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Abstract

We prove that the standard second-kind integral equation formulation of the exterior
Dirichlet problem for the Helmholtz equation is coercive (i.e. sign-definite) for all smooth
convex domains when the wavenumber k is sufficient large. (This integral equation involves
the so-called “combined potential” or “combined field” operator.) This coercivity result yields
k-explicit error estimates when the integral equation is solved using the Galerkin method,
regardless of the particular approximation space used (and thus these error estimates apply
to several hybrid numerical-asymptotic methods developed recently). Coercivity also gives k-
explicit bounds on the number of GMRES iterations needed to achieve a prescribed accuracy
when the integral equation is solved using the Galerkin method with standard piecewise-
polynomial subspaces. The coercivity result is obtained by using identities for the Helmholtz
equation originally introduced by Morawetz in her work on the local energy decay of solutions
to the wave equation.

1 Introduction

The Helmholtz equation,
Au+ k*u =0,

with wavenumber k£ > 0, posed in the domain exterior to a bounded obstacle is arguably the
simplest possible model of wave scattering, and thus has been the subject of vast amounts of
research.

On the one hand, much effort has gone into constructing the asymptotics as k — oo of solutions
of the Helmholtz equation in exterior domains using Geometrical Optics and Keller’'s Geometrical
Theory of Diffraction, and then proving error bounds that justify these asymptotics (often via
proving bounds on the inverse of the Helmholtz operator).

On the other hand, much research effort has gone into solving the Helmholtz equation numer-
ically. For example, one popular method is the finite element method, which is based on the weak
form of the PDE. Alternatively, if the wavenumber k is constant, then an explicit expression for
the fundamental solution of the Helmholtz equation is available, and this allows the problem of
finding u in the exterior domain to be reduced to solving an integral equation on the boundary of
the obstacle (the so-called boundary integral method). The resulting integral equation can then
be solved numerically in a variety of ways (e.g. using Galerkin, collocation, or Nystrom methods).

Over the last two decades, there has been a lot of interest in

(a) determining how the conventional numerical methods for solving the Helmholtz equation
behave as k increases, and
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(b) designing new methods that perform better as k increases than the conventional ones.

Regarding (a): the standard numerical analysis approach to numerical methods for the Helmholtz
equation is to prove results about the convergence and conditioning of the methods as the num-
ber of degrees of freedom, IV, increases with k fixed. In particular, the constants in the classical
error estimates as N — oo are not explicit in k. More recent work has sought to determine the
dependence of these constants on k, and, more generally, determine how these methods perform
as k increases with N either fixed or a prescribed function of k (see, e.g., the recent review articles
2], [10, 85, 56]).

Regarding (b): the engineering rule of thumb is that conventional numerical methods for the
Helmholtz equation need a fixed number of degrees of freedom per wavelength to maintain accuracy
as k increases (see, e.g., [38]); therefore, if the problem is d-dimensional, N must grow like k% as
k — oo for volume discretisations and like k¢~ as k — oo for discretisations on the boundary of
the domain. (The investigations addressing (a) discussed above actually show that in some cases
N must increase faster than k? to maintain accuracy due to the so-called pollution effect; see,
e.g., [1], [22].) This growth of N with k& puts many high-frequency problems out of the range of
standard numerical methods, and thus there has been much recent interest in designing methods
that reduce this growth (see, e.g, [10, §1] and the references therein).

The classical results about the asymptotics of solutions to the Helmholtz equation and the
associated bounds on the inverse of the Helmholtz operator have played an essential role in many
of the attempts at tackling one or other of the tasks (a) and (b) above. Indeed, very roughly
speaking, the knowledge of the large k asymptotics of the Helmholtz equation can be used for task
(b) (leading to so-called hybrid numerical-asymptotic methods), and knowledge of the bounds on
the inverse of the Helmholtz operator can be used for task (a) (for more details see [10, §3] and
[10, §5, §6] respectively).

This paper considers a standard integral operator associated with the Helmholtz equation posed
in the exterior of a bounded obstacle with Dirichlet boundary conditions (physically this corre-
sponds to sound-soft acoustic scattering), and seeks to address a question that is relevant to both
tasks (a) and (b) above. This oscillatory integral operator is often called the “combined potential
operator” or “combined field operator”, and we denote it by A§€7 , where k is the wavenumber and
7 is a parameter that is usually chosen to be proportional to k (we define A;wz and derive the
associated integral equation in §1.1 below). We seek to prove that A;cm is coercive as an operator
on L?(T), where I is the boundary of the obstacle, i.e. that there exists an o,y > 0 such that

|(Af @ O L2(ry| = ||¢’H3:2(r) for all ¢ € L*(T), (1.1)

at least for k sufficiently large. The k- and n-subscripts on the coercivity constant, ay ,, indicate
that, if this constant exists, it might depend on k and 7; we see below that in some cases it can
be independent of both. (Note that if A;m is coercive then the Lax-Milgram theorem implies that
Ay, 1s invertible with [|(A7, ,)7"|| < 1/ay.,, but the converse is not true; i.e. A}, can be invertible
but not coercive.) Establishing coercivity has two important consequences:

(i) It allows one to prove k-explicit error estimates when the integral equation involving A;m is
solved numerically using the Galerkin method both for conventional methods (which use ap-
proximation spaces consisting of piecewise polynomials) and for hybrid numerical-asymptotic
methods (where the approximation space is designed using knowledge of the large k asymp-
totics). Note that establishing coercivity is currently the only known way to prove these
error estimates for the hybrid methods.

(ii) It proves that the numerical range (also known as the field of values) of the operator is
bounded away from zero. This fact, along with a k-explicit bound on |[Aj , |, then gives a k-
explicit bound on the number of GMRES iterations needed to achieve a prescribed accuracy
when the integral equation is solved using the Galerkin method with piecewise-polynomial
approximation spaces (and where GMRES is the generalised minimal residual method). Note
that no such bounds are currently available in the literature.

(Both of these consequences of coercivity are discussed in more detail in §1.3 below.)



Although it is well-known that A} ko 18 invertible for every k > 0, it is not a priori clear that
A;wz will be coercive. Indeed, the usual numerical analysis of Helmholtz problems (posed either
in the domain or on the boundary) seeks to prove that the relevant operator is coercive up to a
compact perturbation (i.e. satisfies a Garding inequality). However, in [19] A} , was proved to be
coercive, with oy, independent of k, when T is the circle (in 2-d) or the sphere (in 3-d), n = k,
and k is sufficiently large. Furthermore, numerical experiments conducted in [5] suggest that A
is coercive for a wide variety of 2-d domains, with oy, independent of k, when n = k and k is
sufficiently large (in particular, domains that are nontrapping).

When considering the question of whether or not A?Cm is coercive, it is instructive to also
consider two other questions about Aj . namely, how do |4}, | and [[( ;m)*1|| depend on k

(where || - || denotes the operator norm on L?(T'))? Bounds on A% |l that are sharp in their
k-dependence for a wide variety of domains can be obtained just by using general techniques for
bounding the norms of oscillatory integral operators; see [9], [10, §5.5], [56, §1.2]. In contrast,

to obtain k-explicit bounds on [(A},)7"|| it is necessary to use the fact that Aj  arises from
solving boundary value problems (BVPS) for the Helmholtz equation, and convert the problem
of finding a bound on [|(4} ,)~"| into bounding the exterior Dirichlet-to-Neumann map and the
interior impedance-to-Dirichlet map for the Helmholtz equation. (Although it might seem strange
that ||(A), )’1 || depends on the solution operator to the interior impedance problem, it turns out
that this 1nter10r problem can also be formulated as an integral equation involving A’ , thus this
dependence is natural.) Appropriate bounds on these interior and exterior Helmholtz problems
can then be used to bound [|(4], )" |; see [10 Theorem 2.33 and §5.6.1], [11], [57, §1.3].

In constrast to the task of bounding [|(A} )~ |, the task of proving that Aj, ko 1S coercive
apparently cannot be reformulated in terms of bounding the solutions of Helmholtz BVPs. In
this paper, however, we show that this task can be tackled using identities for solutions of the
Helmholtz equation originally introduced by Morawetz. (This builds on the earlier work of two of
the authors and their collaborators in [58].) Recall that Morawetz showed in [46] that bounding the
solution of the exterior Dirichlet problem could be converted (via her identities) into constructing an
appropriate vector field in the exterior of the obstacle, and then such a vector field was constructed
by Morawetz, Ralston, and Strauss for 2-d nontrapping domains in [48, §4]. (This bound on the
solution is equivalent to bounding the exterior Dirichlet-to-Neumann map, and can also be used
to show local energy decay of solutions of the wave equation.)

Here we convert the problem of proving that Aj, o,y 1S coercive into that of constructing a suitable
vector field in both the exterior and the interior of the obstacle. In addition to needing a vector field
in the interior as well as the exterior, the conditions that the vector field must satisfy for coercivity
are stronger than those in [46] and [48]. Indeed, we prove that the conditions for coercivity cannot
be satisfied if the obstacle is nonconvex, and then we construct a vector field satisfying these
conditions for smooth, convex obstacles with strictly positive curvature in both 2- and 3-d.

1.1 Formulation of the problem

Let Q_ C R d = 2 or 3, be a bounded Lipschitz open set such that the open complement
Q, :=R?\ OQ_ is connected. In what follows we use domain to mean a connected open set, and
thus 2 is a Lipschitz domain. Let I' ;= 9Q_ (so I' = 9Q too). Let H{ () denote the set
of functions, v, such that v is locally integrable on Q. and v € H'(Q,) for every compactly
supported 1) € C=(Qy) == {lg: ¥ € C>=(R%)}.

Definition 1.1 (Sound-soft scattering problem) Given k > 0 and an incident plane wave
ul(x) = exp(ikx - @) for some a € R? with |a| = 1, find u® € C*(Q4) N HE () such that the
total field v := u! + u® satisfies

Lu:=Au+Ku=0 inQy,

u=0 onl,

and v’ satisfies the Sommerfeld radiation condition,

S
%(X) —ikuS(x) = O<r(d—11)/2> (1.2)



as r = |x| — oo, uniformly in X := x/r.

Tt is well-known that the solution to this problem exists and is unique; see, e.g., [10, Theorem 2.12].

Note that, although we are restricting our attention to the case where the incident field is a
plane wave, the results of this paper also apply to scattering by other incident fields, for example
those satisfying [10, Definition 2.11], and also to the general exterior Dirichlet problem, i.e. given
a function gp on I' (with suitable regularity), find u* satisfying both the Helmholtz equation in
0 and the Sommerfeld radiation condition, and also such that «° = gp on I.

The BVP in Definition 1.1 can be reformulated as an integral equation on I' in two different
ways. The first, the so-called direct method, uses Green’s integral representation for the solution
u, i.e.

Ju
u) =) - [ By (¥ dsly), x € (13)
r
where 9/0n is the derivative in the normal direction, with the unit normal n directed into Q.
and P (x,y) is the fundamental solution of the Helmholtz equation given by

i elklx—yl
@k(x,y)zzHO (k‘x—y|)7 d:27 @k(x,y):m, d=3

(note that to obtain (1.3) from the usual form of Green’s integral representation one must use the
fact that u! is a solution of the Helmholtz equation in Q_; see, e.g., [10, Theorem 2.43]).

Taking the Dirichlet and Neumann traces of (1.3) on I' one obtains two integral equations for
the unknown Neumann boundary value du/0n:

ou
Sk% =l (1.4)
1 S\ Ou  out

where the integral operators Sy and Dj,, the single-layer operator and its normal derivative respec-
tively, are defined for ¢ € L?(T") by

S0 = [ ®ulx.y)oly) ds(y). (1.6
Divt) = [ ZHEpy)dsy), xer. (1.7

Both integral equations (1.4) and (1.5) fail to be uniquely solvable for certain values of &k (for (1.4)
these are the k such that k2 is a Dirichlet eigenvalue of the Laplacian in ©_, and for (1.5) these
are the k such that k? is a Neumann eigenvalue). The standard way to resolve this difficulty is to
take a linear combination of the two equations, which yields the integral equation

ou
;c,n% = fv (18)
where 1
;v,n = 5[ + D), —inSy, (1.9)

is the combined potential or combined field operator, with n € R\ {0} the so-called coupling

parameter, and
F9= 2200 — il (), xeT
- On ), '

When €_ is Lipschitz, standard trace results imply that the unknown Neumann boundary value
Ou/On is in H~Y2(T'). When Q_ is C2, elliptic regularity implies that du/dn € L?(T) (see, e.g.,
[23, §6.3.2, Theorem 4]), but this is true even when Q_ is Lipschitz via a regularity result of Necas
[49, §5.1.2], [40, Theorem 4.24 (ii)]. Therefore, even for Lipschitz Q2_ we can consider the integral
equation (1.8) as an operator equation in L?(T"), which is a natural space for the practical solution



of second-kind integral equations since it is self-dual. It is well-known that, when 1 # 0, A;wz isa
bounded and invertible operator on L?(T") (see [10, Theorem 2.27]).

Instead of using Green’s integral representation to formulate the BVP as an integral equation,
one can pose the ansatz

0Pk (x,y) .
500 = [ T X oty)dsty) ~ in [ @ux,v)ely) ds(y)
r on(y) r
with the sought density ¢ € L?(I") and n € R\ {0}; this is the so-called indirect method. Imposing
the boundary condition v = —u! on T leads to the integral equation

Apo = —u’, (1.10)

where

1
Ak,'q = §I—|— Dy — ir]Sk

and Dy, is the double-layer operator, which is defined for ¢ € L?(T') by

Ditb(x) = / 92(x¥) ) ds(y), xeT.

on(y)
The operators Ay, and A;m are adjoint with respect to the real-valued L?(T") inner product, and
then it is straightforward to show that, firstly, || Ax,|l = [|A} [l and [[(Ax,) 7t = 1(A%,) M,
where || - || denotes the operator norm from (complex-valued) L?(T") to itself, and, secondly, if

one of Ay, or A;wz is coercive then so is the other (with the same coercivity constant); see [10,
Equations 2.37-2.40 and Remark 2.24] for more details.

The main difference between the direct and indirect integral equations, (1.8) and (1.10) respec-
tively, is that the physical meaning of the unknown is clear in the direct equation (it is the normal
derivative of the total field) but not in the indirect equation (it turns out that ¢ is the difference
of traces of certain exterior and interior Helmholtz BVPs; see [10, p.132]).

Both the operators A’ and Ay, involve the arbitrary coupling parameter 7. By proving
bounds on [|4] [ and ||(A;H]) ||, one can show that, when k is large, the choice |n| ~ k is
optimal, in that it minimises the condition number of A} , (and hence also of Ay;); see [10,
Remark 5.1].

