction to the leading-order behaviour (i.e., v − V0 in (3.1))
consists of two ‘diffracted’ waves, each travelling along the screen from one
end to the other, and being rediffracted back from either end ad infinitum.
For the 3D problem, however, the construction of a hybrid approximation
space is rather more difficult. Here, although we can again separate the
leading-order behaviour, writing

[∂nu](x) = 2[∂nu
I ](x) +

M∑
m=1

Vm(x, k) exp(ikψm(x)), x ∈ Γ, (7.12)

it turns out to be much more difficult to identify M and the phase functions
ψm(x), m = 1, . . . ,M , such that the corresponding amplitudes Vm(x, k)
are relatively non-oscillatory. The reason for this is that ‘edge waves’ and
‘corner waves’, diffracted by the edges and corners of the screen respectively,
are rediffracted infinitely often by the other edges and corners of the screen,
taking a different direction of travel after each rediffraction. Although the
waves lose energy on each rediffraction, the difficulties in representing all
phases of this series of rediffractions in such a way that the amplitudes are
(completely) non-oscillatory is significantly harder than in 2D.
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(b) [∂nu]− 2[∂uI/∂n]

Figure 7.17. Solution Re [∂nu] to (7.12), computed
with standard BEM, for λ = 0.2 and â = (3, 1, 1)/

√
11.

To illustrate this, in Figure 7.17(a) we plot the real part of [∂nu] (away
from the edges of the screen), calculated using a standard BEM, with piece-
wise constant basis functions on a rectangular mesh with at least ten grid
points per wavelength, graded towards the edges. The solution is singular at
the edges, hence we exclude a narrow region close to the edge of the screen
from our plot, so that the detail elsewhere can be more clearly seen. For
this example â = (3, 1, 1)/

√
11, and λ = 0.2 (and hence k = 2π/λ = 10π);

the screen is thus five wavelengths long in each direction, and our standard
boundary element space has more than 2500 degrees of freedom. In Fig-
ure 7.17(b) we plot the same quantity, but with the leading-order behaviour
2[∂nu

I ] subtracted off. This remainder is what we seek to approximate nu-
merically, and the question is how to choose functions ψm in (7.12) such that
amplitude functions Vm(x, k) are slowly oscillating. Figure 7.17(b) makes
clear that this will not be a simple task.
We now demonstrate that, with a judicious choice of ψm in (7.12), the

solution v := [∂nu] can be represented to a high degree of accuracy away
from the edges of the screen using only a small M . To investigate this,
we consider a similar example to that plotted in Figure 7.17, but now with
λ = 0.05, so k = 40π, in which case the screen occupies twenty wavelengths
in each direction. We compute the solution vh to this problem by piecewise
constant BEM on a fine mesh with at least ten grid points per wavelength,
graded towards the boundary. Using vh as an ‘exact’ solution, we consider
how to achieve a good approximation to vh in the interior of Γ by an ansatz
of the form (7.12). Our choice of M and ψm, m = 1, . . . ,M , is discussed
below. Moreover, Vm(x, k) are chosen to be constant on each element of a
coarse mesh (consisting, for this example, of sixteen squares, arranged in
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θ θ

θ

uI

x1

x2
x3

Figure 7.18. Incident wave uI , diffracted by an edge of the screen; the angle
the incident wave makes with the edge is θ, and this is the angle that the
waves described in (A) and (E), which travel across the surface of the screen,
make with the edge.

a four-by-four grid, each occupying approximately five wavelengths in each
direction). More precisely, on each element of the coarse mesh we compute
constants νm so that

vH := 2[∂nu
I ](x) +

M∑
m=1

νm exp(ikψm(x)) (7.13)

is the best approximation to vh with respect to a discrete L2 norm on the
fine mesh over all choices of constants {νm}Mm=1. Although this is not a
numerical method for the 3D screen problem, it demonstrates the potential
of hybrid methods for 3D problems like this.
In Table 7.11 we investigate the following possible ways of choosing ψm

(some of which can be sensibly used in combination with each other).

(A) Plane waves propagating in the direction of the singly edge-diffracted
rays predicted by the Geometrical Theory of Diffraction (e.g., Keller
1962, Borovikov and Kinber 1994); see Figure 7.18. There is one such
wave associated with each of the four edges.

(B) Radial waves (emanating from the corners), where ψm(x) = |x− xm|,
with xm, m = 1, . . . , 4, the four corners of the screen.

(C) Rediffractions of the plane waves described in (A). These represent the
first ‘reflection’ of each plane wave in the first edge it hits as it travels
across the surface of the screen.

(D) Uniformly distributed plane waves; in each case a uniform distribution
of directions was used, but the results shown in Table 7.11 represent
the average over a large number of experiments, with in each case the
evenly spaced directions being rotated by the same random perturba-
tion, different in each experiment.
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Table 7.11. Comparison between various
approximation schemes, for scattering by a
3D screen of size twenty wavelengths in each
direction, using only sixteen coarse elements
(away from the edges).

Approximation space M e2 e∞

(D) 4 15% 28%
(D) 16 13% 23%

(A) 4 8.0% 16%
(A) and (C) 8 7.9% 16%

(E) 4 1.4% 5.0%
(E) and (B) 8 1.2% 4.4%

In addition we also investigated a variation on the above, which we label (E)
in Table 7.11, where we tried the same plane waves described in (A), but
with a slightly more sophisticated approximation to the singly diffracted
component (incorporating decay and the edge singularity), so that instead
of approximating Vm(x, k) on each element of the coarse mesh by a constant,
we instead approximate Vm(x, k) by a constant multiplied by 1/

√
kR, where

R represents the distance from the edge in the direction of propagation.
These ‘Sommerfeld waves’ represent the exact solution for scattering by an
infinite half-plane (again, see, e.g., Keller 1962, Borovikov and Kinber 1994),
and have singularities at the edges, which are not apparent here as we have
excluded in the optimization procedure that part of the screen that lies
within a wavelength of the edges.
For any suitable D ⊂ Γ, we denote by ‖f‖2,h,D the approximation to

‖f‖L2(D) obtained by replacing f by its piecewise constant interpolant on
the fine mesh at the element centroids. Denoting the elements of the coarse
mesh by Γm, m = 1, . . . , 16 (for this example), and letting Γ̃ := ∪16

m=1Γm,
in Table 7.11 we present values of

e2 :=
‖vh − vH‖2,h,Γ̃

‖vh‖2,h,Γ̃
and e∞ := max

m=1,...,16

‖vh − vH‖2,h,Γm

‖vh‖2,h,Γm

.

The column M in Table 7.11 refers to the number of terms in the sum-
mation on the right-hand side of (7.13). Note that the first row of the
table indicates a relative least-squares error of 15% and a relative maxi-
mum error of 28%, and this turns out to be no better than taking M = 0 in
(7.13). However, we see that the edge plane waves (A) and particularly the
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Sommerfeld waves (E) are far more effective. Thus in this case, while stan-
dard BEM approximation of [∂nu] would require approximately 2500 degrees
of freedom in each coarse element in order to achieve ‘engineering accuracy’
(approximately 1%), applying the ansatz (7.12) with a judicious choice of
Sommerfeld waves (E) can lead to an overall error of approximately 1.4%
with only four degrees of freedom per coarse element, so 64 degrees of free-
dom overall, a very significant reduction indeed.

Appendix: Function spaces on Lipschitz domains

Large sections of this review, namely those where we give details of algo-
rithms and show numerical results, can be understood for the most part
without any ideas from functional analysis or many notions of function
spaces. But both of these play an essential role in the mathematical anal-
ysis of the algorithms that we propose. In this appendix we collect some
technical details concerning function spaces on Lipschitz domains. There
is an emphasis on Sobolev spaces, for which our notations and definitions
follow McLean (2000), but we also provide what appears to be the only
account in the boundary element literature of spaces defined in terms of
maximal functions, and their relationship to Sobolev spaces. These results
are relevant to Sections 2 and 5.
Large parts of Sections 2, 5, and 6 use standard notions and results of

linear functional analysis (one relevant reference is Chapter 2 of McLean
(2000)). In these sections we assume that the reader is familiar with the
idea of a Banach space, a linear space equipped with a norm ‖ · ‖, which is
complete with respect to convergence in this norm, and with the basic theory
of bounded and compact linear operators on Banach spaces. If A : X → Y
is a bounded linear operator from a Banach space X to a Banach space Y
we will say that A is invertible if A is bijective: by the Banach theorem
this is the case if and only if the inverse operator A−1 is bounded. We will
sometimes classify A : X → Y as Fredholm, and talk about the index of
a Fredholm operator (see, e.g., McLean 2000). The main facts from this
theory that we will need are that A is Fredholm of index zero if and only
if A is the sum of an invertible and a compact operator, and that if A is
Fredholm of index zero then it is injective if and only if it is surjective.
We shall use the notion of a dual space. Following Kato (1995), for

example, we shall define the dual space of a Banach space V to be the set of
bounded anti-linear functionals on V . We will assume also that the reader
is familiar with the idea of a Hilbert space (a linear space V equipped with
an inner product (·, ·), which induces a norm on the linear space defined by
‖v‖ := (v, v)1/2, and which is a Banach space with respect to this norm),
and with the idea of the adjoint of a bounded linear operator on a Hilbert
space and with some of its elementary properties.
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A.1. Function spaces

