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SHARP HIGH-FREQUENCY ESTIMATES FOR THE HELMHOLTZ
EQUATION AND APPLICATIONS TO BOUNDARY INTEGRAL

EQUATIONS∗

DEAN BASKIN† , EUAN A. SPENCE‡ , AND JARED WUNSCH§

Abstract. We consider three problems for the Helmholtz equation in interior and exterior
domains in Rd (d = 2, 3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems
for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions
to these problems that, in combination, give bounds on the inverses of the combined-field boundary
integral operators for exterior Helmholtz problems.
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1. Introduction. Proving bounds on solution of the Helmholtz equation

(1) Δu+ k2u = −f

(where f is a given function and k ∈ R \ {0} is the wavenumber) has a long history.
Nevertheless, the following problems have remained open.
(i) Proving sharp bounds on the Dirichlet-to-Neumann (DtN) and Neumann-to-

Dirichlet (NtD) maps for outgoing solutions of the homogeneous Helmholtz
equation (i.e., equation (1) with f = 0) in exterior nontrapping domains.

(ii) Proving sharp bounds on the solution of the interior impedance problem (IIP)
for general domains, where this boundary value problem (BVP) consists of (1)
posed in a bounded domain with the boundary condition

(2)
∂u

∂n
− iηu = g,

where g is a given function and η ∈ R \ {0}.
This paper fills these gaps in the literature.

The motivation for considering the exterior DtN and NtD maps for the Helmholtz
equation is fairly clear, since these are natural objects to study in relation to scattering
problems. The motivation for studying the IIP is twofold:

(i) It has become a standard model problem used when designing numerical
methods for solving the Helmholtz equation (see section 5.1 below for further
explanation), and to prove error estimates one needs bounds on the solution
of the BVP.
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(ii) The integral equations used to solve the exterior Dirichlet, Neumann, and
impedance problems can also be used to solve the IIP; therefore, to prove
bounds on the inverses of these integral operators, one needs to have bounds
on the solution of the IIP; we discuss this more in section 6 below.

This paper may be regarded as a sequel to [15] and [73] as it variously sharpens and
generalizes estimates obtained in those works. We will refer to these papers for many
of the basic results. Although the results proved here hold for any dimension d ≥ 2,
we state them only in dimensions 2 and 3, first since these are the most interesting for
applications, and second since this avoids re-proving background material only stated
in the literature in these low dimensions.

1.1. Statement of the main results. Let Ω− ⊂ Rd, d = 2, 3, be a bounded,
Lipschitz open set with boundary Γ := ∂Ω−, such that the open complement Ω+ :=
Rd \Ω− is connected. Let γ± denote the trace operators from Ω± to Γ, let ∂±n denote
the normal derivative trace operators, and let ∇Γ denote the surface gradient operator
on Γ. Let BR := {x : |x| < R}.

Definition 1.1 (nontrapping). We say that Ω+ ⊂ Rd, d = 2, 3, is nontrapping
if Γ is smooth (C∞) and, given R > supx∈Ω− |x|, there exists a T (R) < ∞ such that
all the billiard trajectories (in the sense of Melrose and Sjöstrand [56]) that start in
Ω+ ∩BR at time zero leave Ω+ ∩BR by time T (R).

Definition 1.2 (nontrapping polygon). If Ω− ⊂ R2 is a polygon, we say that
it is a nontrapping polygon if (i) no three vertices are collinear, and (ii) given R >
supx∈Ω− |x|, there exists a T (R) < ∞ such that all the billiard trajectories that start
in Ω+ ∩BR at time zero and miss the vertices leave Ω+ ∩BR by time T (R). (For a
more precise statement of (ii) see [8, section 5].)

Definition 1.3 (star-shaped). Let Ω− ⊂ Rd, d = 2, 3, be a bounded, Lipschitz
open set.

(i) We say that Ω− is star-shaped if x · n(x) ≥ 0 for every x ∈ Γ for which n(x)
is defined (where n(x) is the normal to x ∈ Γ).

(ii) We say that Ω− is star-shaped with respect to a ball if there exists a constant
c > 0 such that x · n(x) ≥ c for every x ∈ Γ for which n(x) is defined.