There are several different ways of solving integral equations such as (1.8) and (1.10), but in this
paper we focus on the Galerkin method. Concentrating on the direct equation (1.8) and denoting
Ou/On by v, we have that solving (1.8) is equivalent to the variational problem

find v € L*(T') such that (4}, v, ¢)L2 = (f, )L2 (r forall g € L*(T)

(where (v, @) 21y = fF ¢ds). Given a finite-dimensional approximation space Vy C L?(T) (with
N being the dimension), the Galerkin method is

find vy € Vy such that (4} nUN,QSN)Lz(F (f. ¢N)L2(F) for all ¢n € V. (1.11)

If one can prove that Aj , is coercive (i.e. (1.1) holds), then the Lax-Milgram theorem and Céa’s
lemma give the followmg error estimate,

14601
lo = vnll g2y < (%) o onf [v—onllr2(r (1.12)

and the Galerkin method is then said to be quasi-optimal. (If the left-hand side of (1.12) were
equal to the best approzimation error, infy ey, ||v — dn ||L2(F), then the method would be optimal;
instead we have optimality up to a constant.)



1.2 What is known about the coercivity of A 7

The only domains so far for which coercivity is completely understood are balls (i.e. T is a circle or
sphere); this is because the operator Aj, ., acts diagonally in the bases of trigonometric polynomials
(in 2-d) and spherical harmonics (in 3-d). For the circle, Dominguez, Graham, and the third
author showed in [19] that if n = k then there exists a ko such that, for all £ > ko, (1.1) holds with
o,y = 1/2; for the sphere they proved that if n = &k then (1.1) holds for sufficiently large k with

1 1
ak’n>2—0<k2/3>

These proofs relied on bounding below the eigenvalues of A}, k., Which are combinations of Bessel
and Hankel functions. (Note that A}, is not invertible, and hence is not coercive, when both 7
and k equal zero. Therefore, if we také n = k we cannot hope for A} ke tO be coercive for all k£ > 0,
only for k sufficiently large.)

Although nothing has been proved until now about the coercivity of A;wz on domains other than
the circle or sphere, weaker results about the norm of (A;C’n)*l can be used to deduce information
about possible values of the coercivity constant, cy ,, using the fact that if A;m] is coercive then

any < [ (47
(this follows from (1.1) using the Cauchy-Schwarz inequality). Furthermore, if a part of ' is C!
then
1A% =2

in both 2- and 3-d [9, Lemma 4.1] (this follows from the fact that S, and Dj are compact operators
when T is C!) and hence, if ay,y exists,

1
Gy < 5 (1.13)

therefore the bound obtained on ay,, for the circle in [19] is sharp. Examples of 2-d trapping
domains where ||(Aj, )~ "|| grows either polynomially or exponentially in & through some increasing
sequence of wavenumbers can be found in [9, Theorem 5.1] and [3, Theorem 2.8] (for a summary of
these results, and an outline of the general argument, see [10, §5.6.2]). Therefore, if A , is coercive
for these domains, then «aj , must decay either polynomially or exponentially as k i mcreases

Betcke and the first author undertook a numerical investigation of coercivity by computing the
numerical range (also known as the field of values) of A}, W(Ay ), for various 2-d domains in
[5]. Recall that

k,n’

W(AL,) = { (4].,6,6) 2y 6 € LAT) with 62y =1},

and thus if Aj  is coercive, then ay, = dist (W (A, 17) 0). These experiments (all conducted
with 7 = k) indicated that if € is trapping then Aj, ki is not coercive at values of k close to the

“wavenumber” of the cavity that traps waves, and if Q+ is nontrapping then A;Q i is coercive with
oy, independent of k, as long as k is sufficiently large.

It is interesting to note that, although changing n from k& to —k does not affect the bounds
on H(A;m)’lH (since they depend on |n|; see [10, §5.6.1], [57, §1.3]), it completely changes the
coercivity properties of A;wz' Indeed, whereas A§€7 « appears to be coercive when {2 is nontrapping
and k is sufficiently large, A§67_ & 1s not coercive when I' is the unit circle and & > 1. (This can be
seen by plotting the eigenvalues of A;Cﬁ > Which are given explicitly in terms of Bessel and Hankel
functions by, e.g., [10, Equation 5.20¢c|, and noting that they encircle the origin; thus the fact that
W (A}, _) is convex [5, Proposition 3.2] implies that A} _; is not coercive.)

Finally, to give some indication of why proving that A;W is coercive is difficult, we note that
it appears that Aj , is a normal operator if and only if Q_ is a ball (i.e. T' is a circle or sphere).
Indeed, it is stralghtforward to prove that if I' is the circle or sphere then Aj, , is normal (via the
diagonalisation in trigonometric polynomials or spherical harmonics). The numerical experiments
in [5] suggest that the converse is true, and the analogue of this result for the operator Sy was
proved in [4, Theorem 3.1]. It is well-known that, although the spectrum determines the behaviour
of normal operators, this is not the case for nonnormal operators; see, e.g., [62].



1.3 The main result of the paper and its consequences

In this paper we prove that A;cm is coercive for smooth, convex domains in 2- or 3-d when n 2 k
and k is sufficiently large. More precisely:

Theorem 1.2 Let Q_ be a conver domain in either 2- or 3-d whose boundary, T, has strictly
positive curvature and is both C® and piecewise analytic. Then there exists a constant ng > 0 such
that, given § > 0, there exists ko > 0 (depending on &) such that, for k > ko and n > nok,

1
R, 0) oy 2 (3 -0 Wl (1.14)

for all ¢ € L*(T"). (By the remarks in §1.1, the bound also holds with A;Cm replaced by Ay ,.)

Note that the inequality (1.14) implies that oy, > (1/2 — ¢), and then this bound on the
coercivity constant is effectively sharp by (1.13) above. In fact, the proof of Theorem 1.2 shows
that, as kK — oo,

1 1

Qpy > 3~ o (W) when d = 2, and (1.15a)
1 1 1/2

Qg = 3~ o (%) when d = 3. (1.15b)

In the rest of this paper, we call a convex domain with strictly positive curvature a uniformly
conver domain (motivated by the fact that if a convex function has D?f > 6, in the sense of
quadratic forms, for some 6 > 0 then it is sometimes described as being uniformly convex; see, e.g.,
[23, p.621]). In 3-d, by strictly positive curvature we mean that both of the principal curvatures
are strictly positive.

‘We now outline the two main consequences of Theorem 1.2. Both of these need an upper bound
on the norm of A) ~ as an operator on L?*(T"). The currently best available bound when Q_ is a

k.mn
uniformly convex domain satisfying the conditions of Theorem 1.2 is

[ Af | S 1+ KED/2 (1 + |Z|> (1.16)

for all k > 0 and n € R; see [9, Theorem 3.6]. Note that we are using the notation A < B if
A < ¢B with ¢ independent of k£ and 7. In fact, the bound (1.16) is valid when Q_ is a general
Lipschitz domain and appears not to be sharp when _ is uniformly convex. Indeed, when T is
the circle or sphere, [|A} || < k'3 when 1 ~ k; see [10, §5.4-5.5] for more details.

k-explicit quasi-optimality of the Galerkin method for any finite-dimensional subspace.
The main application of Theorem 1.2 is that it implies that the Galerkin method (1.11) is quasi-
optimal for any finite-dimensional subspace. Indeed, combining the result (1.14) with the estimates
(1.16) and (1.12), we see that if Q_ satisfies the conditions of Theorem 1.2 and the direct integral
equation (1.8) is solved via (1.11) with 5 chosen so that nok < n < k, then, for all k > ko,

o = ollgay KO it o= éllpag). (147

where kg and 79 are as in Theorem 1.2 and v := Ju/9n. An analogous result also holds for the
indirect equation (1.10).

The key point is that the quasi-optimality (1.17) is established for any subspace Vx C L?(T)
without any constraint on the dimension N. In constrast, the usual approach to the numerical
analysis of Helmholtz problems is to prove coercivity up to a compact perturbation (i.e. a Garding
inequality). Even when these arguments can be made explicit in &, they yield quasi-optimality only
when N is larger than some k-dependent threshold. For example, if the integral equation (1.8) is
solved using the Galerkin method with Vy consisting of piecewise polynomials of degree < p, for
some fixed p > 0, on shape regular meshs of diameter at most h (so N ~ h~(@=1) then a k-explicit



version of the classical compact perturbation argument shows that, if Q_ is a C?, star-shaped, 2-
or 3-d domain, then

lv—=vnllp2r) S ¢13161§2N [v— &Nz  provided that hE(@FD/2 < 9, (1.18)

see [28, Theorem 1.6]. The fact that the mesh threshold in (1.18) is more stringent that the hk <1
rule of thumb can be understood as a consequence of the pollution effect (see, e.g. [22, §1]).

To compare the error estimates (1.17) and (1.18) we need to understand how the best approx-
imation error, infyycvy [v — ¢nl[z2(r), depends on h and k. It is generally believed that this is
S [vllz2ry if Ak S 1, and this has been proved if Q_ is a C°°, uniformly convex, 2-d domain.
Indeed, the results about the asymptotics of v := Qu/On for this type of domain in, e.g., [42],
adapted for a numerical analysis context in [19, Theorem 5.4, Corollary 5.5], imply that

nf o — < hk ;
¢N11€1VN lv—onllLzry S hE[Jv][L2(r);

see [28, Theorem 1.2]. Using this bound in both (1.17) and (1.18), we see that both the estimate
from coercivity and the estimate from the k-explicit compact perturbation argument show that,
in the 2-d case, the relative error |[v — vn/||z2(ry/||v]|L2(r) is bounded independently of & when
hk3/% < 1.

In summary, since any quasi-optimality estimate for piecewise-polynomial subspaces will ul-
timately be considered under some k-dependent threshold for N (coming from controlling the
best approximation error), the advantage of the “no-threshold” quasi-optimality given by coer-
civity over the “threshold” quasi-optimality (usually called “asymptotic” quasi-optimality) of the
compact perturbation arguments is not felt for these subspaces.

The advantage of coercivity is crucial, however, when seeking to establish quasi-optimality of
hybrid numerical-asymptotic methods. Indeed, as discussed above, there has been much recent
research in designing k-dependent approximation spaces that incorporate the oscillation of the
solution, with the result that the best approximation error for these spaces either is bounded
or grows mildly as k increases with N fixed. If one applies the standard compact-perturbation
arguments to try to establish quasi-optimality of Galerkin methods using these subspaces, it is not
at all clear how the threshold for quasi-optimality depends on k& and whether N will ever be large
enough to exceed this threshold (since the whole point of these methods is to keep N relatively
small). Establishing coercivity, however, bypasses these difficulties.

For example, a k-dependent approximation space, Vi, for sound-soft scattering by smooth,
uniformly convex obstacles in 2-d was designed in [19] by using knowledge of the k — oo asymp-
totics. The space Vy  divides I' into the illuminated zone, the shadow zone, and two shadow
boundary zones. The solution to the integral equation v := du/0n is then approximated by an
oscillatory factor multiplied by a polynomial of degree N in the illuminated zone and the two
shadow boundary zones, and by zero in the shadow zone. Combining Theorem 1.2 with results
about the best approximation error in Vy j proved in [19, Theorem 6.7] (using results from [42]
about the asymptotics of v), we obtain the following error estimate for the Galerkin method using
VN k-

Theorem 1.3 Let Q_ be a uniformly convez, 2-d domain whose boundary is C*° and piecewise
analytic. Suppose that the sound-soft scattering problem of Definition 1.1 is solved with the Galerkin
method using the combined potential integral equation (1.8) and the hybrid approzimation space
introduced in [19] (and denoted by Vi i above). Let N be the degree of the polynomials used in each
of the three zones (so N is proportional to the total number of degrees of freedom of the method).
Then there exist ng, ko, 6, and cg, all greater than zero, such that, if the coupling parameter n is
chosen so that nok < n <k, then

kl/g N+1
||U—’UNHL2(F) 5 k19/18 {(N) +k’4/9 eXP(—Co ké)

for all k > ko. Therefore, provided that N grows like k*/°%¢ for some € > 0, the error is bounded
as k — oo.



Using similar ideas, a k-dependent approximation space for scattering by smooth, uniformly
convex obstacles in 3-d was designed in [26]. Theorem 1.2, along with a bound on the best approx-
imation error for this subspace, can then also give rigorous error estimates for this method.

Bounding the numerical range of Aj, 1, and the associated k-explicit bounds on GMRES
iterations. Whereas the first consequence of coercivity (k-explict quasi-optimality for any ap-
proximation space) is more relevant for the Galerkin method with hybrid, k-dependent subspaces,
the second consequence is more applicable to the Galerkin method with conventional piecewise
polynomial subspaces. In this case, the Galerkin matrices with be of size N x N and, with N
having to grow at least like k%! to maintain accuracy, the associated linear systems will usually
be solved using iterative methods such as GMRES. (Note that the hybrid subspaces are specifi-
cally designed so that N grows mildly with &k, and thus, for geometries where these subspaces are
available, the linear systems can be solved using direct, as opposed to iterative, methods.)

Although nothing has yet been proven about how GMRES behaves when applied to linear
systems resulting from Galerkin discretisations of A, > 1t is usually believed that the number of
iterations needed to achieve a prescribed accuracy must grow mildly with &, e.g. like k% for some
0 < a < 1. (We could not find any relevant numerical results for Galerkin discretisations of A;mn
in the literature, however results for Nystrom discretisations of both the analogous operator for
the Neumann problem, and modifications of this operator that make it a compact perturbation of
the identity on smooth domains, can be found in [6] and [7]. These results show the number of
GMRES iterations growing like k* for a range of different 0 < a < 1, depending on the geometry.)

It is well-known that a sufficient (but not necessary) condition for iterative methods to be well
behaved is that the numerical range of the matrix is bounded away from zero. Furthermore, the
following bound was proved in [21] (see also [20, Theorem 3.3]) and appears in this particular form
in, e.g., [2, Equation 1.2].

Theorem 1.4 If the matrixz equation Av = f is solved using GMRES then, for m € N, the m-th
GMRES residual, ., := Av,, —f, satisfies

HrmHQ diSt(O, W(A))
<sin™ [, where cosff=———"- (1.19)
[Iroll2 PNE
and where W(A) := {(Av,v) : v € CV,|v|2 = 1} is the numerical range of A and || - || denotes

the la (i.e. Eucl@dean} vector norm.