For D ⊂ R
d (we shall suppose that d = 2 or 3 throughout, though of

course most of our definitions work for arbitrary space dimensions), let C(D)
denote the set of continuous functions φ : D → C, and let BC(D) denote
those φ ∈ C(D) that are also bounded (of course, C(D) = BC(D) if D is
compact). BC(D) is a Banach space with norm ‖φ‖BC(D) = supx∈D |φ(x)|.
We will frequently use the shorter notation ‖ · ‖∞ for ‖ · ‖BC(D) when the
set D is clear from the context.
In the case that D is measurable (with respect to d-dimensional Lebesgue

measure), with non-zero measure, which in particular is the case if D is an
open set or its closure D, we will denote by Lp(D), for 1 ≤ p < ∞, the set
of functions φ : D → C that are Lebesgue-measurable with

∫
D |φ|p dx < ∞.

Lp(D) is a Banach space with the norm ‖ · ‖Lp(D) defined by ‖φ‖Lp(D) =

(
∫
D |φ|p dx)1/p, with the understanding that elements of Lp(D) are regarded

as equal if they are equal almost everywhere. Of course, equipped with the
inner product (·, ·)L2(D), defined by

(u, v)L2(D) :=

∫
D
uv̄ dx,

which we will frequently abbreviate as (·, ·), L2(D) is a Hilbert space, and

‖u‖L2(D) = (u, u)
1/2
L2(D)

.

Similarly, L∞(D) denotes the set of functions φ : D → C that are
Lebesgue-measurable and essentially bounded, in which case ‖φ‖L∞(D) :=
‖φ‖∞ := ess supx∈D |φ(x)| < ∞. By essentially bounded we mean here that
there is some bounded function ψ such that φ = ψ almost everywhere, and
‖φ‖∞ = ess supx∈D |φ(x)| denotes the infimum of supx∈D |ψ(x)| < ∞ over
all ψ : D → C with φ = ψ almost everywhere. Note that BC(D) is a closed
subspace of L∞(D) and our two definitions of ‖ · ‖∞ coincide on BC(D).
For 1 ≤ p ≤ ∞, and a measurable D ⊂ R

d, Lp
loc(D) denotes the set

of u : D → C which are locally Lp: this means that, for every bounded
measurable G ⊂ D, u|G ∈ Lp(G),
Given an open set D ⊂ R

d and u : D → C, we denote the partial
derivatives of u (when they exist) by

(∂αu)(x) :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

u(x), (A.1)

for every multi-index α = (α1, . . . , αd) ∈ N
d
0. (Here N0 = N ∪ {0}.) The

order of the partial derivative ∂αu is the number |α| = α1 + · · · + αd. For
any integer n ∈ N0, let

Cn(D) := {u : ∂αu exists and is continuous on D for |α| ≤ n},
let Cn(D) := {v|D : v ∈ Cn(Rd)}, and let C∞(D) := ∩n∈N0C

n(D). Com-
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plementing this last notation, for any closed set G ⊂ R
d, let

C∞(G) := {v|G : v ∈ C∞(Rd)}.
Of course, C0(D) is the same as C(D). For u ∈ C(D) the support of u,
suppu, is the closure in D of {x ∈ D : u(x) �= 0}, and

C∞0 (D) := {u ∈ C∞(D) : suppu is a compact subset of D}.
As usual, for u ∈ C1(D), ∇u ∈ (C(D))n will denote the vector whose jth

component is ∂u(x)
∂xj

.

Given a set D ⊂ R
d we will say that u ∈ C(D) is Hölder-continuous with

index µ ∈ (0, 1] if there exists an L ≥ 0 such that

|u(x)− u(y)| ≤ L|x− y|µ, x, y ∈ D. (A.2)

Note that, by this definition, every Hölder-continuous function is uniformly
continuous. If (A.2) holds with µ = 1 then we say that u is Lipschitz-
continuous and will call L a Lipschitz constant for u. We let C0,µ(D) ⊂
BC(D) denote the set of functions that are Hölder-continuous with index
µ and also bounded. This set is a Banach space with norm ‖ · ‖C0,µ(D)

defined by

‖u‖C0,µ(D) := ‖u‖∞ + sup
x,y∈D,x 
=y

|u(x)− u(y)|
|x− y|µ .

Given an open set D ⊂ R
d, u ∈ L1

loc(D), and a multi-index α ∈ N
d
0, we

will say that ∂αu exists in a weak sense if there exists w ∈ L1
loc(D) such

that ∫
D
wv dx = (−1)|α|

∫
D
u∂αv dx, v ∈ C∞0 (D),

in which case we define ∂αu := w. This notation coincides with (A.1) in the
case that u ∈ Cn(D) for some n ≥ |α|.
This leads to our first definition of Sobolev spaces. For every non-empty

open subset D ⊂ R
d, p ∈ [1,∞], and n ∈ N0, we define the Sobolev space

Wn
p (D) of order n by

Wn
p (D) := {u ∈ Lp(D) : the weak derivative ∂αu exists

and is in Lp(D) for |α| ≤ n}.
Wn

p (D) is a Banach space when equipped with the norm ‖ · ‖Wn
p (D) defined

by

‖u‖Wn
p (D) :=

{ (∑
|α|≤n

∫
D |∂αu(x)|p dx

)1/p
1 ≤ p < ∞,

max|α|≤n ess supx∈D |∂αu(x)| p = ∞.

A standard result is that W 1∞(Rd) = C0,1(Rd), with equivalence of norms.
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In fact, for any open set D, if u ∈ C0,1(D) with Lipschitz constant L, then
∇u(x) exists for almost every x ∈ D, with |∇u(x)| ≤ L; this is Rademacher’s
theorem (Rademacher 1919). Further, ∇u is the gradient of u in the sense
of weak derivatives, so that u ∈ W 1∞(D).

The following is a second standard definition of Sobolev spaces. For
u ∈ L1(Rd), let û = Fu denote the Fourier transform of u, defined by

û(ξ) = (2π)−d/2
∫
Rd

exp(−ix · ξ)u(x) dx, ξ ∈ R
d. (A.3)

For u, v ∈ C∞0 (Rd) and s ∈ R define the inner product (u, v)Hs(Rd) by

(u, v)Hs(Rd) :=

∫
Rd

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ.

Equipped with (·, ·)Hs(Rd), C
∞
0 (Rd) is a pre-Hilbert space. The completion

of this space is the Hilbert space Hs(Rd), with norm

‖u‖Hs(Rd) := (u, u)
1/2

Hs(Rd)
=

(∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ
)1/2

.

Clearly, Hs(Rd) ⊂ Ht(Rd) for s > t. Our choice of normalization in the
definition of the Fourier transform is such as to ensure that the extension
of F to L2(Rd) is a unitary operator, in particular

(Fu,Fv)L2(Rd) = (u, v)L2(Rd), u, v ∈ L2(Rd). (A.4)

It follows immediately from (A.3) that F maps L1(Rd) to L∞(Rd) and
is bounded with norm ≤ (2π)−d/2, and from (A.4) that F is an isometrice
isomorphism on L2(Rd). It is a standard application of the Riesz–Thorin
interpolation theorem (Stein and Weiss 1971, Chapter V, Theorem 1.3)
that F is a bounded operator from Lp(Rd) to Lq(Rd), for 1 ≤ p ≤ 2, where
p−1 + q−1 = 1, with

‖F‖Lq(Rd)←Lp(Rd) ≤ (2π)−θd, (A.5)

where

θ =
1

p
− 1

2
=

1

2
− 1

q
. (A.6)

Note that (A.4) implies that, for u, v ∈ C∞0 (Rd),

(u, v)H0(Rd) = (u, v)L2(Rd),

so that H0(Rd) = L2(Rd) = W 0
2 (R

d) and Hs(Rd) ⊂ L2(Rd) for s > 0.
Indeed,

Hn(Rd) = Wn
2 (R

d), n ∈ N0,

with equivalence of norms (McLean 2000). If s is large enough then we
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can think of the elements of Hs(Rd) also as continuous functions, as the
following theorem (see, e.g., McLean 2000) shows.

Theorem A.1. (Sobolev embedding theorem) If 0 < µ < 1 and s =
d/2+µ, then Hs(Rd) ⊂ C0,µ(Rd) (in the sense that if u ∈ Hs(Rd) then u is
equal almost everywhere to some v ∈ C0,µ(Rd)). Further, for some C > 0
depending only on d and s, ‖u‖C0,µ(Rd) ≤ C ‖u‖Hs(Rd), for all u ∈ Hs(Rd).

Another important embedding theorem makes a connection between the
spaces Lp(Rd) and Hs(Rd). An easy consequence of (A.5), the definition of
the Sobolev norm, and Hölder’s inequality is that, for 1 ≤ p ≤ 2,

Lp(Rd) ⊂ Hs(Rd), for s < −θd, (A.7)

where θ is given by (A.6). Further, for some constant C > 0 depending only
on d, s, and p, ‖u‖Hs(Rd) ≤ C ‖u‖Lp(Rd), for s < −θd.
For every s ∈ R we can extend the inner product (·, ·)L2(Rd) in a natural

way to a sesquilinear form 〈·, ·〉 on H−s(Rd) × Hs(Rd). If u ∈ H−s(Rd),
v ∈ Hs(Rd), and (uj) and (vj) are sequences in C∞0 (Rd), converging to u
and v, respectively, with respect to the norms on H−s(Rd) and Hs(Rd),
then

〈u, v〉 := lim
j→∞

(uj , vj)L2(Rd).

The mapping u∗ given by v �→ u∗(v) := 〈u, v〉 is a bounded anti-linear
functional on Hs(Rd), and so an element of the dual space (Hs(Rd))∗ of
Hs(Rd). In fact, as shown in McLean (2000), this mapping u �→ u∗ from
H−s(Rd) to (Hs(Rd))∗ is an isometric isomorphism, so that H−s(Rd) is an
isometric realization of the dual space of Hs(Rd).

For every s ∈ R, u ∈ Hs(Rd), and open set G ⊂ R
d we say that u|G = 0 if

〈u, v〉 = 0, for all v ∈ C∞0 (Rd) with supp v ⊂ G.

We define the support of u ∈ Hs(Rd) to be the largest closed subset G of
R
d such that u|Rd\G = 0.

Equip C∞comp(D) := {U |D : U ∈ C∞0 (Rd)} with a norm ‖·‖Hs(D) defined by

‖u‖Hs(D) := inf
U∈C∞

0 (Rd), U |D=u
‖U‖Hs(Rd). (A.8)

The completion of this normed space is the Sobolev space Hs(D). More
succinctly,

Hs(D) = {U |D : U ∈ Hs(Rd)},

where U |D denotes the restriction of U to D in the sense defined in McLean
(2000). (For s ≥ 0, U |D is just the restriction of the function U to D in the
usual sense, i.e., u = U |D means u(x) = U(x), x ∈ D.)
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A.2. Lipschitz domains

Following McLean (2000, §3), for example, we will say that an open set D
is Lipschitz if its boundary ∂D is bounded and, roughly speaking, ∂D is
everywhere locally the graph of a function which is Lipschitz-continuous.

Definition A.2. We say that the open set D is Lipschitz if ∂D is compact
and there exist finite families {Wi}, {Mi}, {fi} and {Di} such that:

(i) the family {Wi ⊂ R
d} is a finite open cover of the boundary ∂D;

(ii) every fi : R
d−1 → R is Lipschitz-continuous with Lipschitz constant

Mi ≥ 0;

(iii) the family {Di ⊂ R
d} is such that D and Di have the same intersection

with Wi, for each i;

(iii) for each i there exists a rigid motion ri : R
d → R

d such that ri(Di) =
{(x′, xd) ∈ R

d−1 × R : xd > fi(x
′)}, the hypograph of the function fi;

As usual, by a rigid motion in (iii) we mean some composition of a rotation
and translation. We note that we can, if we wish, without loss of generality,
impose that the rigid motion ri in (iii) be chosen to be a pure rotation.
We note that our Definition A.2 of a Lipschitz open set coincides with

the definition in McLean (2000) of a Lipschitz domain. But we will, as is
standard, use the word domain exclusively to mean a connected open set.
So, for us (as in Sauter and Schwab 2011, for example), a Lipschitz domain
will mean a Lipschitz open set which is connected.
It is easy to see that D is a Lipschitz open set as defined above if and

only D is the union of a finite family of Lipschitz domains whose closures
are pairwise disjoint. The concept of a Lipschitz open set is slightly more
general, and has the advantage over the concept of a Lipschitz domain that
D is a Lipschitz open set if and only if Rd \D is a Lipschitz open set, the
point being that D can be connected without Rd \D being connected.
Throughout this review we will say that ∂D is Lipschitz if D is a Lipschitz

open set. If the conditions in Definition A.2 hold and, additionally, each
fi ∈ Cm(Rd−1), for some m ∈ N, then we will say that D is a boundary
of class Cm (or that ∂D is Cm for short). If the above conditions hold
with each fi ∈ Cm and, additionally, for some µ ∈ (0, 1], all the partial
derivatives of fi of order m are in C0,µ(Rd−1), then we will say that D is of
class Cm,µ (or that ∂D is Cm,µ, for short). We will say that ∂D is C∞ if
∂D is Cm for every m ∈ N.

The following theorem (McLean 2000, Theorem 3.30) connects the Sobolev
spaces that we introduced in the previous subsection.

Theorem A.3. If D ⊂ R
d is a Lipschitz open set, then Wn

2 (D) = Hn(D)
for n ∈ N0.
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A.3. Sobolev spaces on the boundary and trace operators

We will need to work with Sobolev spaces on the boundary of Lipschitz open
sets. Let us consider first the case when f : Rd−1 → R is in C0,1(Rd−1) =
W 1,∞(Rd−1) and D = {(x′, xd) ⊂ R

d : x′ ∈ R
d−1, xd > f(x′)} (we say that

D is a Lipschitz hypograph in this case), and let Γ = ∂D = {(x′, f(x′)) :
x′ ∈ R

d−1}. In the obvious way, we say that ΓS = {(x′, f(x′)) : x′ ∈ S} ⊂ Γ
is measurable if S ⊂ R

d−1 is Lebesgue-measurable, and define a surface
measure ds and surface integrals of functions φ ∈ L1(Γ) that are Lebesgue-
integrable with respect to this surface measure, by∫

Γ
φ ds :=

∫
Rd−1

φ((x′, f(x′)))
√

1 + |∇f(x′)|2 dx′. (A.9)

In the natural way, Lp(Γ) is defined to be the set of those measurable φ :
Γ → C for which

∫
Γ |φ|p ds < ∞, with ‖φ‖Lp(Γ) = (

∫
Γ |φ|p ds)1/p, for 1 ≤

p < ∞. L∞(Γ) is the set of essentially bounded functions, with ‖φ‖L∞(Γ) :=
ess supx∈Γ |φ(x)|. We note that, with respect to the surface measure, for
almost every x ∈ Γ, there exists a unit normal n(x) to Γ, given by

n(x) =
(−∇f(x′), 1)√
1 + |∇f(x′)|2

. (A.10)

For every ψ ∈ L2(Γ) define ψf ∈ L2(Rd−1) by

ψf (x
′) = ψ((x′, f(x′))), x′ ∈ R

d−1.

For u ∈ C∞comp(D) define φ = γu ∈ C∞(Γ) ∩ L2(Γ), the trace of u, by

γu = u|Γ. Note that φf ∈ W 1
2 (R

d−1) = H1(Rd−1) since, for almost all
x′ ∈ R

d−1, namely all x′ for which ∇f(x′) exists, it holds that

∇φf (x
′) = ∇x′u(x) +

∂u(x)

∂xd
∇f(x′), (A.11)

where ∇x′ :=
∑d−1

m=1 em
∂

∂xm
and em is the unit vector in the direction xm. It

is then easy to see that∇φf given by (A.11) is also the weak derivative of φf .
Unless Γ is smoother than Lipschitz, one cannot expect that φf ∈ Hs(Rd−1)
for any s > 1.
These observations motivate our definition of boundary Sobolev spaces.

For 0 ≤ s ≤ 1, let

Hs(Γ) := {φ ∈ L2(Γ) : φf ∈ Hs(Rd−1)}.