Coercivity of the operator A;c,n implies that the numerical range of the associated Galerkin
matrix, A, is bounded away from zero, and thus allows us to obtain k-explicit bounds on the
number of GMRES iterations needed to solve Av = f. Indeed, consider the h-version of the
Galerkin method, i.e. Vx C L?(T') is the space of piecewise polynomials of degree < p for some
fixed p > 0 on quasi-uniform meshes of diameter h, with h decreasing to zero (thus N ~ h=(d=1),
Let Vy = span{¢; : i = 1,...,N}, let vy € Vy be equal to Z;V  Vi#;, and define v € CV by
v = (V;)iL,. Then, with A;; := (Ay @5, 0i) L2y and f; = (f, ¢i)r2(r), the Galerkin method
(1.11) is equivalent to solving the linear system Av = f.

If A} k. 1S coercive with coercivity constant ay ,, then, combining this property with the bound-
edness of 4 ,, we have that

(A, v)o| S AL, 1% lully vll,  and  [(Av,v)o| Z ak, b VI3 (1.20)

for all u,v € CV, where we have used the bound HUN||2L2(1“) ~ h4-1 ||v||§ (see, e.g., [55, Corollary
5.3.28]). The two bounds in (1.20) imply that the ratio cos 3 in (1.19) satisfies

Ok

A

cos 32

and then Theorem 1.4 implies that, given € > 0, there exists a C, independent of k, 7, and ¢, such

that

Al

if m>C (” ”) <1) then  Emll (1.21)
Qk.n 1S




If Q_ satisfies the conditions of Theorem 1.2 and we take 1 as prescribed in that theorem, then
ok, 2 1 (and we know that this bound is sharp in its k-dependence from (1.13)). Whether or not
the bound (1.21) tells us anything practical about m then rests on the k-explicit bounds for || 4} ||
and their sharpness. (In the rest of this discussion we assume that 7 is taken so that nok < n < k.)

Using the upper bound on |4} || (1.16) in (1.21), we find that choosing m so that m 2 k-t
is sufficient for ||r,,||/||ro] to be bounded independently of k as k increases. However, N will be
either k%! (if a fixed number of degrees of freedom per wavelength are chosen, i.e. hk < 1) or
Ed+DE=1/2 (if we take hk(4T1)/2 < 1 to be sure of eliminating the pollution effect by (1.18)).
Therefore, since GMRES always converges in at most N steps (in exact arithmetic), the bound
m > k%! either doesn’t tell us anything about the k-dependence of the number of iterations, or
is very pessimistic.

Nevertheless, since the bound (1.16) on [|A} , || appears not to be sharp when ©_ is smooth
and uniformly convex, there is hope that more practical bounds on m can be obtained. Indeed, if
I" is a sphere then [|4] || < k'3 and therefore (1.21) gives m > k?/3. Since N will be at least
proportional to k2 in this case, this bound on m is now non-trivial, and comes much closer to
proving the mild growth observed in practice.

1.4 The classical method of “transferring” coercivity properties of the
PDE to boundary integral operators

The method used to prove the main result (Theorem 1.2) is closely linked to a well-established idea
in the theory of boundary integral equations, namely that coercivity properties of the weak form
of the PDE can be “transferred” to the associated boundary integral operators. This idea was
introduced for first-kind integral equations independently by Nédélec and Planchard [51], Le Roux
[34], and Hsiao and Wendland [31], and for second-kind equations by Steinbach and Wendland [60].
We briefly recap this idea here, and then explain in §1.5 how it can be modified to prove Theorem
1.2.

For the Helmholtz equation posed in a bounded domain D (with outward-pointing unit normal
vector v), the weak form of the PDE is based on Green’s identity integrated over D:

7/ vLudx :/ (Vu - Vo — k*uv) dxf/ v—ds (1.22)
D D ap Ov
(recall that Lu := Au+ k?u). The fact that the volume terms on the right-hand side of (1.22) are
single-signed when k£ = 0 and v = u means that the standard variational formulations of Laplace’s
equation are coercive. The fact that the volume terms are not single-signed when £ > 0 and v = u
means that the standard variational formulations of the Helmholtz equation are not coercive when
k is large, only coercive up to a compact perturbation (see, e.g., [44, §1.1]).

Let Q_ be as in §1.1 (i.e. Q_ is bounded and Q; := R?\ Q_ is connected); the following
argument is valid when € _ is Lipschitz, but we ignore the technicalities needed in this case. Given
¢ € L), let u be the single-layer potential S, with density ¢ € L?(T'), that is,

u(x) = () = / By (x,y)6(y) ds(y), x€RI\T.

r

Then Lu =0 in Q_ U Q4 , and the following jump relations hold on T*:

0 1
us(x) = Spd(x) and %(x) = <$2I + D;C) ¢(x) forxel (1.23)
(where Sy and Dj are defined by (1.6) and (1.7) respectively). Let Bg := {|x| < R} and apply
Green’s identity (1.22) with v = w, first with D = Q_, then with D = Q4 N Bg (with R > 0
chosen large enough so that Q_ C Bpg), and then add the resulting two equations. Using the jump
relations (1.23), we find that

(Sk¢7 ¢)L2(F) = /

(Q+QBR)U97

(1Vul® = #2]uf?) dx—/ a2 gs. (1.24)
8B or
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This last equation holds when ¢ € H~/2(T) if the left-hand side is replaced by (Sk¢, ¢)r, where
(-,)r denotes the duality pairing between H'/2(T") and H~/?(T).

We now seek to relate the terms on the right-hand side of (1.24) to ||¢Hil,1/2(r), ideally proving
that they are > ||¢||§J,1/2(F), which would show that S is coercive as a mapping from H~1/2(T)
to H'Y/2(I).

First consider the case when k = 0, i.e. the PDE is Laplace’s equation, and d = 3 (the case
d = 2 for Laplace’s equation is more complicated because the fundamental solution does not decay
at infinity). In this case u(x) = O(1/r) and Vu(x) = O(1/r?) as r := |x| — oo, and thus

0
/ 2% ds — 0 as R — oo (1.25)
aBr OT

The definition of du/dn in H~1/2(T") (which is essentially Green’s identity; see, e.g., [40, Lemma
4.3]) implies that

ouy ||I?
/ |Vul?dx > ’ = ; (1.26)
Q4 M |l g-1r2(ry
see, e.g., [59, Corollary 4.5]. The second jump relation in (1.23) implies that
u, ||? u_||?
- <= —— 1.27
902720y = ’ O || gg-1/2(r) ‘ o {12y’ 120

and so, using (1.25), (1.26), and (1.27) in (1.24), we obtain that

(S0, ) 2 0% 1/2ry  for all ¢ € H-H/2(T).

In summary, we have just used Green’s identity to prove that the Laplace single-layer operator in
3-d is coercive as a mapping from H~1/2(T") to H'/2(T) (i.e. we “transferred” the coercivity of the
weak form of the PDE to the integral operator). A slightly more complicated argument yields the
analogous result in 2-d [59, Theorem 6.23], [40, Theorem 8.16], and repeating the same argument
with u equal to the double-layer potential yields an analogous result for the hypersingular operator
as a mapping from H'/2(T") to H~/2(T) (after its nonzero kernel is quotiented out) [59, Theorem
6.24], [55, Theorem 3.5.3], [40, Theorem 8.21]. Furthermore, using these results Steinbach and
Wendland showed that 21 — D}, is coercive on H~1/2(T), in the sense that

1
<<2I B D6> ¢, SO¢> 2 ||¢H§1—1/2(p) for all ¢ € H71/2(I‘),
r

and that %I — Dy is coercive on Hl/z(F); analogous results also hold for %I + D{, and %I + Dy

after their nonzero kernels are quotiented out [60, Theorems 3.1 and 3.2], [32, Theorem 5.6.11].

See [17] (in particular [17, Theorems 1 and 2]) for an insightful overview of all these results.
When we try to repeat this argument for £ > 0, we run into two difficulties:

(i) the integral over dBpR does not tend to zero as R — oo, and
(ii) the volume terms in Green’s identity (1.22) are not single-signed when v = .
Indeed, if u = Sp¢ then wu satisfies the radiation condition (1.2) and one can then show that, as

R — o0,

R a2 ds —0 and %/ a2 dsak/ |f1(X))* ds, (1.28)
OBRr T OBr or gd—1

where fi(X) is the far-field pattern of « and S~ is the d-dimensional unit sphere. Letting R — oo
in (1.24) and using these limits we find that

R(Sk¢, b)), :/Q . (|Vul® — k*[u|?) dx  and (1.29)
+UQ_
(S, 6)1. = k/SCH |f1(%)]? ds for all ¢ € H~Y/2(I). (1.30)
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Therefore, considering only R(Sy¢, d)r bypasses (for now) the difficulty (i) above. The jump
relations (1.23) again imply the bound (1.27), so all we need to do is bound the volume terms in
(1.29) below by ||8ui/8n||§{,1/2(1,). However, the analogue for & > 0 of the bound (1.26) in Q_

now contains k% [, |u[*dx on the left-hand side, so the sign-indefiniteness of the volume terms in
(1.29) means that they cannot be bounded below by ||8u,/8n||§{,1/2(r). The analogue for k > 0

of the bound (1.26) in 2, is more complicated; it shares the problem of the bound in _ just
described, and, additionally, the fact that the integral over 0 Br in Green’s identity does not tend
to zero as R — oo means that the left-hand side of the bound must contain a contribution from
dealing with this term.

Ultimately, all one can prove in the Helmholtz case is that there exists a compact operator
Ty, : H-'/2(I') — HY?(T) such that

RSk + Ti) b, &) 2 16l13-1/2y  for all ¢ € HHA(D),

that is, S is coercive up to a compact perturbation (i.e. satisfies a Garding inequality); see, e.g,
[16, Theorem 2], [32, Theorem 5.6.8], or [40, Theorem 7.6] for the details.

In summary, using the ideas sketched above, the coercivity properties of the weak form of the
PDE, i.e. coercivity for Laplace’s equation and coercivity up to a compact perturbation for the
Helmholtz equation, can be “transferred” to the first- and second-kind boundary integral operators
for these PDEs.

1.5 Modifying the classical method using Morawetz’s identities

The previous subsection showed that there are two reasons why the classical “transfer of coercivity”
method only proves coercivity up to a compact perturbation for the Helmholtz boundary integral
operators, as opposed to proving coercivity for the Laplace ones:

1. the volume terms of Green’s identity (1.22) are not single-signed when v = u,

2. when Green’s identity is applied in Q4 N Br with v = u and wu satisfying the radiation
condition (1.2), the integral over 0Bg does not tend to zero as R — oo.

This paper uses the idea, first introduced in [58], to replace Green’s identity in the argument of
the previous section with another identity for solutions of the Helmholtz equation for which the
problems outlined in 1. and 2. above do not apply.

Recall that Green’s identity arises from multiplying Lu by ©. The multiplier rMu, where

Mu::?-VU—iku—&—

u’
and 7 := |x|, was introduced by Morawetz and Ludwig in [47]. In that paper, the resulting identity,
2R (rMulu) =V - [2?]? (rMuVu) + (K*|ul*> = [Vul?) x} - (\Vu|2 - |ur|2) — |y, — ikul?, (1.31)

was used to bound the Dirichlet-to-Neumann map for the Helmholtz equation in the exterior of
a star-shaped domain (and it can also be used to bound the energy norm of the solution of the
exterior Dirichlet problem in this class of domains). This is possible because

1. the non-divergence terms on the right-hand side of (1.31) are single-signed, and

2. when the identity (1.31) is integrated over . N Bg, the integral over dBg tends to zero as
R — oo if u satisfies the radiation condition (1.2).

(To understand where the star-shapedness requirement comes from, note that when we integrate
(1.31) over 1 N Br we get a surface integral on I involving x - n(x), where n(x) is the unit normal
vector on I' pointing into Q4. It turns out that we need x - n(x) > 0 for all x € I" for the bounds
to hold, and this means that 2_ must be star-shaped.)

12



Repeating the “transfer of coercivity” argument reviewed in §1.4 with Green’s identity (1.22)
replaced by the integrated form of the Morawetz-Ludwig identity (1.31), we obtain that

12 .
%(((x ‘1) D}, +x - VrSk — inSi) o, (b) oy 20 (1.32)
for all k > 0 and ¢ € L*(T) if n = kr +i(d — 1)/2 (where Vr in (1.32) is the surface gradient on
I') [58]. This inequality shows that the integral operator

1
o, = (x-n) (21 + D@) +x-VrSy —inSk (1.33)

is coercive as an operator on L?(T') if Q_ is a star-shaped Lipschitz domain and 7 is chosen as
above. Using Green’s integral representation, one can show that

ou

,kaa

=x-Vul —inu!, (1.34)
and so the operator 7, can be used to solve the exterior Dirichlet problem. Note that if I' is the
unit circle or sphere then, on I', x = n(x), and so @, = A} (Wlth the particular choice of n
above). Therefore, the coercivity of the so-called “star- comblned” operator 7, gives an alternative
proof of the coercivity of A} , on the circle and sphere (see [58, Corollary 4.8]).

The main idea of this paper is to use the more general multiplier

Zu =12 -Vu—ikfu+ au, (1.35)

essentially introduced by Morawetz in [46], where Z(x) is a vector field, and 3(x), a(x) are scalar
fields. Replacing the identity (1.31), coming from the multiplier 7 Mu, by the more general identity
coming from the multiplier Zu, and repeating the argument that led to (1.32), we find in §3 that,
if Z is continuous across T', R(9;Z;(x)€,€;) > 0 for all € € C* and x € Q_U(Q4 N Bg), and n 2 k,
then

R(((Z 1) D}, +Z - VrSy — inSk) . 0) —o(1) 922y sk — oo, (1.36)

LZ(F)
Since VpSi is a vector-valued operator that is tangent to I', if Z is a constant multiple of n on
I' (and the condition on the derivative of Z in the domain is satisfied) then the inequality (1.36)
proves that Ak m is coercive.
1.6 Vector-field conditions for coercivity

The method outlined in §1.5 above shows that Aj, k. 1s coercive, for n 2 > k and k sufficiently large,
if there exists a vector field, Z, defined in _ and €24 N By for some R > 0 such that

1. Z and V - Z are continuous across I,
2. Z = Crn on I for some constant Cr > 0,

3. Z(x) = x in a neighbourhood of dBp, and

e

R(0;Z;(x)€;€;) > 0 for all £ € C* and x € Q_ U (21 N Bg)

(for simplicity, we have ignored the smoothness requirements on Z at this stage; see §3.1 for the
details). These vector-field conditions are similar to those obtained by Morawetz to prove a bound
on the energy norm of the solution to the Dirichlet problem for the Helmholtz equation in Q.
(i-e., a local resolvent estimate) [46, Equation 1.3], [48, Equation 4.2]. However, Morawetz needed
a vector field only in 4 N Bp, satisfying the conditions 3 and 4 above, and satisfying the weaker
condition than 2 that Z-n > 0 on T'. Morawetz, Ralston, and Strauss then showed in [48, §4] that
such a vector field exists when €, is a 2-d nontrapping domain.