Hs(Γ) is a Hilbert space equipped with the inner product defined by

(φ, ψ)Hs(Γ) = (φf , ψf )Hs(Rd−1), (A.12)

and the above observations imply that C∞comp(Γ) := {u|Γ : u ∈ C∞0 (Rd)} ⊂
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H1(Γ) ⊂ Hs(Γ), 0 ≤ s ≤ 1; a little more work shows that C∞comp(Γ) is dense
in Hs(Γ), for 0 ≤ s ≤ 1.
If u ∈ C∞comp(D) then, for almost all x ∈ Γ, namely all x = (x′, f(x′)) ∈ Γ

for which ∇f(x′) exists, we have

∇u(x) = n(x) (n(x) · ∇u(x)) +∇Γφ(x), (A.13)

where φ = γu ∈ H1(Γ) and ∇Γφ is the surface gradient of φ. This surface
gradient is defined implicitly by (A.13) and explicitly by

∇Γφ(x) = (∇Γφ)((x
′, f(x′))) =

d−1∑
m=1

tm(em + fmed), (A.14)

where, for m = 1, . . . , d− 1, fm and tm are the mth components of ∇f(x′)
and ∇Γφ(x), respectively, and em + fmed is a surface tangent vector. The
vector of coefficients t = (t1, . . . , td−1)T is the unique solution of the linear
system At = r, where r = (r1, . . . , rd−1)T , with

rm =
∂φf (x

′)
∂xm

,

and the matrix A has entry δmn+fmfn in row m column n, where δmn is the
Kronecker delta. A is symmetric and positive definite, with aHAa ≥ |a|2,
for every a ∈ C

d−1, where aH is the conjugate transpose of a. This last
inequality implies that |t| ≤ |r|. Explicitly, in 2D, t1 = r1/(1 + f2

1 ). In 3D,

t1 =
(1 + f2

2 )r1 − f1f2r2
1 + |∇f |2 and t2 =

−f1f2r1 + (1 + f1)
2r2

1 + |∇f |2 . (A.15)

It is clear that, if φ ∈ H1(Γ), ∇Γφ(x) is well-defined by (A.14) for almost
all x ∈ Γ, and ∇Γφ ∈ (L2(Γ))d. Indeed, φ ∈ H1(Γ) if and only if φ ∈ L2(Γ)
and ∇Γφ ∈ (L2(Γ))d, and an equivalent norm on H1(Γ) is

‖φ‖′ :=
(∫

Γ

(
|∇Γφ|2 + |φ|2

)
ds

)1/2

, (A.16)

so that ∇Γ is a bounded operator from H1(Γ) to (L2(Γ))d.
For u ∈ C∞comp(D) we have defined above the trace of u, γu ∈ C∞comp(Γ)∩

L2(Γ). It is a standard result, due in full to Costabel (1988), that γu ∈
Hs−1/2(Γ), for 1/2 < s < 3/2. Further, for some constant Cs > 0 depending
only on f and s,

‖γu‖Hs−1/2(Γ) ≤ Cs‖u‖Hs(D),
1

2
< s <

3

2
. (A.17)

Since, by definition, C∞comp(D) is dense in Hs(D), it follows that γ extends

to a bounded operator γ : Hs(D) → Hs−1/2(Γ) and (A.17) holds for 1/2 <
s < 3/2 and all u ∈ Hs(D).
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Since ∇ is a bounded operator from u ∈ H2(D) = W 2
2 (D) to (H1(D))d,

the composition γ◦∇ is a bounded operator fromH2(D) to (H1/2(Γ))d, with
γ ◦∇u = ∇u|Γ for u ∈ C∞comp(D). For u ∈ C∞comp(D), define ∂nu ∈ L2(Γ) by

∂nu(x) =
∂u

∂n
(x) := n(x) · ∇u(x), (A.18)

for all x = (x′, f(x′)) ∈ Γ for which ∇f(x′) exists, which is almost all x ∈ Γ.
Clearly, for some constants C > 0 and C ′ > 0 depending only on f ,

‖∂nu‖L2(Γ) ≤ C‖γ∇u‖L2(Γ) ≤ C‖γ∇u‖H1/2(Γ) ≤ C ′‖u‖H2(Γ).

Since C∞comp(D) is dense in H2(D) it follows that ∂n can be extended to a

bounded operator ∂n : H2(D) → L2(Γ). We will extend the definition of ∂n
further to certain other subspaces of H1(D) below. Note that it follows
from (A.13) and (A.18) and the density of C∞comp(D) in H2(D) that

γ∇u = n∂nu+∇Γγu, u ∈ H2(D). (A.19)

Standard Sobolev space formulations of Neumann and impedance bound-
ary value problems (see (2.5) and (2.13)) use negative order Sobolev spaces.
For −1 ≤ s < 0 define an inner product (·, ·)Hs(Γ) on L2(Γ) by (A.12), and

let Hs(Γ) denote the completion of L2(Γ) with respect to this inner product.
This definition, and the results above for 0 ≤ s ≤ 1, imply that C∞comp(Γ) is

dense in Hs(Γ) for |s| ≤ 1. Since H−s(Rd−1) is an isometric realization of
the dual space (Hs(Rd−1))∗, for s ∈ R, it follows that the mapping φ �→ φ∗
from H−s(Γ) to (Hs(Γ))∗, given by φ∗(ψ) = 〈φ, ψ〉Γ, ψ ∈ Hs(Γ), where

〈φ, ψ〉Γ := 〈φf , ψf 〉,

is an isometric isomorphism, for |s| ≤ 1, so that H−s(Γ) is an isometric
realization of (Hs(Γ))∗ for |s| ≤ 1. Note that, for φ, ψ ∈ L2(Γ),

〈φ, ψ〉Γ =

∫
Rd−1

φf (x
′)ψf (x′) dx′ =

∫
Γ

φ(x)ψ(x)√
1 + |∇f(x′)|2

ds(x).

Clearly, for φ ∈ H1(Γ), ∇Γφ ∈ L2
t (Γ), where L2

t (Γ) := {ψ ∈ (L2(Γ))d :
n · ψ = 0} is the closed subspace of (L2(Γ))d consisting of tangential vector
fields. L2

t (Γ) is a Hilbert space with inner product defined by

(φ, ψ)L2
t (Γ)

=

∫
Γ
φ · ψ̄ ds.

Let ∇∗Γ : L2
t (Γ) → (H1(Γ))∗ = H−1(Γ) denote the adjoint of ∇Γ : H1(Γ) →

L2
t (Γ), so that

(∇Γφ, ψ)L2
t (Γ)

= 〈φ,∇∗Γψ〉Γ, φ ∈ H1(Γ), ψ ∈ L2
t (Γ). (A.20)
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(The operator −∇∗Γ is closely related to the surface divergence operator;
see, e.g., §3.4 in Monk 2003.) Like ∇Γ, ∇∗Γ is a local operator, in the sense
that supp(∇∗Γψ) ⊂ supp(ψ), for ψ ∈ L2

t (Γ) (which is clear from (A.20)).
A further important observation, which we justify for d = 2 and 3, is that
there exists a dense subspace Xt ⊂ L2

t (Γ) such that ∇∗Γ(Xt) ⊂ L2(Γ). In

2D, since L2
t (Γ) = {φst : φ ∈ L2(Γ)}, where st := (e1 + f1e2)/

√
1 + f2

1 is
a particular tangential vector field in (L∞(Γ))2, such a subspace is Xt :=
{φst : φ ∈ C∞comp(Γ)}. For, if φ ∈ C∞comp(Γ), then

∇∗Γ(φst)(x) = −φ′f (x1),

for almost all x ∈ Γ. In 3D, a suitable choice is Xt = {u × n : u ∈
(C∞comp(Γ))

3} (where × here is the standard vector product). This is easily

seen to be dense in L2
t (Γ). Further, by Stokes’ theorem, which holds on

Lipschitz surfaces as a consequence of the version of the divergence theorem,
Theorem A.4 below (see, e.g., Proposition 1.4 in Buffa and Christiansen
(2003)), if φ ∈ C∞comp(Γ) and ψ = U |Γ × n ∈ Xt, for some U ∈ C∞0 (Rd), it
follows that ∫

Γ
∇Γφ · ψ ds = −

∫
Γ
φ (∇× U)|Γ · n ds. (A.21)

Further, this equation extends to the case φ ∈ H1(Γ) by density of C∞comp(Γ)

in H1(Γ). Thus ∇∗Γψ = −
√
1 + |∇f |2 (∇× U)|Γ · n ∈ L2(Γ).

The above definitions concern the case when D is a Lipschitz hypograph.
If r(D) is the Lipschitz hypograph of some f ∈ C0,1(Rd−1), for some rigid
motion r : R

d → R
d, then we define Hs(Γ) in the same way as when

D is a Lipschitz hypograph, except that φf (x
′) := φ[r−1((x′, f(x′)))], for

φ ∈ L2(Γ).
Now we describe the extension of this procedure to the case when D

is a Lipschitz open set with boundary ∂D = Γ, so that D satisfies the
conditions in Definition A.2. We first choose a partition of unity {χi}
subordinate to the open cover {Wi} in that definition. This means that
we choose χi ∈ C∞0 (Wi) for each i in such a way that each χi ≥ 0 and∑

i χi(x) = 1 for all x ∈ Γ. (As a first step it is enough to find positive
functions ψi ∈ C∞0 (Wi) so that

∑
i ψi(x) �= 0 for each x ∈ Γ, and then de-

fine χi(x) = ψi(x)/
∑

m ψm(x).) For each i let Γi := ∂Di, where Di is as in
Definition A.2. In terms of these notations we can define a surface measure
ds and surface integrals of functions φ ∈ L1(Γ) that are Lebesgue-integrable
with respect to this surface measure, by∫

Γ
φ ds :=

∑
i

∫
Γi

χiφ ds. (A.22)

(The integrals on the right-hand side make sense since the support of χiφi

is a subset of Γ ∩ Γi and should be interpreted as in (A.9).) Both the set
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L1(Γ) and the value of the integral (A.22) are independent of the choice of
the families in Definition A.2 and independent of the choice of the partition
of unity.
Define an inner product on C∞(Γ) by

(φ, ψ)Hs(Γ) :=
∑
i

(χiφ, χiψ)Hs(Γi). (A.23)

For |s| ≤ 1 the Sobolev space Hs(Γ) is defined to be the completion of
C∞(Γ) with respect to the norm this inner product induces. For 0 ≤ s ≤ 1,
equivalently, Hs(Γ) is the set of those φ ∈ L2(Γ) = H0(Γ) such that χiφ ∈
Hs(Γi) for each i. Define a mapping φ �→ φ∗, from C∞(Γ) to (Hs(Γ))∗, for
0 ≤ s ≤ 1, by φ∗(ψ) = 〈φ, ψ〉Γ, ψ ∈ Hs(Γ), where

〈φ, ψ〉Γ :=

∫
Γ
φ ψ̄ ds = (φ, ψ)L2(Γ). (A.24)

It is not difficult to see that this mapping extends to a bounded linear map
from H−s(Γ) to (Hs(Γ))∗; indeed this map is an isomorphism since H−s(Γ)
is a realization of (Hs(Γ))∗, for |s| ≤ 1, when Γ is a Lipschitz graph. Thus
H−s(Γ) is a realization of (Hs(Γ))∗ for 0 ≤ s ≤ 1 also in the general Lipschitz
case; indeed we see this holds for |s| ≤ 1 by passing to duals. Considered as
a mapping from H−s(Γ)×Hs(Γ) → C, 〈·, ·〉Γ is a sesquilinear form which we
will refer to as the duality pairing. We will sometimes make the usual slight
abuse of notation and write 〈φ, ψ〉Γ as the integral

∫
Γ φ ψ̄ ds in cases where,

for some −1 ≤ s < 0, φ ∈ H−s(Γ), ψ ∈ Hs(Γ) ⊂ L2(Γ) but φ �∈ L2(Γ).
As discussed in McLean (2000), the space Hs(Γ) does not depend on

the particular choice of families in Definition A.2 or on the choice of the
partition of unity. Further, while these choices affect the definition of the
inner product (A.23), the norms arising from distinct choices are equivalent.
In particular, the norms on L2(Γ) and H0(Γ) are equivalent.
For general Lipschitz Γ, at each point x ∈ Γ ∩ Wi = Γi ∩ Wi, the for-

mulae for the unit normal and the surface gradient are given in terms of
the definitions (A.10) and (A.14), for φ ∈ H1(Γ), in the obvious way, and
(A.16) is again an equivalent norm on H1(Γ) and ∇Γ : H1(Γ) → (L2(Γ))d

a bounded operator. The normal derivative operator ∂n is extended to the
general Lipschitz case, as a bounded operator H2(D) → L2(Γ) through
(A.18), and (A.19) holds. The trace operator γ : Hs(D) → Hs−1/2(Γ) re-
mains a bounded operator in the general Lipschitz case for 1/2 < s < 3/2
(i.e., (A.17) holds for u ∈ Hs(D)), and has a continuous right inverse for
1/2 < s ≤ 1: in particular there exists a bounded linear operator

γ† : H1/2(Γ) → H1(D)

such that γγ†φ = φ, φ ∈ H1/2(Γ) (McLean 2000, Theorem 3.37). It follows
from (A.7) that, for 1 ≤ p ≤ 2, Lp(Γ) ⊂ Hs(Γ), for s < −θ(d− 1), where θ
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is given by (A.6), and that, for some constant C > 0 depending only on p,
s, and Γ,

‖φ‖Hs(Γ) ≤ C‖φ‖Lp(Γ), φ ∈ Lp(Γ). (A.25)

For example, this inequality holds for 2(d− 1)/d < p ≤ 2 if s = −1/2.
An essential tool throughout is the following version of the divergence

theorem (e.g., McLean 2000, Theorem 3.34).

Theorem A.4. (Divergence theorem) If D is a Lipschitz open set and
F ∈ (C∞comp(D))d then ∫

D
∇ · F dx =

∫
Γ
n · γF ds,

where n is the unit normal outwards from D.

An important consequence of the divergence theorem, of the density of
C∞comp(D) inHs(D), and of the continuity of the trace and normal derivative
operators, is Green’s first identity:∫

D
∇u · ∇v̄ dx = −

∫
D
v̄∆u dx+

∫
Γ
γv̄ ∂nu ds, u ∈ H2(D), v ∈ H1(D).

(A.26)
For every Lipschitz open set D ⊂ R

d, let H1(D; ∆) denote the set of
v ∈ H2(D) = W 1

2 (D) such that ∆v ∈ L2(D) exists in a weak sense, that is,
there exists w ∈ L2(D) such that

∫
D wu dx =

∫
D v∆u dx, for all u ∈ C∞0 (D),

in which case we define ∆v := w. H1(D; ∆) is a Hilbert space with the inner
product

(u, v)H1(D;∆) :=

∫
D

(
∆u∆v̄ +∇u · ∇v̄ + u v̄

)
dx.

A standard result (Theorem 3.40 in McLean 2000) is that C∞0 (D) is dense
in H1

0 (D) := {u ∈ H1(D) : γu = 0}. This, together with (A.26) and the
weak definition of ∆v, imply the following version of Green’s first identity:∫

D
∇u · ∇v̄ dx = −

∫
D
v̄∆u dx, u ∈ H1(D; ∆), v ∈ H1

0 (D). (A.27)

In the case thatD is Lipschitz, the above formula (A.26) provides a means
of extending the definition of ∂n to a bounded operator ∂n : H1(D; ∆) →
H−1/2(Γ). Recalling that H−1/2(Γ) is a realization of the dual space of
H1/2(Γ) and recalling the isomorphism φ �→ φ∗ which takes H−1/2(Γ) to
(H1/2(Γ))∗, one defines φ = ∂nu ∈ H−1/2(Γ), for every u ∈ H1(D; ∆), and
an associated φ∗ ∈ (H1/2(Γ))∗, by

〈φ, ψ〉Γ = φ∗(ψ) :=
∫
D

(
∇u · ∇v̄ + v̄∆u

)
dx, ψ ∈ H1/2(Γ), (A.28)

where v := γ†ψ ∈ H1(D) satisfies γv = ψ. We will use the definition (A.28)
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of ∂nu ∈ H−1/2(Γ) particularly with ψ = γw, for some w ∈ H1(D), when
v = γ†γw on the right-hand side of this equation. In general γ†γw �= w, but
w− γ†γw ∈ H1

0 (D) so that it follows from the definition (A.28) and (A.27)
that

〈∂nu, γw〉Γ =

∫
D

(
∇u · ∇w̄ + w̄∆u

)
dx, u ∈ H1(D; ∆), w ∈ H1(D),

(A.29)
another version of Green’s first identity. When u ∈ H2(D) ⊂ H1(D; ∆),
it follows, comparing (A.26) and (A.29), that the two definitions we have
made for ∂nu coincide.
The following regularity theorem (see McLean 2000, Theorem 4.24, or

Nečas 1967) will be very useful in this article. This result is proved using
Rellich-identity-type arguments, of the sort that are central to many of our
results in Section 5.

Theorem A.5. Suppose D is a Lipschitz open set and u ∈ H1(D; ∆).
Then ∂nu ∈ L2(Γ) if and only if γu ∈ H1(Γ). Further, if ∂nu ∈ L2(Γ) then,
for some C > 0 depending only on Γ,

‖γu‖H1(Γ) ≤ C
(
‖∂nu‖L2(Γ) + ‖u‖H1(D;∆)

)
and

‖∂nu‖L2(Γ) ≤ C
(
‖γu‖H1(Γ) + ‖u‖H1(D;∆)

)
.