From one perspective it is clear why we need a vector field in both Q4 N Br and Q_ to prove
that A;wl is coercive: following the method outlined in §1.5 we applied the identity coming from
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the Zu multiplier (1.35) in both Q4 NBgr and Q_. From another perspective, however, it is natural
to ask the question: since the scattering problem that we are trying to solve is posed only in Q4
why should Q_ be involved? The fact that we need a vector field in Q_ as well as in Q N Bg
becomes clear when we recall that the integral operators A;mz and Ay ,, in addition to being able
to solve the exterior Dirichlet problem, can also be used to solve the interior impedance problem
(i.e. the Helmholtz equation posed in Q_ with boundary condition du/dn —inu = g on T' for some
g € L*(T') and n € R\ {0}). Indeed, the operator Ay, arises from the direct formulation of the
interior impedance problem (see [10, Theorem 2.30]), and the operator Aj  arises from an indirect
formulation of the interior impedance problem (assuming that u = Sy¢ for some ¢ € L3(I)).

Returning to the conditions for coercivity, 1-4 above, we show in §5 below that if 2_ is non-
convex then there does not exist a Z satisfying these conditions; indeed for these geometries one
can reach a contradiction between the nonnegativity condition on 9;Z; in €, and the condition
that Z = Crn on I

If Z = V¢ for some ¢ then the nonnegativity condition, 4, becomes the requirement that ¢
is convex. In §4 we construct a Z satisfying conditions 1-4 above (by constructing a suitable ¢)
when €_ is a uniformly convex, 2- or 3-d domain with I" both C® and piecewise analytic; thus
proving Theorem 1.2. The main idea of the construction is that + dist(x,T’) is convex in Q4 if Q_
is convex (see, e.g., [54, p.28, 34]) and its gradient is the normal vector, n, on I'. There are then
three issues:

(a) the derivative of dist(x,T") is not defined on the set of points in Q_ that do not have a unique
closest point to I" (this set is called the medial axis or ridge of Q_),

(b) we need ¢ to be equal to 2r? in a neighbourhood of Bp (so that Z = x), and

(c) it turns out that if we have uniform convezity of ¢, i.e. D?¢ > 6 for some § > 0, then we
need less smoothness of I' (C? instead of C*).

The idea is to then use .
o(x) = £Cr dist(x,T") + 3 dist(x,T')?,

smooth it in Q_ (to deal with (a) above), smoothly change it to $r? in Q4 N B (to deal with (b)),
and choose Cr and R large enough to maintain the uniform convexity in (c). The condition that
I must be piecewise analytic is needed to control the geometry of the medial axis, since without
analyticity this set can behave very strangely (see the paragraph below Theorem 4.2 for more
details).

1.7 Outline of the paper

In Section 2 we recall the identities introduced for solutions of the Helmholtz equation by Morawetz
in [46]. In Section 3 we translate the problem of proving that Aj , is coercive into that of con-
structing an appropriate vector field Z in the multiplier Zu. In Section 4 we construct such a
vector field for uniformly convex, 2- and 3-d domains that are C® and piecewise analytic. (The
main result, Theorem 1.2, is then proved by combining Parts 1 and 2 of Theorem 3.2, Part 1 of
Theorem 3.4, and Lemma 4.1.) In Section 5 we show that the vector-field conditions for coercivity
obtained in Section 3 cannot be satisfied if 2_ is nonconvex. In Section 6 we conclude by placing
this paper’s use of Morawetz’s identities into a wider context.

2 Morawetz’s identities for the Helmholtz equation

In this section, we state and prove two identities for solutions of the Helmholtz equation that arise
from the multiplier Zu (1.35). (In the rest of the paper we refer to these as “Morawetz 1”7 and
“Morawetz 2” respectively.)

Lemma 2.1 (First Morawetz identity for Helmholtz (“Morawetz 1)) Letv be a complex-
valued C? function on some set D C R%. Let Lv := Av + k*v with k € R. Let Z € (C*(D))? and
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B,a € CHD) (i.e. Z is a vector and 3 and « are scalars) and let all three be real-valued. Then,
with the summation convention,

2R(Zv Lo) =V - [2R(Z0 Vo) + (B[of? = [Vol?)Z] + (20 = V- 2) (ko] ~ [Vo]?)
- 28‘%(&Zj8w%) — 2%(@ (lkVﬁ + VOZ) . V’U), (21)

where
Zv:=17Z -Vv—ikfv + av. (2.2)

Lemma 2.2 (Second Morawetz identity for Helmholtz (“Morawetz 2”)) If the assump-
tions of Lemma (2.1) hold and, additionally, o € C*(D) then

2R(ZvLv) =V - [QR(ZTJVU) + (K*[v|* = |Vo[*)Z — Voz\vﬂ + (2a = V- Z) (K*[v]* — |Vo]?)
— 2R(8;Z;0,00;v) — 2R (kv V3 - Vv) + Aafv|? (2.3)
where Zv is given by (2.2).

Note that Lemma 2.2 follows from Lemma 2.1 by using

2R(UVa - Vv) =V - [Valv]’] — Aafv]?.

Proof of Lemma 2.1. Splitting Zv up into its component parts we see that the identity (2.1) is
the sum of the following three identities:

2R(Z-Vo Lv) = V- [2R(Z-Vv Vo) + (B[] = | Vo) Z| +(V - Z) (|Vv]* =k |v]?) —2R(0;Z;0,00,v),
J J

(2.4)
2R (ikBv Lv) = V - [2R(ikBv Vv)| — 2R(ikT VS - V), (2.5)

and
2R (av Lv) = V - [2R(av Vv)| + 20(k*|v]* — |[Vv]?) — 2R (T Va - Vo). (2.6)

To prove (2.5) and (2.6), expand the divergences on the right-hand sides (remembering that o and
0 are real). The basic ingredient of (2.4) is the identity

Z-VvAv=V-[Z-VoVv]| - 8,Z;0;v0;v — Vv - (Z-V)Vu; (2.7)

to prove this, expand the divergence on the right-hand side and use the fact that the second
derivatives of v commute. We would like each term on the right-hand side of (2.7) to either be
single-signed or be the divergence of something. We cannot do anything at this stage about the
0; Zjaiv@ term (and making this single-signed will be one of the key requirements later). To deal
with the final term we use the identity

2R(Vo - (Z-V)Vv) =V - [|[Vv]’Z] — (V- Z)|Vv|? (2.8)

(which can be proved by expanding the divergence on the right-hand side). Indeed, taking twice
the real part of (2.7) and using (2.8) yields

WR(Z Vo Av) = V- [2§R(Z Vo) — \w?z} + (V- Z) |Vo]? — 2R(0:Z;0000).  (2.9)

Now add k2 times
2R[0Z- V] =V [[ofZ] — (V- Z)]v|?

(which is the analogue of (2.8) with the vector Vv replaced by the scalar v) to (2.9) to obtain
(2.4). |

A particular special case of the identity (2.1) is obtained by taking Z = x,5 = r, and « a
constant. Then Zv = rM,v, where

Mav = v, —ikv + gv, (2.10)
r

and (2.1) becomes the following identity.
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Lemma 2.3 (Morawetz-Ludwig identity, [47, Equation 1.2]) Let v and Lv be as in Lemma
2.1. Define the operator M, by (2.10) where o € R and v, = x - Vv/r. Then

2R(rMqvLlo) =V - [29? (rMavVo) + (K|v]* — [Vo[?) x]
2
+ (20— (d— 1)) (]of2 = |Vo2) = (Vo] = o, ) — ’Mav - %fu’ (2.11)
Proof. To see that the non-divergence terms of (2.1) and (2.11) are equivalent when Z =x, 8 =r

and « is a constant, note that in this case Z = V3, and thus one can express 2R(ikv VG- Vo) in
terms of |Zv — aw|? /B2 [

As discussed in §1.5, the Morawetz-Ludwig identity (2.11) has two important features:
1. If @ = (d — 1)/2 then all the non-divergence terms on the right-hand side are < 0.

2. If v is a solution of the Helmholtz equation outside a ball of radius Ry satisfying the Som-
merfeld radiation condition (1.2), then when (2.11) is integrated over {Ry < |x| < R} the
surface integral on |x| = R tends to zero as R — oo (independently of the value of o in M,,)
[47, Proof of Lemma 5], [58, Lemma 2.4].

When we apply the identities Morawetz 1 (2.1) and Morawetz 2 (2.3) in Q4 N Br we also want
the non-divergence terms to be < 0 and for there to be no contribution from the surface integral
at infinity. One way to ensure the latter condition is to make Z = x,8 = r, and 2a = (d — 1)
when r > Ry for some Ry > 0. In fact, the next lemma implies that there is no contribution from
infinity when Z = x, § = Cyr, and 2a = Cy for Cy,Cy > 1, which gives us a bit more flexibility.

Lemma 2.4 (Inequality on 0Bpg used to deal with the contribution from infinity) Letu
be a solution of the homogeneous Helmholtz equation in R\ Bpr,, for some Ry > 0, satisfying the
Sommerfeld radiation condition. If C; and Cq are both constants > 1, then, for R > Ry,

(2
OBR 87’

where Vg is the surface gradient on r = R (recall that this is such that Vv = Vgv+Xv, onr = R).

2

) )
+ k2 |u)? — |Vsu2) ds — 2ClkR%/ a2 ds + Cy R a2l ds <0, (2.12)
14]

Br 31" OBr T

Sketch proof including references. The inequality (2.12) follows from the combining the following
three inequalities:

R ﬂ@ ds <0, %/ ﬁ% ds > 0, (2.13)
oBr OT aBr 0T

and

L. x([5
OBr 67"
The two inequalities (2.13) are well known but (2.14) not so. All three can be proved using
the explicit expression for the solution of the Helmholtz equation in the exterior of a ball (i.e.
an expansion in either trigonometric polynomials, for d = 2, or spherical harmonics, for d = 3,
with coefficients given in terms of Bessel and Hankel functions) and then proving bounds on the
particular combinations of Bessel and Hankel functions. For proofs of (2.13) via this method see
[50, Theorems 2.6.1 and 2.6.4] or [11, Lemma 2.1], with the latter reference also proving (2.14).
(Note that the second inequality in (2.13) can also be obtained from applying Green’s identity in
R?\ Bg and using the second equation in (1.28).)

The Morawetz-Ludwig identity (2.11) can be used to prove the inequality (2.14) for d = 2,
and a slightly weaker inequality for d = 3. Indeed, integrating (2.11) with v = v and 2a =d —1
over Bg, \ B, using the divergence theorem, and then letting Ry — oo (using the fact mentioned
above that the surface integral on |x| = R; tends to zero as Ry — oo [58, Lemma 2.4]), yields

ez
OBRr (97’

2
+ K2 u)? — |Vsul* | ds — QkR%/ a2 4 + R a2 4 <0.  (2.14)
OBRr 87‘ OBr 37“

2
) )
+ K2Jul? — |Vsul? ds—QkR%/ Gl ds+ (d—1)R [ aZ-ds
OBr 87" OBRr 87‘
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d—1 |?
= */ (IVo? = [v,?) + [Ma—1) 20 — v| |dx <0. (2.15)
R4\ Bg 2r

By looking at the coefficient of the final term on the left-hand side, we see that the inequality (2.15)
is weaker than (2.14) when d = 3. (See [10, §5.3.1] for more discussion on both the inequality (2.14)
and its proof in [11, Lemma 2.1].) ]

In what follows we need the identities Morawetz 1 and Morawetz 2 integrated over domains.
We make these into lemmas here in order to keep track of how smooth Z, 3, o, and u need to be
(later we make « a function of Z, so outlining these conditions now will be helpful).

Lemma 2.5 (Integrated version of Morawetz 1) Let D be a bounded Lipschitz domain with
outward-pointing unit normal vector v, and let u € C?(D) N C*(D) be a solution of the Helmholtz
equation in D. If Z € (C*(D))*n (C(D))¢, 8,Z; € L*(D), fori,j=1,...,d, 3 € C1(D)NC(D),
V3 e (LY(D))?, a € CY(D)NC(D), and Va € (L*(D))4, then

/aD {2@}% (Z“g:j) + (K [uf* ~ [Vul*)(Z- u)] ds

= / <2m(aizjaiuaju) +2R(u (ikVB + Va) - Vu) — (2a — V- Z) (K*|u]? — |Vu|2)>dx. (2.16)
D

Proof. The divergence theorem

/V-Fdx:/ F-vds (2.17)
D oD

is valid if D is Lipschitz and F € (C'(D))? [40, Theorem 3.34]. Limiting arguments involving
approximating either F or D show that (2.17) is in fact valid when

d

Fe (C'(D)'n(c(D)? and V-FeL'(D) (2.18)

When we apply the divergence theorem to the integrated Morawetz identity we take
F = 2R((Z - Vu +1ikBu + au)Vu) + (K*|ul® — |Vu|?)Z. (2.19)

Therefore, if the conditions on Z, 3, and « in the assertion hold, then (2.19) satisfies (2.18), and
(2.16) follows from integrating (2.1) over D and applying (2.17). |

Lemma 2.6 (Integrated version of Morawetz 2) The integrated version of Morawetz 2 (2.3)
holds if the conditions of Lemma 2.5 are satisfied and, in addition, « € C?*(D) N CY(D) and
Aa € LY(D).

Proof. Almost identical to that of Lemma 2.5. ]

Remark 2.7 (Bibliographic remarks) The multiplier Z - Vv is associated with the name Rel-
lich, due to Rellich’s introduction of the multiplier x-Vv for the Helmholtz equation in [52]. Rellich
identities have been well-used in the study of the Laplace, Helmholtz, and other elliptic equations,
see, e.g., the references in [10, §5.3], [44, §1.4].