As an important application of this theorem, note that ∂nu ∈ L2(Γ) if
u ∈ H1(D,∆) and γu = 0.
Roughly speaking, for u ∈ H1(D), γu is the value of u on Γ and, for

u ∈ H1(D; ∆), ∂nu is the value of ∂u
∂n on Γ: these statements are true

precisely as they stand when u ∈ C∞comp(D). It is thus not surprising that,

if v ∈ C∞comp(D) and v = 1 in a neighbourhood of Γ, then γ(uv) = γu, for

u ∈ H1(D), and ∂n(uv) = ∂nu for u ∈ H1(D; ∆).
In the scattering problems that we study in this article, when D is an

unbounded open set, the solution is not in H1(D) but is in the linear spaces

H1
loc(D) := {u ∈ L2

loc(D) : vu ∈ H1(D), v ∈ C∞comp(D)} (A.30)

and

H1
loc(D; ∆) := {u ∈ L2

loc(D) : ∇u ∈ (L2
loc(D))d,∆u ∈ L2

loc(D)}. (A.31)

The trace and normal derivative operators, γ and ∂n, extend in a natural
way as linear operators γ : H1

loc(D) → H1/2(Γ) and γ : H1
loc(D; ∆) →

H−1/2(Γ), defined by γu = γ(uv) and ∂nu = ∂n(uv), where v is an arbitrary
v ∈ C∞comp(D) with v = 1 in a neighbourhood of Γ.
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A.4. Maximal functions

The Sobolev spaces and trace operators introduced in the subsections above
provide powerful and widely used tools to formulate and study elliptic
boundary value problems in Lipschitz domains. Indeed, we use these tools
for precisely this purpose in Section 2. But, to develop some of our key theo-
retical results, we need to supplement these methods with results associated
with the study, in the harmonic analysis community, of Calderón–Zygmund
operators and singular integral operators on the boundaries of Lipschitz
domains.
These additional results provide other benefits which we briefly exhibit.

In particular they enable us define a sense in which the trace operator γ,
defined as a mapping from Hs(D) to Hs−1/2(Γ), for 1/2 < s < 3/2, can
be extended to the limiting values s = 1/2, 3/2, provided that we restrict
the domain of the operator to a subspace of Hs(D). They also enable us
to explain in what sense ∂nu, for u ∈ H1(D; ∆), is connected to limiting
values of n(y) · ∇u(x) as x ∈ D approaches y ∈ Γ.
Key notions that we will need are those of non-tangential convergence

and non-tangential maximal functions. Let D be a Lipschitz open set with
boundary Γ. Given x ∈ Γ, we call the set Θ(x) a non-tangential approach

set (to x from D) if Θ(x) ⊂ D, Θ(x) ∩ Γ = {x}, and, for some constant
C > 1,

|x− y| ≤ Cdist(y,Γ), y ∈ Θ(x). (A.32)

Now suppose that we are given families specifying the Lipschitz open set
as in Definition A.2, in particular an open cover {Wi} and an associated
family of rigid motions {ri}. We choose {ri}, as we note we are able to do
immediately below the definition, to be a family of pure rotations. Further,
suppose that we are given a partition of unity {χi} subordinate to this open
cover, as defined before equation (A.22). We will call a family {Θ(x) : x ∈ Γ}
of non-tangential approach sets sufficient (with respect to these families
{Wi}, {ri}, and {χi}) if, for some ε > 0,

�i,ε(x) := {x+ tb̂i : 0 < t ≤ ε} ⊂ Θ(x), for all x ∈ supp(χi) ∩ Γ. (A.33)

Here b̂i is the unit vector that satisfies b̂i = r−1i (ed), so that, for every

x ∈ Wi ∩ Γ, x + tb̂i ∈ D for all sufficiently small t > 0. Further, we will
call the family {Θ(x) : x ∈ Γ} uniform if the condition (A.32) holds with
the same constant C > 1 for all x ∈ Γ, and if, for some constant c > 0, the
diameter of Θ(x) is ≤ c, for every x ∈ Γ.
It is easy to see that there exists ε > 0 such that (A.33) holds, that is,

there exists, given any Lipschitz open set defined as in Definition A.2 and
an associated subordinate partition of unity {χi}, a sufficient family of non-
tangential approach sets. Indeed, choosing ε > 0 such that �i,ε(x) ⊂ D for
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all i and x ∈ supp(χi) ∩ Γ, an example of such a sufficient family is

Θ(x) :=
⋃

i, x∈supp(χi)

�i,ε(x). (A.34)

If ε > 0 is chosen sufficiently small then this choice is also uniform. On
the other hand, an obvious example of a uniform family of non-tangential
approach sets is obtained by choosing C > 1 and c > 0 and defining

Θ(x) := {y ∈ D : |x− y| < max(c, Cdist(y,Γ)}. (A.35)

If C is chosen sufficiently large then this choice is also sufficient.
Given a family of non-tangential approach sets and a function u ∈ C(D),

we define a maximal function u∗ : Γ → [0,∞] by

u∗(x) := sup
y∈Θ(x)

|u(y)|, x ∈ Γ. (A.36)

In the case that u ∈ C1(D), one can define also a maximal function for the
gradient by

(∇u)∗(x) := sup
y∈Θ(x)

|∇u(y)|, x ∈ Γ. (A.37)

Commonly, in these definitions, the non-tangential approach sets are chosen
to be open finite cones, the finite cone Θ(x) having its vertex at x (see, e.g.,
Verchota 1984).
Recall that the trace operator γ is well-defined as a mapping from Hs(D)

to Hs−1/2(D) for 1/2 < s < 3/2. Formulations of the trace operator in
terms of non-tangential convergence enable us to extend the trace operator
as a mapping from certain subspaces of H1/2(D) to L2(Γ). In particular, we
will see that we can choose this subspace as a subspace of solutions of the
Helmholtz equation. This result, which is contained in Corollary A.8 and
Lemma A.9 below, is based on the following equivalence result for harmonic
functions (u ∈ C2(D) is said to be harmonic if ∆u = 0 in D) (see Jerison
and Kenig 1995, §5). In this result we introduce the notation

δ(x) := dist(x,Γ), for x ∈ D.

Theorem A.6. (Jerison and Kenig 1995, Corollaries 5.5 and 5.7)
Suppose that D is a bounded Lipschitz open set, u ∈ C2(D) is harmonic
and let {Θ(x) : x ∈ Γ} be any uniform and sufficient family of tangential
approach sets. Then the following statements are equivalent:

(i) u ∈ H1/2(D);

(ii) u∗ ∈ L2(Γ);

(iii) ‖u‖1,δ :=
(∫

D

(
|u|2 + δ |∇u|2

)
dx

)1/2

< ∞.
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Further, if u∗ ∈ L2(Γ) then

φ(x) := lim
y→x,y∈Θ(x)

u(y) (A.38)

exists for almost all x ∈ Γ, with φ ∈ L2(Γ). Moreover, ‖φ‖L2(Γ), ‖u∗‖L2(Γ),
‖u‖H1/2(D), and ‖u‖1,δ are equivalent norms on the space of harmonic func-

tions u in D for which u ∈ H1/2(D).
Similarly, the following statements are equivalent:

(a) u ∈ H3/2(D);

(b) (∇u)∗ ∈ L2(Γ);

(c) ‖u‖2,δ :=
(∫

D

(
|u|2 + |∇u|2 + δ

∑
|α|=2

|∂αu|2
)
dx

)1/2

< ∞.

Further, if (∇u)∗ ∈ L2(Γ) then

ψ(x) := lim
y→x,y∈Θ(x)

∇u(y) (A.39)

exists for almost all x ∈ Γ, with ψ ∈ (L2(Γ))d. Moreover, ‖φ‖2L2(Γ) +

‖ψ‖2L2(Γ), ‖u∗‖L2(Γ) + ‖(∇u)∗‖L2(Γ), ‖u‖H3/2(D), and ‖u‖2,δ are equivalent

norms on the space of harmonic functions u in D for which u ∈ H3/2(D).

The above result enables us to extend the definition of the trace operator
γ to harmonic functions in H1/2(D), defining γu to be the non-tangential
limit φ. This holds also for solutions of the Helmholtz equation in D. In
dimensions d = 2 and 3 this is a consequence of the next result, which
follows from the embedding theorem, Theorem A.1, and from properties of
the Newtonian potential.

Theorem A.7. Suppose that D is a bounded Lipschitz open set, let u ∈
C2(D), and let {Θ(x) : x ∈ Γ} be any uniform and sufficient family of
tangential approach sets.