The idea of using a multiplier that is a linear combination of derivatives of v and v itself, such
as Zv, is attributed by Morawetz in [{5] to Friedrichs. The multiplier rMyv for the Helmholtz
equation was introduced by Morawetz and Ludwig in [47] and the multiplier Zv (2.2) is implicit in
Morawetz’s paper [46]. Indeed, using the multiplier Zv is discussed informally at the beginning of
[46, §1.2], but the resulting identity (essentially equation (2.3)) is only written down with Z = ¢V,
8= oy, and a = pAx/2, for arbitrary x and particular ¢ and ¢ [46, Lemma 3]. Finally, we note
that the multiplier Z - Vv 4+ av was independently introduced by Maz’ya for Laplace’s equation in
the context of linear water waves in [39] (see also [33, Equation 2.28]).
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3 Formulation of coercivity in terms of conditions on the
vector field Z

The main goal of this section is to prove Theorem 3.2 below, which gives sufficient conditions for
Aﬁcm to be coercive in terms of the existence of an appropriate vector field Z. We begin by defining
exactly what we mean by “coercivity” in this section.

Condition 3.1 (Coercivity) There exists an ng > 0 such that, given §, there exists a ko(d) > 0
such that, for any k > ko and n > nok,

1
e L (31)

for all ¢ € L*(T).

3.1 Statement of the two different formulations of coercivity

In this subsection we give two sufficient conditions for coercivity: Condition A and Condition B
below. These conditions concern the existence of certain vector fields Z defined in both _ and
Q4 N B for some sufficiently large R (recall that Bg := {|x| < R}). The two conditions are similar
except that Condition B demands higher smoothness of Z (and thus ultimately of I') in exchange
for a slightly less restrictive condition on 0;Z; in the domain. We show in Section 4 below that
Condition A is satisfied when Q_ is a uniformly convex, 2- or 3-d domain that is C® and piecewise
analytic. The advantage of Condition B is that it is closer to the vector-field condition obtained by
Morawetz in [46, Equation 1.3] (see also [48, Equation 4.2] and [61, Equations 2—4]) for bounding
the energy norm of the solution of the Helmholtz exterior Dirichlet problem (which can then be
used to prove local energy decay of the wave equation).

Condition A (Concerning the vector field associated with Morawetz 1 (2.1))
I' is C?, there exists a constant R with Q_ C Bg, a vector field Z : Br — R%, and a constant
Cr > 0 such that the following hold:

Al. Z is piecewise C? up to the boundary, i.c., Z € (Cz(m))d N (02(m))d.

A2. Z, =Z_=Crn and (V-Z)y =(V-Z)_ onT.

A8. Z = x in a neighbourhood of OBR.

A4. There exists a0 > 0 such that R(0;Z;(x)&,€;) > 0|¢|* for all € € C? and x € Q_U(Q.NBR).

(Note that both here and in the rest of the paper, we use + and — subscripts to denote the
limit of a function, here Z(x), as x — I from Q and Q_ respectively.)

By using the identity Morawetz 2, (2.3), instead of the identity Morawetz 1, (2.1), we can
make Condition A4 less restrictive (i.e. 0;,Z; only needs to be nonnegative rather than uniformly
positive) if Condition Al is made more restrictive (i.e. increased smoothness of Z).

Condition B (Concerning the vector field associated with Morawetz 2 (2.3))
I' is C?, there exists a constant R with Q_ C Bg, a vector field Z : B — R?, and a constant
Cr > 0 such that the following hold:

B1. Z is piecewise C? up to the boundary, i.e., Z € (C’%i))d N (03(m))d.
B2.Z,=7Z_=Crmand (V-Z)1 =(V-Z)_ onT.

B3. Z = x in a neighbourhood of 0BRg,

By. R(8;Z;(x)€;€;) > 0 for all £ € C* and x € Q_ U (Q4 N Bg).
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The extra smoothness of Z in Condition B comes from the fact that, in formulating these
conditions, the function « in the multiplier Zv is defined in terms of Z (it turns out to involve
V-Z). Therefore, if we use the identity Morawetz 2 (2.3) instead of Morawetz 1 (2.1), the additional
smoothness of « needed for (2.3) to hold entails additional smoothness of Z.

The next theorem shows how Conditions A and B (along with some constraints on the norm
of the single-layer potential when d = 3) are sufficient for coercivity.

Theorem 3.2 (Sufficient conditions for coercivity) Coercivity (i.e. Condition 3.1) holds if
one of the following four criteria is met.

1. d =2, Condition A holds.

2. d =3, Condition A holds and ||Sy| r2(r)y—r2r) = o(1) as k — oo.

3. d =2, Condition B holds.

4. d =3, Condition B holds and ||Sy| r2r)y—r2) = o(1) as k — oo.
We prove this theorem in §3.2 below, but first we make some remarks.

Remark 3.3 (Asymptotics of the coercivity constant) Theorem 3.2 gives sufficient condi-
tions for coercivity (in the sense of Condition 3.1) to hold, however it is also interesting to then
ask how the coercivity constant depends on k.

The proof of Theorem 3.2 below shows that if Condition A holds then there exist ng > 0 and
k1 >0 such that, if k > ki and n > o then Ay, is coercive (i.e. (1.1) holds) with

1
Uy = 5 O(”Sk”Lz(l")—»L?(F))o (3.2)

Similarly, the proof of Theorem 3.2 shows that if Condition B holds then the asymptotics (3.2) hold
with —(’)(HX‘S;CH%Q(F)_)LQ(RG!)) and —(’)(HSkHQLQ(F)_)m(F)) added to the right-hand side.

The previous remark shows us that, in order to prove coercivity via this method, we need to
have ||Sk|/z2(r)—z2(r) tending to zero as k — oo (and if we use Condition B then we also need
XSkl £2(r)—12(rey tending to zero). The follow theorem recaps bounds on these two quantities,
which we then use in the proofs of Theorems 3.2 and 1.2.

Theorem 3.4 (Bounds on |[Si||z>r)—r2(r) and ||xSkllr2(r)— L2 ®e))
1. If Q_ is a bounded Lipschitz domain in 2- or 8-d and x € C, (R?) then, given ko > 0,

comp
1Skl r2ry—r2@y S K972 and  |xSkll2ry—r2may S kY2 (3.3)

for all k > ko.
2. If Q_ is a C2, uniformly convex, 3-d domain then, given ko > 0,

(log k)'/?
1Skl 2 ()= 2y S EAVER (3.4)

for all k > ky.

Proof. The first bound in (3.3) was proved in [9, Theorem 3.3] and the second bound was proved
in [57, Lemma 4.3]. The bound (3.4) was proved in [56, Theorem 1.5]. ]

Remark 3.5 (Smoothness of I' and Z) To keep things simple, we have assumed in Conditions
A and B that T is C2. The Conditions A2 and B2 then imply that T must additionally be C3.
Indeed, if Z = Crn on T’ and Z is piecewise C? up to the boundary, then n must be C2, which
implies that T must be C3.

An important feature of Rellich and Morawetz identities is that they can be applied when T’
1s Lipschitz, but this requires extra techmicalities such as the notion of non-tangential limits and,
when v = Sp¢ for ¢ € L*(T), harmonic analysis results about the single-layer potential (see [58,
Remark 4.7] and [10, Theorem 2.16] and the references therein). The paper [12] goes through the
argument of Theorem 3.2 when I is Lipschitz and shows that requiring Z = Crn on I' means that
T must be at least C*1 (so we have not lost much here by avoiding these technicalities).
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Remark 3.6 (A third set of conditions for coercivity) As discussed above, in the proof of
Theorem 3.2 below, the scalar function « in the multiplier Zv involves V - Z. The difference in
smoothness of Z in the two conditions A and B is then due to the fact that Condition A uses the
identity Morawetz 1 (2.1), which needs o € C', whereas Condition B uses Morawetz 2 (2.3), which
needs a € C?.

There is an additional set of conditions for coercivity that arise from letting o be a constant. In
this case Z nmeed only be C* (and thus, from Remark 3.5, T need only be C?), but these conditions
are much more restrictive than Condition A, with V - Z needing to be bounded in terms of d and
the constant 0 in the positivity condition. The vector field x satisfies these conditions when I is a
circle or sphere, but it is not at all clear whether they can be satisfied for more general domains.

Remark 3.7 (A modified integral operator) The proof of Theorem 3.2 below shows that if the
condition Zy =7Z_ = Crn in B2 is replaced by Z. =7Z_ and Z-n > 0 on T, this modified version
of Condition B holds, and also ||Sk||12(ry— 12y = o(1) as k — oo, then the integral operator

1
knz = (Z-n) <2I + DL) +Z- VS, —inSk

is coercive for k sufficiently large. More precisely, we have that given § > 0 there exists a kg > 0
such that if n = kR +i(V - Z)|r/2 then A}, 5 is coercive for all k > ko, with coercivity constant
infxer(Z-n) — 6. (Note that, firstly, the operator Ay, 5 can be used to solve the exterior Dirichlet
problem for the Helmholtz equation, see [10, Theorem 2.36], and, secondly, if Z = x, then Ang,Z
becomes the star-combined operator, (1.33), of [58].) The vector field constructed by Morawetz,
Ralston, and Strauss in [48, §4] satisfies this modified version of Condition B in Q4 if Q4 is
nontrapping, but it is not clear how to construct a continuation of this vector field into Q_ satisfying
the nonnegativity condition Bj.

3.2 Proof of Theorem 3.2

Proof of Theorem 3.2. We first prove Parts 1 and 2 (relating to Condition A) using Morawetz 1
(2.1), and then discuss the changes needed to prove Parts 3 and 4 (relating to Condition B) using
Morawetz 2 (2.3).

Our strategy is to mimic the classical method of “transferring” the coercivity properties of the
PDE formulation to the associated boundary integral operators (as discussed in §1.4), but with
Green'’s identity (1.22) replaced by the identity Morawetz 1 (2.1). That is, we apply the integrated
version of (2.1), namely (2.16), with v replaced by u = Sp¢ (with ¢ € L?(T")), and D first equal to
Q_, and then equal to Q4 N Bg. The multiplier in the identity (2.16) is given by (2.2) with Z the
vector field in Condition A, = R, and 2a = (V- Z) — 0, where 0 is the constant in Condition A4.
As the proof develops, we see why we make these choices of § and . We go through the majority
of the proof without worrying about how smooth Z needs to be, and then return to this question
at the end.

With the identity (2.1) written as V - Q = P, integrating it over Q_ and Q4 N By yields

/FQ,-nds:/Qide (3.5)

—/Q+-nd5+ QRdSZ/ P dx, (3.6)
T OBRr Qi NBg

and

where (remembering that Lu = 0)
P =2R(8,Z;0;ud;u) — (200 — V - Z) (K*|u|® — |Vul?) + 2R (u(ikVB + Va) - Vu), (3.7)

8ui

Qi'HZ(Zi'H)<an

2
- 0
+ k*us]?® — Vrui|2> + 2R ((Zi - Vrus+ + ikfux + m&);;)
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for x € T (where we have used that Vu = Vpu + ndu/0n on I'), and

2
+ B2 u)® — |Vsul? | — 2kB3 i +2aR 22
or or

for x € 0BR (where we have used that Z = x on dBgp, i.e. A3). Adding (3.5) and (3.6) yields

/(Q,—Q+)~nds+ QRdSZ/ de+/ Pdx.
T OBRr Q_ Q+0BR

Dealing with the integral on dBg. Using the inequality (2.12) from Lemma 2.4 we see that
faBR Qrds <0 if

N ou
QRzQ-szQar

>R and 2a>1 on OBp. (3.8)

Since B = R, the first inequality is satisfied. Recall that we chose 2o = (V - Z) — 6. Since Z = x
in a neighbourhood of dBg (Condition A3), V -Z = d in this neighbourhood, and thus the second
inequality in (3.8) is satisfied if § < d — 1. This is not restrictive, since if we have constructed a Z
that satisfies the positivity condition A4 with a value of § > d — 1 we can just choose § = d —1 for
the remainder of this argument (we see later that all we need is § > 0). Therefore,

/(Q_ ~Q.)-nds> [ Pdx+ / Pdx. (3.9)
T Q_ Q41NBr
Dealing with the integral on I'. We now show that
/(Q_ —Q4) nds= 29%((0ng — ikBSk + aSk)QS, qS) . (3.10)
r L*(I)

Indeed, we first note that, by Condition A2, Zy = Crn and (V-Z). = (V-Z)_ on I". Therefore,
Z-n=CrandZ -Vru=0onT, and « is continuous across I'. We next simplify (Q— — Q) -n
using these facts along with the single-layer potential jump relations

8u:|:

us(x) = Skd(x),  Vrug(x) = Vru(x), —-=

(x) = (:F;I + D;) ¢(x), for x € T,

which are given for I' € C? by, e.g., [15, Theorems 2.12 and 2.17]. A key identity to help us do
this is
2

Oou_

3u+
“on (%) -

5, (%)

= 2R(D,o(x)d(x)), forxeTl,

which can be established using |a|? — [b]> = R[(a + b)(a — b)] and the jump relation for du /On.
Putting together the inequality (3.9) and the equality (3.10) yields

R a 1
§R<<D’ —ik—3S8r + =35 >¢),¢> > — / de—|—/ Pdx|. 3.11
kgt gsk)oo) e[ o (3.11)

The definition of A’

s €quation (1.9), implies that if we can show that

%((D; — inokSk) 6, ¢>) o8]y 20 as k- oo, (3.12)

L2(I
then this establishes the inequality (3.1) in Condition 3.1 for n = nok. Note that Condition 3.1
requires the inequality (3.1) to hold for n > nok, and not just for n = nok. However, the former
case follows from the latter by first noting that

R((Df — 1), 9)

= R((D} —inokSe)6,6) | +R( —i(n—mok)$k6,0)

L2(1) L2(T) L2y’
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and then using the fact that R®(—iSx¢, )2y > 0 from (1.30).
Choosing 19 = R/Cr we see that (3.11) gives us (3.12) if ||Sk||z2(r)—r2() = o(1) and

/ de+/ Pdx > —o(1)||¢[|72) as k — oo (3.13)
Q+QBR

The decay ||Sk|lz2ry—r2) = o(1) as k — oo is given by the first bound in (3.3) when d = 2, and
is a hypothesis in the theorem when d = 3.

Therefore, all that remains to prove coercivity (Condition 3.1) is to establish that the inequality
(3.13) holds.

Dealing with the volume terms. We need to establish the inequality (3.13) with P given by
(3.7). Using A4 (the positivity of 0;,Z;), the fact that 2a = V- Z — 6, and also the fact that §is a
constant, we have that

P > 0(k*lul* + |Vul?) + 2R(a Va - Vu).

The inequality
2

b
2ab < ea® + =

for all a,b, and € > 0, implies that

/ uVa-Vudx
Q+OBR

(and similiarly for the integral over 2_). The bound (3.14) implies that choosing k large enough
ensures that the left-hand side of (3.13) is > 0; thus we have proved that A; , is coercive (Condition
3.1).

||V04||L°<>(QmBR)

2 < / (IVul® + k*[ul?) dx, (3.14)
k Q+ﬂBR

Smoothness of Z We now go back through the above argument and see what smoothness we
need from Z (and this will give us the condition Al).

We first check the conditions on u, Z, 8, and « required by Lemma 2.5. A proof that u = Si¢
is in C2(Q+) N C*(Q4) when ' is C? and ¢ € L2(T) is given in [15, Theorems 2.12 and 2.17]
(this proof is for Holder continuous ¢, but since Holder continous functions are dense in L?(T")
this gives the result for ¢ € L?(T')). Turning to the conditions on Z, 3, and «, those on 3 are
satisfied since 3 is a constant. We need Z € (C*(Q-))¢N (C(Q-))4,8,Z; € L*(Q-) (and similarly
in Q4 N Bg). Furthermore, the fact that 2a = (V - Z) — 6 means that we also need V- Z €
ClQ)NCOQ),V(V-Z) € (LY(Q))? (and again in Q. N Bg). If Z is piecewise C? up to the
boundary (i.e. Z satisfies Condition Al) then all these conditions are satisfied.

After using Lemma 2.5 the proof needed (i) Z and « to be continuous across I', and (ii) Va to
be in both L>*(Q_) and L*>°(Q24 N Br). Regarding (i): this leads to A2. It turns out that we could
drop the restriction that « is continuous if we added the extra condition that ||S||||D}|| = o(1) as
k — oo (to deal with the term on I resulting from the non-zero jump of «). However, at least in
our construction of Z in §4, ensuring that V - Z is continuous across I' is not the limiting factor,
and so we retain the condition that « is continuous. Regarding (ii): this implies that we need
V(V - Z) € L™=, which is ensured by Z being piecewise C? up to the boundary.

Changes to the above argument necessary to prove Parts 3 and 4. We now repeat the
above argument using Morawetz 2 (2.3) instead of Morawetz 1 (2.1); the changes are as follows.

We choose 2a = V - Z. To apply Lemma 2.6 (the analogue of Lemma 2.5 with Morawetz 1
replaced by Morawetz 2) we need a € C%(D) N C*(D) and A« € (LY(D))¢; these conditions are
satisfied if Z is piecewise C* up to the boundary (i.e. Z satisfies Condition B1). Similar to before,
the fact that Z and o must be continuous across I' leads to Condition B2.

Qr now contains the extra term —(Va - X)|u|?. This is zero, however, since 2o = V- Z = d
(i.e. a constant) in a neighbourhood of 9Br. The condition that 2ac > 1 (necessary for controlling
the integral on dBp) is now satisfied automatically.

Q4+ - n now contains the extra term —(dag /dn)us|?. If we assume that Vo is continuous
across I' then this extra term does not contribute to (3.10) since there is no jump in u across I'.
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However, this would impose the extra condition that V(V - Z) is continuous across I'. If we don’t
assume that Va is continuous, then, if ||Sk|/z2(r)—r2(r) = o(1) as k — oo, we obtain (3.10) with
0(1)||¢||%2(F) added to the right-hand side. Since we assume this decay in ||Sk||z2(r)—r2(ry to go
from (3.11) to (3.12) we choose this second option (i.e. Vo discontinous and no extra restriction
on Z).

Since we are using Morawetz 2 (2.3), P is now given by

P =2R(0;Z;0;ud;u) — (20 — V- Z) (K*[u]* — |Vul?) + 2R (iku VS - Vu) — Aaful?.
Using A4, and the fact that 2o = V - Z, we find that
P+ Aalul® > 0.

Taking the L> norm of Aa out of the integrals (noting that Z being piecewise C3 up to the
boundary means that this is allowed) we see that, since u = Si¢, the inequality needed for
coercivity (3.13) will hold if ||xSk|12(r)—r2®e) = 0(1) as k — oo, and this decay is ensured by the
second bound in (3.3). |

4 Construction of a vector field Z satisfying Condition A
for uniformly convex, 2- and 3-d domains that are C°® and
piecewise analytic

This section proves the following result:

Lemma 4.1 IfQ_ is a uniformly convez, 2- or 3-d domain with T both C® and piecewise analytic,
then there exists a Z satisfying Condition A.

The main result of this paper, Theorem 1.2, then follows by combining Lemma 4.1 with Parts 1
and 2 of Theorem 3.2 and Part 2 of Theorem 3.4. The asymptotics of oy, given in (1.15) then
follow from using the first bound in (3.3) (for d = 2) and the bound (3.4) (for d = 3) in equation
(3.2).

We first prove the result of Lemma 4.1 for the 2-d case (in §4.2-4.3), and then outline the small
modifications needed to establish the result for the 3-d case (in §4.4).

4.1 Orthogonal curvilinear coordinates defined by I' in 2-d

We are going to use the orthogonal curvilinear coordinate system defined by I" and so it is convenient
to recap some facts about this in an initial subsection. At this stage we only need that €)_ is convex
and I' is C? (the conditions that ©Q_ is uniformly convex and I is both C* and piecewise analytic
will come later in connection with Z).

Coordinate system in the exterior Let ro(s) be the position vector of a point on I', parametrised
by the arc length s. The fact that I' is C? means that ro(s) is C? as a function of s. Recall that
(drg/ds)(s) is the unit tangent vector to I' and denote the outward-pointing unit normal vector
by n(s) (recall that this is proportional to (d?rg/ds?)(s)). Define the (signed) curvature (s) by

d21'0
oz (8) = —r(s)n(s), (4.1)
and define x, and k* by
K« :=mink(s) and K" :=maxk(s) (4.2)

respectively. The fact that {2_ is convex then implies that x, > 0. The fact that n is perpendicular
to both dn/ds and drg/ds can then be used to show that

dn dro

T s) = ls) T2(9). (4.3)
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Given a point P in Q4, let ro(s) be the position vector of the closest point on I" to P (this
closest point is unique since Q_ is convex). The position vector of P, r, can then be written as
r(s,n) =ro(s) + nn(s)

where n := dist(r, T).
The basis vectors in the (n, s)-coordinate system, e;7 and e; (where we use the + superscript
on e, to emphasise that we are in Q) are then defined by

el (n,s):= g—;(ms) =n(s),

and

_Or o dn
es(na 8) T 83 (TL, S) - ds (5) +nd8 (8)7

d
=(1+ nn(s))%(s) by (4.3).
The scale factors, h,, and hg, are then
hn(n,s) :=|et(n,s)|=1 and hy(n,s):=|es(n,s)| =1+nr(s),

and thus

1 ~ 1 dr
hn(n,s)e:(n’ s)=n(s) and @€4(n,s):= mes(n,s) = diso

e (n,s) = (s).
The (n, s)-coordinate system with basis vectors e;” and e, is orthogonal and, given a vector v, we
write
v =10"e} +ve;.
If ¢ : Q4 — R is differentiable then
Loy,  1Op. 0. 1 o

Vi = —_——e

hndn ™ hy0s * om " 1+n K(s) E (44)

If v is a differentiable vector field in general curvilinear coordinates, u?, with basis e; := dr/0u’,

then ]
ov\" o i
(m) = g T Th?" (45)

where T ; are the Christoffel symbols; see, e.g., [53, Equation 21.85]. Tt is straightforward to check

that the derivative of the vector v as a linear map from R? with basis {e;} to itself is given by
(Dv);; = (8v/ou?). In what follows we consider vector fields, v : O — R?, with v* = 0 and v"
a function of n only. For such vectors, after calculating the Christoffel symbols in (4.5) (using the
fact that h,, is constant), we find that

ov o™ q ov  v™ Ohg

— =€ an — = ———€;.
on on ™’ ds  hs On

The derivative of the vector v, as a linear map from R? with basis {e;, e} to itself, is then
ou™ ov™
0 S 0
DV = ( aon ﬂahs ) — < 867’ v"rc(s) ) . (46)
hs On 14+n k(s)

The vector field Z that we construct below to satisfy Condition A will be of the above form (i.e.
Z* =0 and Z" is only a function of n). To verify the positivity condition that R(8;Z;(x)&;€;) >
9]€|? for all £ € C? and x € Q4 N By, we claim that it is sufficient to prove that the matrix DZ
(defined by the analogue of (4.6)) is > 6 (in the sense of quadratic forms) for all n and s. Indeed, DZ
defined by the analogue of (4.6) is the derivative of Z as a linear map both from C? to C? with basis
{el, e} and from C? to C? with basis {€,,€,} (this is a consequence of the matrix being diagonal
and the facts that e;” = h, €, and e; = hs€,). Now, given an x € {0, N Bg, there exist ny, s; such
that x = (nq, s1) in the (n, s)-coordinate system defined by I'. Since {€,} (n1, s1),€s(n1,s1)} form an
orthonormal basis, there exists an orthogonal matrix B such that (BT (DZ)(n1, s1)B);; = 9;Z;(x).
It then follows that if DZ(ny,s1) > 6 then R(9;Z;(x)€,€;) > 0|€|* for all £ € C*.
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Coordinate system in the interior Given a point P in 2_ that has a unique closest point on
', let ro(s) be the position vector of the closest point. (The set of points in £2_ that do not have
a unique closest point on I' is called the medial azxis, and we discuss this set below.) The position
vector of P, r, can then be written as

r(s,n) =ro(s) —nn(s)
where again n = dist(r,I"). Proceeding in a similar manner to the exterior case, we have that

dro

e, (n,s)=-n(s) and es(n,s)=(1—-nr(s)) s

().
Therefore,
hn(n,s) =1, hg(n,s) =1—nk(s), (4.7

€. (n,s) = —n(s) and €5(n, s) = (drg/ds)(s). Equations analogous to (4.4) and (4.6) hold for the
derivatives of scalar and vector fields.

For a given s, this coordinate system breaks down when n = 1/k(s), and thus the bounds on
k (4.2) imply that the earliest breakdown is at n = 1/k*. This corresponds to reaching an interior
point that does not have a unique nearest point on T'.

Following the notation in [13, §2.1], given x € Q_, let

B(x):={y el:|[x—y|=dist(x,I)},
and let the medial azis, Mgq_, be defined by
Mq = {x € Q_ :card B(x) > 2}

(note that, with this definition, the medial axis is not closed, and the closure of the medial axis is
called the cut locus). Since dist(x,T') is differentiable at x € Q_ if and only if card B(x) = 1 [24,
Theorem 3.3], Mgq_ is the set of points at which dist(x,T") is not differentiable.

There are several, slightly different, notions in the literature that go by the names of the medial
axis or ridge. For example, the definition of the ridge in [24, Definition 3.6] allows it to contain
points with card B(x) = 1, and the definition of the ridge used by [35] is Mgq_ in our notation.

The following theorem collects some geometric properties of Mg_ that we need later.

Theorem 4.2 (Properties of the medial axis in 2-d)

(i) If Q_ is a bounded, 2-d domain such that T' is piecewise analytic (i.e. the finite union of
analytic curves), then Mq_ is a connected geometric graph with finitely many vertices and edges,
and each edge is an analytic curve.

(i) If Q_ is as in (i) and is also simply connected, then Mgq_ is a tree.

(ii) If Q_ is as in (i) and is also C2, then there exists a constant 0 < ng < 1/k* such that
dist(Mq_,T") > ng.

Proof. (i) This is proved in [14, Theorem 8.2], [37, Theorem 5.6], and [13, Theorem 2.1 and
Corollary 2.1]. (ii) This is a consequence of the main result in [36].

(iii) If U is a bounded open set, then OU € C* implies that dist(-, OU) is C* in a neighbourhood
of OU for k > 2 [27, Lemma 14.16, Page 355], [25]. Therefore, dist(x,T") is differentiable in a neigh-
bourhood of T', and then, since Mq_ has finitely many vertices and edges (by (1)), dist(Mgq_,T)
is bounded below by a positive constant, which we denote by ng. The inequality ng < 1/x* follows
from the facts that the osculating circle to a point on the boundary has radius 1/k(s), and centres
of osculating circles are in Mgq_ [8, Lemma 2.2]. ]

Counterexamples to point (i) in the theorem above when T is only C°° and not analytic can be
found in [14, §2], and an example of a C1'!, convex domain such that Mgq_ has positive Lebesgue
2-measure can be found in [37, §3]. These examples demonstrate how the “nice” behaviour of
Mg _ under piecewise analyticity can disappear for domains that are only C'*.
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4.2 Definition of a Z satisfying Condition A

For a fixed R > 0, we construct a ¢ : Q_ U (24 N Br) — R and then let Z = V¢. (Note that we
always assume that the origin from which Bpg is defined is inside Q_.)
Under the assumption that Z = V¢, the requirements of Condition A become

Al. ¢ is piecewise C® up to the boundary, i.e. ¢ € C3(Q_) N C3*(Qy N Bg).
A2, (V¢)r = (V) = Crn and (Ad)y = (A¢p)_ on T

A3. ¢ = $r? in a neighbourhood of dBg.
A4. There exists a § > 0 such that D2¢(x) > 6 (in the sense of quadratic forms) for all x €
Q_ U (24 N Bg), where (D?);; = 9;0;¢. (Note that we have lost the ® that was in front of

the original condition in terms of Z since ¢ is real and D?¢ is symmetric.)

Let ¢ be defined piecewise by ¢ := ¢ in Q, and ¢ := ¢~ in Q_. The overview of how ¢* are
defined is as follows:

oML, which satisfies the requirement A3 on dBg, and

+. oy
3 th t tion bet . . .
¢"is a smooth transition between { cbli' , which satisfies the requirement A2 on I'.

¢r , which satisfies the requirement A2 on I', and

i th t ition bet c e -
¢7is a smooth transition between { ¢e, which is ¢ smoothed near Mgq_.

The functions ¢mr, 7, ¢r, and ¢. are all uniformly convex, and from this we are able to ensure
that the positivity condition A4 on D?¢ is satisfied. Indeed, ¢ defined below depends on two
parameters, R and € (R is not quite R, the radius of Bpg, but is closely related). We show in §4.3
below that A4 is satisfied if R is large enough and ¢ is small enough, and that taking R large
enough is equivalent to taking R large enough.

Definition of ¢t. Let n(x) = dist(x,I') and let x(n) € C*°[0,00) be monotically decreasing,
equal to 1 in a neighbourhood of n = 0, equal to 0 in a neighbourhood of n = 1, and then identically
zero for n > 1. For a fixed R > 0, define xg(n) = x(n/R).