(A) If ∆u ∈ L2(D), then (i)–(iii) of Theorem A.6 are equivalent and, if
u∗ ∈ L2(Γ), then the limit (A.38) exists for almost all x ∈ Γ, with
‖φ‖L2(Γ) ≤ ‖u∗‖L2(Γ). Moreover, ‖u∗‖L2(Γ) + ‖∆u‖L2(D), ‖u‖H1/2(D) +

‖∆u‖L2(D), and ‖u‖1,δ + ‖∆u‖L2(D) are all equivalent norms for u.

(B) If ∆u ∈ H1(D), then (a)–(c) of Theorem A.6 are also equivalent and,
if (∇u)∗ ∈ L2(Γ), then the limit (A.39) exists for almost all x ∈ Γ,
with ‖ψ‖L2(Γ) ≤ ‖(∇u)∗‖L2(Γ). Moreover, ‖u∗‖L2(Γ) + ‖(∇u)∗‖L2(Γ) +
‖∆u‖H1(D), ‖u‖H3/2(D) + ‖∆u‖H1(D), and ‖u‖2,δ + ‖∆u‖H1(D) are all
equivalent norms for u.
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Proof. (A) Let g = ∆u and write u as u = v+w, where w = W |D and W
is the Newtonian potential

W (x) = −
∫
Rd

Φ0(x, y) g̃(y) dy, x ∈ R
d,

where g̃ is the extension of g by zero from D to R
d. Then, where χ ∈

C∞0 (Rd), with χ(x) = 1 for x ∈ D, it holds that χW ∈ H2(Rd) with
‖χW‖H2(Rd) ≤ C‖g‖L2(D) (McLean 2000, Theorem 6.1), and that ∆W = g̃,
so that ∆w = g. Further, by the Sobolev embedding theorem, Theorem A.1,
since d ≤ 3, χW ∈ BC(Rd), with ‖χW‖BC(Rd) ≤ C‖g‖L2(D). Thus w ∈
C(D)∩H2(D), with ∆w = g. Further, ‖w‖C(D)+‖w‖H2(D) ≤ C‖g‖L2(D), so

that (i)–(iii) hold for w with ‖w∗‖L2(Γ)+‖w‖H1/2(D)+‖w‖1,δ ≤ C‖g‖L2(D). It

follows that v ∈ C(D) satisfies ∆v = 0, so hence that v ∈ C2(D) by elliptic
regularity. So, by Theorem A.6, (i)–(iii) are equivalent for v and hence also
for u, and the equivalence of the norms on u stated in (A) follows.

(B) This follows similarly, except that now g̃ is chosen to be any compactly
supported function inH1(Rd) such that g̃|D = g and ‖g̃‖H1(Rd) ≤ 2‖g‖H1(D).
(That such a choice is possible is a consequence of (A.8).) Then χW ∈
H3(Rd) with ‖χW‖H3(Rd) ≤ C‖g‖H1(D) (McLean 2000, Theorem 6.1) so
that ‖∇(χW )‖H2(Rd) ≤ C‖g‖H1(D) and, by the Sobolev embedding theorem,

Theorem A.1, w ∈ C1(D) with ‖w‖C1(D) ≤ C‖g‖H1(D).

An immediate corollary is that Theorem A.6 extends to solution of the
Helmholtz equation.

Corollary A.8. Suppose that D is a bounded Lipschitz open set, u ∈
C2(D) and, for some constant k ∈ C, ∆u + k2u = 0 in D, and let {Θ(x) :
x ∈ Γ} be any uniform and sufficient family of tangential approach sets.
Then (i)–(iii) in Theorem A.6 are equivalent, as are (a)–(c). If u∗ ∈ L2(Γ),
then the limit (A.38) exists for almost all x ∈ Γ, with ‖φ‖L2(Γ) ≤ ‖u∗‖L2(Γ),

while if (∇u)∗ ∈ L2(Γ), then the limit (A.39) exists for almost all x ∈ Γ,
with ‖ψ‖L2(Γ) ≤ ‖(∇u)∗‖L2(Γ). Moreover, defining, for s ≥ 0,

Hs
HE(D) := {v ∈ Hs(D) ∩ C2(D) : ∆v + k2v = 0}, (A.40)

which is a closed subspace of Hs(D), it holds that ‖u∗‖L2(Γ) + ‖u‖L2(D),

‖u‖H1/2(D), and ‖u‖1,δ are equivalent norms on H
1/2
HE (D) and ‖(∇u)∗‖L2(Γ)+

‖u‖H1(D), ‖u‖H3/2(D), and ‖u‖2,δ are equivalent norms on H
3/2
HE (D).

Proof. This follows immediately from Theorem A.7: in the case that any
one of (i)–(iii) holds it follows that g := ∆u = −k2u ∈ L2(D); in the case
that any one of (a)–(c) holds it follows that g ∈ H1(D).
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Define a trace operator γ̃ : H
1/2
HE (D) → L2(Γ) by γ̃u = φ, where φ is

defined by (A.38). By Corollary A.8, γ̃ is a bounded linear operator, and
the next lemma shows that this trace operator extends the trace operator
γ to a subspace of H1/2(Γ).

Lemma A.9. If D is a bounded Lipschitz open set and u ∈ Hs
HE(D), with

s > 1/2, then γ̃u = γu.

Proof. Suppose that s > 1/2 and u ∈ Hs
HE(D). Since ∆u+ k2u = 0 in D,

u ∈ C∞(D) by standard interior elliptic regularity results (e.g., Theorem
3.5 in Colton and Kress 1983).
Let {Θ(x) : x ∈ Γ} be a family of non-tangential approach sets that is

uniform and sufficient with respect to particular families {Wi}, {ri}, and
{χi} (see the definition just above (A.33)). It is enough that we show that∫
Γ(γ̃u − γu)φ ds = 0 for all φ ∈ C∞(Γ). Indeed, it is enough to show that
this holds for all φ ∈ C∞(Γ) with supp(φ) ⊂ supp(χi), for some i. Let φ be
such a function, and let Γ∗ = supp(φ) ⊂ supp(χi) ∩ Γ. Now, as in (A.33),

let b̂i = r−1i (ed), and define Ut ∈ C(Γ∗), for all sufficiently small t > 0, by

Ut(x) = u(x + b̂it), for x ∈ Γ∗. (Thus Ut is essentially u evaluated on a
parallel surface to Γ∗, distance t away.) Since {Θ(x) : x ∈ Γ} is sufficient,
for all sufficiently small ε > 0 we have �i,ε(x) ⊂ Θ(x) for all x ∈ Γ∗ (our

notation here is that of (A.33)). Since u ∈ H
1/2
HE (D), Corollary A.8 implies

that u∗ ∈ L2(Γ), from which it follows that∫
Γ∗

Ut φ ds →
∫
Γ∗

γ̃u φ ds =

∫
Γ
γ̃u φ ds,

as t → 0, by the dominated convergence theorem.
On the other hand, choose v ∈ Hs(Rd) such that u = v|D and, for t > 0,

define vt ∈ Hs(Rd) by vt(x) = v(x+tb̂i), x ∈ R
d, and let ut := vt|D ∈ Hs(D).

Since u ∈ C∞(D), ut is C∞ in a neighbourhood of Γ∗, for all sufficiently
small t > 0. Thus, for all sufficiently small t > 0, γut(x) = ut(x) = Ut(x),
x ∈ Γ∗. So, for some constant C > 0,∣∣∣∣∫

Γ∗
(Ut−γu)φ ds

∣∣∣∣ = ∣∣∣∣∫
Γ
γ(ut−u)φ ds

∣∣∣∣ ≤ C‖ut−u‖Hs(D) ≤ C‖vt−v‖Hs(Rd),

since γ is a bounded map from Hs(D) to Hs−1/2(Γ). But that ‖vt −
v‖Hs(Rd) → 0 as t → 0 is clear if v ∈ C∞0 (Rd), and follows for all v ∈ Hs(Rd)

by density of C∞0 (Rd) in Hs(Rd).

Similarly, the mapping u �→ ψ, where ψ is given by (A.39), from H
3/2
HE (D)

to (L2(Γ))d, is a bounded linear operator, connected to the operators we
have already introduced by the following lemma.
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Lemma A.10. If D is a bounded Lipschitz open set, u ∈ H
3/2
HE (D) and ψ

is defined by (A.39), then ∂nu ∈ L2(Γ), γu ∈ H1(Γ) and, for almost every
x ∈ Γ,

ψ(x) = n(x)∂nu+∇Γγu(x).