Define ¢ in terms of two other functions, qﬁf: and ¢mr, by

¢t (%) = XR(n(x)) d)ff(x) + (1 — XR(n(X)))quL(X), x € Q. (4.8)

The function ¢11L is defined by
1
o1 (x) := Crn(x) + in(x)z7 (4.9)

where Cr = 1/k, (recall that Q_ being uniformly convex implies that . > 0). The function ¢y,

is defined by
L,

oML (x) == 5" (4.10)

where r := [x|. (The subscript ML stands for “Morawetz-Ludwig”, since the gradient of 272 is the
vector field x that appears in the Morawetz-Ludwig identity (2.11).)

Definition of ¢_. Let ng be as in Theorem 4.2 (i.e. n(x) = dist(x,I") is differentiable when
0 <n < ng). Let x_(n) € C[0,00) be monotonically decreasing, equal to one for n € [0,n¢/3],
equal to zero for n € [2ng/3,00), and such that all its derivatives are zero at n = ng/3 and
n=2ng/3.

Define ¢_ in terms of ¢ and ¢. by

6 (%) 1= x- (%) o1 (x) + (1= x- (n(x)) ) o= (x), x € Q- (4.11)

(note that the definition of x_ implies that ¢~ = ¢r. for 0 < n < ng/3, and ¢~ = ¢, for n > 2ny/3).
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The function ¢ is defined for all x € {_ by

¢r (x) = —Crn(x) + %n(x)Q, (4.12)

where (as above) Cr = 1/k.. To define ¢., first define the set D by
D:={xeQ_:dist(x,I') > ng/3} (4.13)

and note that from the definitions of ¢~ and x_ we only need to define ¢. on D. For x € D and
€ < ng/3, ¢-(x) is defined by

Pe(x) == /BE(O) ¢r(x —y)n(y)dy = /BE(X) ¢ (y)ne(x —y)dy, (4.14)

where (following, e.g., [23, §C.4])

n(x) = C'exp (Ix‘%l) if x| < 1,
0 if |x| > 1,

C is selected so that [, n(x)dx = 1, and 7.(x) := n(x/e)/e?.

4.3 Proof of Lemma 4.1 in 2-d (i.e. that Z defined in §4.2 satisfies
Condition A)

We first check Condition A1l (the smoothness) for both ¢+ and ¢~, then Conditions A2-A4 for
¢7T, and finally Conditions A2-A4 for ¢~.

Checking A1 for both ¢t and ¢~. We need ¢ to be piecewise C® up to the boundary. Recall
that ¢ is a smooth transition between qSIf and ¢mr, in 24 and ¢ and ¢, in Q_. Now ¢yp, € C* (R%)
and, by properties of mollifiers (see, e.g., [23, §C.4, Theorem 6]), ¢ € C°°(D) (where D is the set
on which ¢, needs to be defined). Therefore, if ¢1§ are both C? up to the boundary then so is ¢.

The functions ¢ are both defined in terms of the distance function. Since I' is assumed to be
C? in the statement of Lemma 4.1, the result about the differentiability of the distance function
used in the proof of Theorem 4.2 above implies that qﬁ# are both C3 up to the boundary.

Checking A2-A4 for ¢T. Using the expression for the gradient in (n, s)-coordinates, equation
(4.4), and the definition of ¢;f, equation (4.9), we find that

Vi (n,s) = (Cr +n)et(s). (4.15)

Therefore, on T’ (i.e. n = 0), V¢r = Cre,’ = Crn, which is part of the first requirement of A2.
Next, noting that VQSIJE satisfies the conditions for its derivative to be given by (4.6), we have that

1 0
D2¢F(’I’L,S) = < 0 (Cl'r+n)(n()s) ) . (4.16)
+n k(s

(We postpone checking the other requirements in A2, i.e. that V¢ and A¢ are continuous across
T, to after we have found V¢r and D?¢r..)

Turning to A3, we see that the definitions of ¢my, (4.10), and ¢T, (4.8), imply that if n > R
then ¢ = %T2. Thus, for A3 to hold, we need to relate R to the radius of Bgr. Let dg_ :=
maxy yer [x —y| (i.e. do_ is the diameter of £2_). Since we are assuming that the origin is inside
Q_7

n(x) < x| < n(x)+da_, (4.17)

and thus
Brid, D {x:n(x)<R}. (4.18)
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Therefore, if R > R + dg_, then ¢+ = %rz in a neighbourhood of |x| =

Moving to A4, we first prove that D2¢; and D?@¢yy, are both > 1 in Q4. Indeed, looking at
the (2,2)-element of D?¢;t, given by (4.16), as a function of n € [0, 00), and writing (Cr + n)x(s)
as Crk(s) — 1+ (1 + nk(s)), we see that if Crr(s) > 1 for all s then the (2,2)-element is smallest
when n = co and its value is one. If Crk(s) < 1 for some s then the (2,2)-element is smallest when
n = 0 and its value is Crk(s). Therefore,

D¢t > min(1, Crk.),

and so the choice Cr = 1/k, gives D¢ (x) > 1 for all x € Q4. The definition of ¢y, (4.10),
implies that Vo, (x) = x and hence D?¢yp, = 1.

Using the uniform convexity of qﬁf: and ¢y, we now show that ¢ is uniformly convex if R is
large enough,

Lemma 4.3 (¢" is uniformly convex if R is large enough) Given § > 0 there exists an Ry
such that, for all R > Ry, D?¢*(x) > (1 —6) for allx € Q, N Br

Proof. From (4.18) above, we only need to show that, given § > 0 there exists an R such that,
for all R > Rg, D?¢+ > (1 —4) for all x € Q@ N {n < R}, and then we set Ry = Ro + dq_-
Differentiating twice the definition of ¢+, equation (4.8), yields that

D¢t = xrD*¢f + (1 — xr)D*dur + D*xr(df — dup) + 2Vxr ®s (Vo — Vo),  (4.19)
where bt ah
(a @, b)y; = L 5 Sk

From the fact that D?¢;f (x) and D?¢wmy,(x) are both > 1 for all x € 4, we see that the first two
terms of (4.19) are > 1. We now need to show that the third and fourth terms are o(1) as R — oo,
which gives the assertion. Equation (4.17) implies that

r=n+0(1) asn— oo

and simple geometry gives us that
e.=¢, +0 -~ as n — 00.

Using these asymptotics in the definitions of gi)l'f and ¢yr, and the expressions for Vqﬁif (4.15) and
VomL, we find that
of (x) — dpmL(x) = O(n)  as n — oo, (4.20)
Vi (x) — Vour(x) = O(1)  asn — oo. (4.21)
Using (4.20) and the fact that

D*xgr(n(x)) = %sz (n;zx))

we obtain the following bound on the third term in (4.19),

1
=0 (RQ> as R — oo, uniformly for x € Qy N{n <R},

|D2X7g(n(x))(¢ff( — omL(x))| = () as R — oo, uniformly for x € Q. N{n < R}. (4.22)
Using (4.21) and the fact that
[Vxr(n(x)) =0 (712> as R — oo, uniformly for x € Q4 N{n < R},
we obtain the following bound on the fourth term in (4.19),

|VxR(n(x) ®s (Vor (x) — Vo (x))| = <> as R — oo, uniformly for x € Q. N{n < R}.

(4.23)

Using (4.22) and (4.23) in (4.19) then proves that D?¢T(x) > (1 —0(1)) as R — oo, uniformly for
x € Qrn{n <R} L]
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Checking A2-A4 for ¢—. By the discussion about the (n,s)-coordinate system in §4.1 and
Parts (ii) and (iii) of Theorem 4.2, given any x € Q_ \ Mq_ there exist (n, s) such that x = (n, s)
in the orthogonal coordinate system defined by I', and n € (0,1/k(s)). The definition of ¢, (4.12),
and the analogues of (4.4) and (4.6) for Q_ then imply that

Vér (n,s) = (—Cr +n)e, (s), (4.24)
and
, 1 0
D?¢r (n,s) = 0 ((,Ir:n)(ﬂ()s) . (4.25)

Therefore, on I' (i.e. n = 0) Vér = —Cre,, = Crn, which fulfils part of A2. To check the final
requirement of A2, namely that V-Z = A¢ is continuous across I', note that equations (4.16) and
(4.25) imply that

D2¢;(0,s) = ( (1) C(')r ) :D2¢l'i'(0,8),

and so A¢ is continuous (being a particular linear combination of elements of the matrix).

For the uniform convexity condition, A4, we need to show that there exists a 6 > 0 such that
D?¢~(x) > 0 for all x € Q_. Our first step is to show that D¢ (x) > 1 for all x € Q_ \ Mg _.
Writing (Cr — n)k(s) as Crk(s) — 1 + (1 — nk(s)), we see that if Crr(s) > 1 then the smallest
value of the (2,2)-element of D?¢r as a function of n € [0, 1/k(s)) is one, occurring when n = 0. If
Crk(s) < 1 then the smallest value is zero, occuring when n = Cr; this corresponds to the quadratic
term in ¢p “kicking in too soon” and making the derivative of ¢ in the €, direction positive.
The choice Cr = 1/k, therefore ensures that D*¢r (n, s) > 1 for all s and for all n € (0,1/x(s)).

The next step is to prove that ¢, is uniformly convex.

Lemma 4.4 (¢. is uniformly convex) With ¢. defined by (4.14), D?*¢.(x) > 1 for all x € D
(where D is the set defined by (4.13)).

We assume this result for the moment and use it to prove uniform convexity of ¢~ .

Lemma 4.5 (¢~ is uniformly convex if ¢ is small enough) Given § > 0 there exists an g >
0 such that, for all e < &g, D*¢~(x) > (1 —6) for allx € Q_.

Proof of Lemma 4.5. Differentiating twice the definition of ¢, equation (4.11), yields that
D*¢” = x_D?*¢p + (1 —x_)D*¢ + D*x_(¢p — ¢c) +2Vx— @, (Vo — Vo). (4.26)

Now D?¢r(x) > 1 for all x € Q_ \ Mg_, and so certainly for all x € suppy_ = {n:0<n <
2ng/3}. Furthermore, Lemma 4.4 implies that D?¢.(x) > 1 for all x € D = supp(1 — x_). These
two facts imply that the first two terms in (4.26) are > 1 for all x € Q_.

We now prove that the third and fourth terms of (4.26) are o(1) as ¢ — 0. Since D?x_ and
Vx- have support only in {n : ng/3 < n < 2ng/3}, it is sufficient to prove that ¢. — ¢ and
V¢. — Vor as € — 0 on this set. These limits follow from the facts that ¢ € C(2_) and
Vor € (C(Q-\ {n:n >ne}))? using a standard property of mollifiers, namely that if U is open
and f € C(U) then f. — f uniformly on compact subsets of U (e.g. [23, §C.4 Theorem 6]). |

All that remains is to prove Lemma 4.4, i.e. that ¢. is uniformly convex.

Proof of Lemma /.4. We split the proof up into two cases: (i) B:(x) N Mgq_ = 0, and (ii)
BE(X) NMq_ 7é 0.

In Case (i), we differentiate under the integral sign in the expression for ¢, in (4.14) in which
the x-dependence under the integral sign is in ¢ ; this is allowed since, from above, ¢ € C?(_\
Mg ). Using the facts that (with Cr = 1/k,) D?¢p (x) > 1forallx € Q_\ Mg and 5. () M (x—
y)dy = 1 in the resulting expression shows that D?¢. > 1.

In Case (ii), we begin by recalling from Theorem 4.2 that Mg_ is a tree with finitely many
vertices and edges. Following [14], we introduce the terminology that a vertex with degree > 3 is
a bifurcation point, and a vertex with degree equal to one is a terminal point.

If B.(x) N Mq_ # 0 then there are now three different cases:
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1. there are no bifurcation points or terminal points of Mq_ in B.(x),
2. there are no bifurcation points of Mq_ in B.(x), but at least one terminal point,
3. there is at least one bifurcation point of Mg _ in B.(x) (and possibly also terminal points).

We first consider Case 1 and then show afterwards how Cases 2 and 3 can be reduced to the first
case. We let ¥ := Mq_ N B.(x) and differentiate under the integral sign in the expression for
¢ in (4.14) in which the x-dependence under the integral sign is in 7.. Since 9,,7.(x —y) =
—0y,n:(x —y), we find that

0,09 (x) = /B ( )¢E ()9i9;me (x — y) dy, (4.27)

where, to avoid an excess of notation, we have omitted the x- or y-dependence from the derivatives,
but highlight that on the left-hand side they are in x, and under the integral on the right-hand
side they are in y.

Our plan is to integrate the right-hand side of (4.27) by parts to move the differentiation from
ne to ¢r, and then use the fact that D?¢p (x) > 1 for all x € Q_ \ X. Let X divide B.(x) into B*
and B~, and let v be the unit normal to ¥ pointing into B*. In order to apply the divergence
theorem in BT and B~ we need some information about the smoothness of ¥. Theorem 4.2 and
the fact that we are in Case 1 above imply that 3 is analytic; thus BT are Lipschitz and applying
the divergence theorem in B is allowed by, e.g., [40, Theorem 3.34]. Integrating by parts (and
recalling that v points into BT), we have that

/ o7 (¥)0:511:(x — y) dy = — / Bidr ()0 (x — y) dy — / vi(y)o5 (y) O (x — v) ds(y)
B+ B+ P

(the integral over BT N OB.(x) equals zero as 7. is zero here). A similar result holds for the
integral over B~ (with the sign of the integral over X reversed), and thus, since ¢ is continuous
across 2J,

/ o7 (¥)0:0511e(x — y) dy = — / B (¥);me (x — ) dy, (4.28)
B.(x) B.(x)

where 0;¢ (y) in the integral on the right-hand side is understood piecewise.
Integrating by parts again we have that

/ 0i¢r (y)9m=(x—y) dy = —/
B.(x)

0j0;0r (y)ne (x—y) dy— / [0i60 (v)] " (y)n-(x—y) ds(y),
B.(x) b

(4.29)
and then putting (4.27), (4.28), and (4.29) together we obtain that

00,0.00 = | 0O dy [ 6 0] v -y dsty), (30

where 0;0;¢r (y) in the first integral on the right-hand side is understood piecewise.
If we can show that

[Bio0 (v)] " vi(y) €€, >0 forallé eR? and y € X, (4.31)

then, using this in (4.30) along with the facts that D3¢(y) > 1 for all x € Q_\ %, 5. > 0, and
fBE(x) Ne(x —y)dy = 1, we find that

D26(y)-(x — y) dy(y) > /B ey =1

ﬁ@@z/

Be(x)

which is the result.
We now prove that the inequality (4.31) holds. Since y is in ¥ and is not a bifurcation point
then there exist (n1, 1), (n2, s2) such that, in (n, s)-coordinates, y = (n;,s;),j = 1,2, with ny = n»
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but s1 # so. Let (0, s1) be the closest point on I' to y on the + side of ¥, and (0, s2) be the closest
point on I' to y on the — side of ¥. The expression for V¢r, (4.24), implies that

[0i6r ()] T vi(y) = —(Cr — 1) (85 (51) — & (s2)), w5 ().
Since n1 < Cr (as n1 < 1/k(s1) and Cr = 1/k,) it is sufficient to prove that
(6, (s1) —€,(s2)) @v(y) <0 forally € X, (4.32)

in the sense of quadratic forms. Recall that v(y) is the unit normal vector to ¥ at y that points
into BT, and let 7(y) be a unit tangent vector to ¥ at y (there are two possible choices for T,
but which one we choose will not matter in what follows). Recall that if a® b < 0 and B is an
orthogonal matrix then Ba ® Bb < 0. Therefore, since v(y) and 7(y) are orthonormal for every
y € X, we can verify that (4.32) holds for a given y € ¥ by working in the {v(y), 7(y)} basis. We
find that the inequality (4.32) will hold if

(a) the component of €, (s2)) in the v(y) direction is < 0, and

(b) the component of ( €, (s2)) in the 7(y) direction equals zero.