Proof. We note thatH
3/2
HE (D) ⊂ H1(D; ∆), and recall that ∂nu ∈ H−1/2(Γ)

is defined by (A.28). We first prove that ∂nu ∈ L2(Γ) and that

∂nu(x) =
∂u

∂n
(x) := n(x) · lim

y→x,y∈Θ(x)
∇u(y), (A.41)

for almost all x ∈ Γ. (Here – recall the definition of sufficient above (A.33)
– {Θ(x) : x ∈ Γ} is any family of non-tangential approach sets that is
uniform and sufficient with respect to particular families {Wi}, {ri}, and
{χi}, with {χi} a partition of unity on Γ subordinate to the finite open cover
{Wi}.) Since, by Corollary A.8, ψ ∈ (L2(Γ))d, it holds that ∂u/∂n ∈ L2(Γ).
Recalling the definition (A.28), we see that, if we can show the following
version of Green’s identity, that∫

Γ

∂u

∂n
γv̄ ds =

∫
D

(
∇u · ∇v̄ + v̄∆u

)
dx, v ∈ H1(D), (A.42)

then (A.41) and ∂nu ∈ L2(Γ) will follow. This version of Green’s iden-
tity, proved under an assumption that (∇u)∗ ∈ L2(Γ), is standard in the
harmonic analysis literature (e.g., §4.4 in Taylor 2000, §15.5 in Meyer and
Coifman 2000). To see how it is obtained, making clear how the Lipschitz
character ofD and the condition (∇u)∗ ∈ L2(Γ) are relevant, we give a proof
different from, and arguably simpler than, that in, e.g., Taylor (2000).
Let {1, 2, . . . , N} be the finite index set for the family {χi}, i.e., {χi} =

{χi : i = 1, . . . , N}. Define χ0 ∈ C∞(D̄) by

χ0(x) = 1−
N∑
i=1

χi(x), x ∈ D̄.

Since C∞(D̄) is dense in H1(D) and ∆u = −k2u ∈ L2(D), it is enough
to show (A.42) for v ∈ C∞(D̄). But to show (A.42) for v ∈ C∞(D̄) it is
enough to show that (A.42) holds for v replaced by vi := χiv, i = 0, . . . , N .

For if this holds then, since
∑N

i=0∇χi = 0 in D,∫
Γ

∂u

∂n
γv̄ ds =

N∑
i=0

∫
Γ

∂u

∂n
γv̄i ds

=
N∑
i=0

∫
D

(
∇u · ∇v̄i + v̄i∆u

)
dx
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=
N∑
i=0

∫
D
χi

(
∇u · ∇v̄ + v̄∆u

)
dx

=

∫
D

(
∇u · ∇v̄ + v̄∆u

)
dx.

So it remains to show (A.42) with v replaced by vi, for i = 0, . . . , N . For
i = 0, since γχ0 = 0 so that χ ∈ H1

0 (D), this follows from (A.29). For
i = 1, . . . , N , write u = U |D, for some U ∈ H3/2(Rd), and v = V |D, for
some V ∈ C∞(Rd), and, where Di is as in Definition A.2, let Γi := ∂Di,

and b̂i := r−1i (ed). Further, for t > 0, let Di,t := Di+ tb̂i and Γi,t := ∂Di,t =

Γi + tb̂i. Then, for t > 0, where G := supp(χi) ∩ D̄i,t, U |G = u|G ∈ C∞(G),
so that, by (A.26),∫

Γi,t

∂U

∂n
Vi ds =

∫
Di,t

(
∇U · ∇V̄i + V̄i∆U

)
dx, (A.43)

for t > 0, where Vi = χiV . Noting that, for x ∈ Γi,t ∩Wi and all sufficiently
small t > 0, we have, for some constant C > 0 independent of x and t, that∣∣∣∣Vi(x)

∂U

∂n
(x)

∣∣∣∣ = ∣∣∣∣vi(x)∂u∂n(x)
∣∣∣∣ ≤ C(∇u)∗(x− tb̂i),

taking the limit as t → 0 in (A.43) and using the dominated convergence
theorem we see that∫

Γi

∂U

∂n
γV̄i ds =

∫
Di

(
∇U · ∇V̄i + V̄i∆U

)
dx.

But this is just (A.42) with v replaced by vi, since supp(χi) ⊂ Wi, Di∩Wi =
D ∩Wi, and U = u and Vi = vi in D.

We have shown that ∂nu ∈ L2(Γ) and that (A.41) is true. It follows from
Theorem A.5 that γu ∈ H1(Γ). It remains to show that, for almost every
x ∈ Γ,

ψT (x) := ψ(x)− n(x)(n(x) · ψ(x)) = ∇Γγu(x).

Noting that γu = γ̃u by Lemma A.9, and arguing as in the proof of that
lemma, we see that it is enough to show that

∫
Γ(ψT −∇Γγ̃u) ·φ ds = 0, for

all φ ∈ (L2(Γ))d with supp(φ) ⊂ supp(χi), for some i. But, for such a φ,
since supp(φ) ⊂ Γi ∩ Γ, with a slight abuse of notation we have∫

Γ
(ψT −∇Γγ̃u) · φ ds =

∫
Γi

(ψT −∇Γγ̃u) · φT ds, (A.44)

where φT ∈ L2
t (Γi) is the tangential part of φ, i.e., φT := φ− n(n · φ). It is

sufficient to show that the integral on the right-hand side of (A.44) is zero
for all φT ∈ Xt with supp(φT ) ⊂ supp(χi), where Xt is the dense subset of
L2
t (Γi) that satisfies ∇∗Γ(Xt) ⊂ L2(Γi) introduced just below (A.20). But,
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for such a φT , and using the notations Γ∗ and Ut introduced in the proof
of Lemma A.9, it follows from (A.20), (∇u)∗ ∈ L2(Γ), and the dominated
convergence theorem, that∫

Γi

∇Γγ̃u · φT ds =

∫
Γi

γ̃u∇∗ΓφT√
1 + |∇f |2

ds

=

∫
Γ∗

γ̃u∇∗ΓφT√
1 + |∇f |2

ds

= lim
t→0

∫
Γ∗

Ut∇∗ΓφT√
1 + |∇f |2

ds

= lim
t→0

∫
Γi

Ut∇∗ΓφT√
1 + |∇f |2

ds

= lim
t→0

∫
Γi

∇ΓUt · φT ds

=

∫
Γi

ψT · φT ds.

In this subsection, and in the related material in Section 2.2, we have
provided an introduction, aimed specifically at the Helmholtz equation, to
the large body of research in the harmonic analysis literature on boundary
value problems in Lipschitz domains with L2 boundary data and on asso-
ciated properties of layer potentials. For more detail we refer the reader
to Coifman et al. (1982), Verchota (1984), Torres and Welland (1993), Liu
(1995), Jerison and Kenig (1995), Mitrea (1996), Chandler-Wilde and Lang-
don (2007), Spence et al. (2011) and to the monographs by Kenig (1994),
Meyer and Coifman (2000), Taylor (2000), and Mitrea, Mitrea and Taylor
(2001).

A.5. Exterior and interior traces

To study the properties of boundary integral representations we will need
to consider functions defined on both sides of a Lipschitz boundary. So
suppose that Ω− is a bounded Lipschitz open set and let Ω+ := R

d \Ω− and
Γ = ∂Ω− = ∂Ω+. Then Ω+ is an unbounded Lipschitz open set, and Γ is the
Lipschitz boundary of both Ω− and Ω+, with Ω− the interior and Ω+ the
exterior of Γ. In this configuration, we will use the notation γ± to denote
the trace operator γ from Hs(Ω±) → Hs−1/2(Γ), for 1/2 < s < 3/2, and ∂±n
will be our notation for the normal derivative operator ∂n from H1(Ω±; ∆)
to H−1/2(Γ), with the normal n directed out of Ω− into Ω+. Thus γ+ and
∂+
n are trace and normal derivatives operators from the exterior side of Γ

and γ− and ∂−n those from the interior.
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E. Darve and P. Havé (2004), ‘A fast multipole method for Maxwell equations
stable at all frequencies’, Phil. Trans. Royal Soc. London A 362, 603–628.

C. P. Davis and W. C. Chew (2008), ‘Frequency-independent scattering from a flat
strip with TEz-polarized fields’, IEEE Trans. Antennas Propagat. 56, 1008–
1016.



High-frequency acoustic scattering 295

A. de La Bourdonnaye (1994), ‘A microlocal discretization method and its utiliza-
tion for a scattering problem’, CR Acad. Sci. I 318, 385–388.

A. de La Bourdonnaye and M. Tolentino (2004), ‘Reducing the condition number
for microlocal discretization problems’, Phil. Trans. Royal Soc. London A
362, 541–559.

A. Deaño and D. Huybrechs (2009), ‘Complex Gaussian quadrature of oscillatory
integrals’, Numer. Math. 112, 197–219.

G. H. Derrick (1964), ‘Comments on nonlinear wave equations as models for ele-
mentary particles’, J. Math. Phys. 5, 1252–1254.
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L. Hörmander (1983b), The Analysis of Linear Partial Differential Operators II:
Differential Operators With Constant Coefficients, Springer.
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