Since v points into B, (a) holds. Furthermore, since (0, s1) and (0, s2) lie on the circle with centre
y, the definition of MQ7 and elementary geometry imply that the tangent line to I' at (0,s1) is
the reflection of the tangent line to I at (0, s2) in the tangent line of ¥ at y; this implies that (b)
holds.

We have now proved the result for the first of the three cases outlined above. Case 2 can be
reduced to Case 1 by extending 3 continuously so that the extended curve divides B (x) into two
parts. Since ¢ and V¢ are continuous across the extension, the argument proceeds as before.
For Case 3, first extend ¥ at all terminal points as in Case 2. This extended curve now divides
B.(x) into a finite number of pieces (> 3), and the argument in Case 1 for two pieces generalises
in an obvious way. ]

4.4 Modifications needed to the above arguments in 3-d

The definition of ¢ in 3-d is exactly the same as the definition in 2-d given in §4.2 (i.e. equations
(4.8)—(4.14)). Indeed, gbl? are defined only in terms of the distance function, ¢y, only in terms of r,
and ¢. only in terms of ¢ and 7., and thus all these quantities are well-defined when d = 3. The
only difference is that we now define k* and k, to be the maximum and minimum of the principal
curvatures respectively. (Recall that, given x € T', the two principal curvatures at x are such that
the curvature of any 1-d curve on I’ passing though x lies between the principal curvatures.) As
in the 2-d case we choose Cr = 1/k..

In the proof of Lemma 4.1 for d = 2 in §4.3 we used the (n, s)-coordinate system defined by T’
to verify that

(i) Voi = Vér = Crn and A¢f = A¢r on I (this gave Condition A2), and

(ii) D?¢t(x) > 1 for all x € Q4 and D?¢p(x) > 1 for all x € Q_ \ © (this was needed for
Condition A4).

The rest of the argument in §4.3 that ¢ satisfies Condition A is valid both in 2-d and in 3-d.
Indeed, the only other part of the argument that depended on the dimension was the proof of
Lemma 4.4 (the uniform convexity of ¢.). This proof relied on the results about the geometry of
the medial axis in 2-d given in Theorem 4.2. An appropriate analogue of Theorem 4.2 holds in
the 3-d case. Indeed, the analogue of Part (i) of Theorem 4.2 in 3-d is that, roughly speaking, if
T is piecewise analytic (i.e. is the finite union of analytic surfaces) then Mgq_ is also piecewise
analytic; see [13, Theorem 2.1 and Corollary 2.1] for a more precise statement of this result and its
proof. The analogue of Part (ii) is that Mq_ has the same homotopy type as Q_, and thus if Q_
is simply connected then so is Mq_ (i.e. every closed curve on Mgq_ can be continuously shrunk
down to a point); see [36]. Finally, Part (iii) of Theorem 4.2 holds in 3-d as well as in 2-d. Using
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this information about the geometry of Mq_, we can generalise the proof of Lemma 4.4 from 2-d
to 3-d in a straightforward manner.

Therefore, to prove that ¢ defined in §4.2 satisfies Condition A when d = 3, we only need to
shows that (i) and (ii) above hold. As in the 2-d case, we do this in coordinate systems defined by
T, but now these will only be local to each x, instead of well-defined in all of Q. or Q_\ Mq_.
Indeed, whereas in 2-d it is straightforward to construct orthogonal coordinate systems for all
of Q4 and Q_ \ Mq_, in 3-d it is not. However, for (i), given an x € I" we can construct an
orthogonal coordinate system defined by I' in a neighbourhood of that x and calculate V(;Sl? (x)
and D?¢F (x) in this coordinate system; for (ii), given an x € Q4 or Q_ \ Mgq_ we can construct
an orthogonal coordinate system defined by I' in a neighbourhood of that x and calculate D?¢*(x)
in this coordinate system.

We now give the details of the coordinate systems that we use in €2,. Given a point P in Q,
let ro be the position vector of the closest point on I'" to P (this is unique since {)_ is convex).
Introduce a coordinate system on T' in a neighbourhood of ry with coordinates (s,t) such that
Ory/0s and Ory/0t are unit vectors in the principal directions at ro (and are hence orthonormal).
(If r( is an umbilical point, i.e. T is locally spherical at rq, then just chose (s,t) such that drg/0ds
and Org/0t are orthonormal tangent vectors.) Let n(s,t) be the outward-pointing unit normal
vector, and defined k1 (s) and k2 (t) by

821‘0
0s2

82 Iro

(s,8) = —m(s)n(s,t) and 5

(s,t) = —ka(t) n(s,t)

respectively. By the definition of the principal directions, x1(s) and ko(t) are the principal cur-
vatures. Our definitions of k. and «* imply that k. < k1(s), k2(t) < k*, and the fact that Q_ is
convex implies that k., > 0. We then have that

On ro

a(s,t) = k1(s) s (s,t) and —n(s,t) = Kko(t)—(s,1) (4.33)

(compare to (4.3)).
The position vector, r, of P can then be expressed as

r(n,s,t) =ro(s,t) +nn(s,t),

where, as before, n = dist(r,I'). The definition of the basis vectors and the relations in (4.33)
imply that
e

T(n,s,t) = g(n,s,t) =n(s,t),

" on

0
es(n, s, t) = %(n,s,t) = (1 +nl€1(s))g( , 1),

r Oorg
ei(n, s, t) = a(n,s,t) = (1+nn2(t))ﬁ( 1),

and thus
or or or
n = o =1, hs:= ’88 =1+4+nki(s), and hy:= s =1+ nra(t).

Since the coordinate system is orthogonal, everything goes through as in the 2-d case, with

Cdov 1o | Low,
Rl i e e e i T

for scalar functions ¢ : 24 — R, and

G 0 0
_ " Ohs
Dv = 0 e on "%h
v_ t
0 0 hy On



for vector fields v : Q, — R? such that v* = v* = 0 and v" is a function of n only. The coordinate
system in Q_ is analogous, except that now hy = 1 — nki(s) and hy = 1 — nka(t). Therefore,
for a given (n, s,t), the coordinate system breaks down when n = 1/ max(x1(s), xk2(t)), and so the
earliest breakdown is at n = 1/k*.

Performing the 3-d analogues of the 2-d calculations in §4.3, we see that (as in the 2-d case) (i)
V¢l = Vér = Crn and A¢jt = A¢p on I, and (ii) the choice Cr = 1/k, ensures that D2¢Ij5 >1
in Q4 and Q_\ Mq_.

5 Nonexistence of a Z satisfying either Condition A or Con-
dition B for nonconvex €)_

In this section, we show that if _ is nonconvex, then the condition that Z = Crn on I' (Condition
A2 or B2) and the nonnegativity condition on 0;Z; (Condition A4 or B4) cannot be satisfied
simultaneously. We restrict our attention to C? domains since both Conditions A and B assume
this smoothness of T'.

Lemma 5.1 If Q_ is a bounded C? domain that is nonconvex then there does not exist a real-
valued Z € (CY (2, N BR))?, for any R such that Q_ C Bg, satisfying both

e Z =Crn onT for some constant Cr > 0, and
e 0;Z;(x)§,£; >0 for all § € R? and x € Q4 N Bpg.

Proof. Since €)_ is nonconvex and C?, there exists a one-dimensional curve I'* C T' that has
negative curvature. That is, if I'™* := {ro(s) : a < s < b} and k(s) is defined by (4.1) then there
exists a constant kg < 0 such that k(s) < kg for all s € (a,b).

The idea of the proof is to lift I'* off I in the normal direction, calculate the derivative of the
length of the lifted curve with respect to the distance from I' in two different ways (one using the
curvature, the other using the fact that Z = Crn on I') and reach a contradiction.

Let r(s;€) :=ro(s) +en(s), and thus {r(s;e) : a < s < b} is the curve I'* lifted outwards in the
normal direction by . This definition and the expression (4.3) for dn/ds imply that

%(s;s) = %(8) +€%(5) = (1 +E”(S))%(S)’

and so )
g(ss) =(1+ 6&(8))2 (5.1)
ds™’ B ' '
Let I(e) denote the length of {r(s;e):a < s < b}, ie.
b
I(g) := /a %(s;s) ds.

The equation (5.1) implies that, for sufficiently small ¢,

b
I(e) = / (14 en(s))ds,

and thus
dr b
d—g(O) = / k(s)ds < ko(b—a) < 0. (5.2)
On the other hand, since Z = Crn on I,
r(s;e) = ro(s) + & CrZ(ro(s)). (5.3)

To condense notation, let z; denote the j-th component of ro. Differentiating (5.3) to obtain
dr/ds, we find that

2

dr =1+2eCrd;Z;(ro(s))

da;
FCD 5

ds

dz;

P (5) + O(e?) ase —0.

(s)
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Using this in the definition of I(g) yields

I(s):/ab

dr

dl‘i d.l?j
&(87 5)

b b
ds :/ dS+ECF/ 8,*Zj(1‘0(8)) 1s (3) P (S) d5+(9(€2),

b ZX; xX;
%(O) = CFA GZZ] (I‘O(s)) CLSZ (5)%(8) ds.

The facts that (i) 9;Z;(x)€;€; > 0 for all £ € R? and x € Q4 N Bg and (ii) Cr > 0 then imply
that (dI/de)(0) > 0, contradicting (5.2). |

Remark 5.2 (Can one of Conditions A and B be satisfied when _ is only convex
(as opposed to uniformly convex)?) In Lemma 4.1 we constructed a Z (equal to the gradient
of a scalar function ¢) satisfying Condition A when Q_ is a uniformly conver domain, and we
just showed in Lemma 5.1 above that there does not exist a Z satisfying either Condition A or
Condition B when _ is nonconver.

The task remains to construct a Z (either the gradient of some function ¢ or otherwise) satis-
fying either Condition A or Condition B when Q2_ is a smooth convex domain (i.e. with T' allowed
to contain straight line segments). In 2-d such a Z was essentially constructed in Q1 by [48, §4];
indeed, (in the notation of that paper) the extension of the vector field I to B¢ satisfies the parts of
Condition B that concern Q4. Given this fact, one might ask why we did not use the construction
of [48, §4] in §4. The reason is that the construction of Z for uniformly convexr domains in §/
s such that the 2-d version generalises almost immediately to 3-d, but this is not the case for the
construction in [48, §4].

6 Conclusion: identities for the Helmholtz equation

In this conclusion we attempt to place this paper’s use of Morawetz’s identities into a wider context.
We do this with the following two diagrams, Figures 1 and 2, which contrast the properties and
uses of Green’s identity with those of Morawetz’s identities.

We make the following two remarks regarding Figure 2.

(i) The k-explicit bounds in A2 are for the interior impedance problem, i.e. the problem of
finding u such that Au + k?u = —f in Q_ and du/On — inu = g on T for given f, g, and 7
(with n € R\ {0}). For this problem, one can use the multiplier Z - Vu + au (ie. 8 = 0 in
Zu) and, furthermore, in all the references in the figure ([41], [18], and [29]) Z is chosen to be
x. The resulting identity is then equivalent to adding the Rellich identity with multiplier x - Vu
(introduced by Rellich in [52]) to Green’s identity multiplied by «, and this is how this method of
obtaining bounds was understood in [41], [18], and [29]. Note that the analogue of these bounds
for the time-harmonic Maxwell equations was obtained in [30, Theorem 4.6], [43, Theorem 5.4.5]
using the Maxwell analogue of the x - Vu + au multiplier; see [43, §5.3]. (The review in [10, §5.3.2]
contains more discussion of these results and these multipliers.)

(ii) To obtain the results in Al, A2, and B, one needs a vector field Z in the domain where
the PDE is posed (since the identity is applied in this domain). In contrast, to obtain the integral
equation results, C1 and C2, one needs a vector field in both the interior and exterior domains (i.e.
Q_ and Q). This is because (as we discussed in §1.5-1.6 and saw in §3) the identity is applied in
both 2_ and Q.
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Green'’s identity: @(Au + k2u) =V- [@VU} — Vu - Vv + kv

When v = u, non-divergence terms on the right-hand side are not single-signed.

/\

A. Difficult to prove k-explicit B. Variational (i.e. weak) formulations
bounds for Helmholtz problems. of Helmholtz problems are not
coercive for large k.

C. Only prove boundary integral equations are
coercive up to a compact perturbation (see §1.4).

Figure 1: The consequences of Green’s identity for the analysis and numerical analysis of the
Helmholtz equation.

Morawetz’s identities: Zv(Au+ku) =V -[ ... ]+ ...,
where Zv =7 - Vv — ikfv + av

(when v = u these are equations (2.1), (2.3)).

When v = u, non-divergence terms on the right-hand side are single-signed.
(under non-negativity condition on 0;Z;).

/ \

Al. Can prove k-explicit B. New coercive variational formulations of
bounds for exterior exterior Dirichlet and interior impedance
Helmholtz problems: problems: [44].

[47], [46].

A2. Can prove k-explicit C1. New coercive boundary integral equation for

bounds for interior exterior Dirichlet problem (equation (1.34)): [58].

impedance problem:
[41], [18], [29].
C2. Coercivity of standard boundary integral equation for
exterior Dirichlet problem: this paper.

Figure 2: The consequences of Morawetz’s identities for the analysis and numerical analysis of the
Helmholtz equation.
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