Theorem 1.4 (bounds on the exterior DtN map). Let u ∈ H1
loc(Ω+) satisfy the

Helmholtz equation

(3) Δu+ k2u = 0 in Ω+

for k ∈ R \ {0} and the Sommerfeld radiation condition

(4)
∂u

∂r
− iku = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r. If either Ω+ is nontrapping (in the sense of
Definition 1.1) or Ω− is a nontrapping polygon (in the sense of Definition 1.2) or Ω−
is Lipschitz and star-shaped (in the sense of Definition 1.3(i)), then, given k0 > 0,

(5)
∥∥∂+n u∥∥H−1/2(Γ)

� |k| ‖γ+u‖H1/2(Γ)

for all |k| ≥ k0. Furthermore, if γ+u ∈ H1(Γ), then ∂+n u ∈ L2(Γ) and, given k0 > 0,

(6)
∥∥∂+n u∥∥L2(Γ)

� ‖∇Γ(γ+u)‖L2(Γ) + |k| ‖γ+u‖L2(Γ)

for all |k| ≥ k0.
Theorem 1.5 (bounds on the NtD map). Let Ω+ be nontrapping (in the sense

of Definition 1.1) and let u ∈ H1
loc(Ω+) satisfy the Helmholtz equation (3) and the
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Sommerfeld radiation condition (4). Let β = 2/3 in the case when Γ has strictly
positive curvature, and β = 1/3 otherwise.

Then, given k0 > 0,

(7) ‖γ+u‖H1/2(Γ) � |k|1−β ∥∥∂+n u∥∥H−1/2(Γ)

for all |k| ≥ k0. Furthermore, if ∂+n u ∈ L2(Γ), then γ+u ∈ H1(Γ) and, given k0 > 0,

(8) ‖∇Γ(γ+u)‖L2(Γ) + |k| ‖γ+u‖L2(Γ) � |k|1−β ∥∥∂+n u∥∥L2(Γ)

for all |k| ≥ k0.
By considering the specific examples of Γ the unit circle (in two dimensions) and

the unit sphere (in three dimensions) and using results about the asymptotics of Bessel
and Hankel functions, it was shown in [73, Lemmas 3.10 and 3.12] that the bounds
(5) and (6) are sharp, and that (7) and (8) are sharp in the case of strictly positive
curvature.

We prove the DtN bound (6) and can then get a bound on the DtN map between
a range of Sobolev spaces by interpolation. Of this range, the bound (5) is the most
interesting (since it is between the natural trace spaces for solutions of the Helmholtz
equation), and thus we state it explicitly; similarly for (8) and (7).

Our next result concerns the IIP under the following assumption about the
impedance parameters η. We permit a more general assumption on η than that
specified in the introduction: it can be variable and need only have nonzero real part
with a linear rate of growth in k.

Assumption 1.6 (a particular class of η). η(x) := a(x)k + ib(x), where a, b are
real-valued C∞ functions on Γ, b ≥ 0 on Γ, and there exists an a− > 0 such that
either

a(x) ≥ a− > 0 for all x ∈ Γ or − a(x) ≥ a− > 0 for all x ∈ Γ.

For purposes of obtaining estimates valid down to k = 0 (and, in particular, to
make contact with applications in the work of Epstein, Greengard, and Hagstrom [22])
we will also state another, stronger, set of hypotheses on η.

Assumption 1.7 (another class of η). η(x) := a(x)k + ib(x), where a, b are real-
valued C∞ functions on Γ and there exist a− > 0, b− > 0 such that

a(x) ≥ a− > 0 for all x ∈ Γ and b(x) ≥ b− > 0 for all x ∈ Γ.

In our discussion of the impedance problem, we use Ω to denote the domain where
the IIP is posed (instead of Ω−), since we do not need the restriction that we imposed
on Ω− that the open complement is connected.

Theorem 1.8 (bounds on the solution to the IIP). Let Ω be a bounded C∞ open
set in two or three dimensions with boundary Γ. Given g ∈ L2(Γ), f ∈ L2(Ω), and η
satisfying Assumption 1.6, let u ∈ H1(Ω) be the solution to the IIP

(9) Δu+ k2u = −f in Ω and ∂nu− iηγu = g on Γ.

Then

(10) ‖∇u‖L2(Ω) + |k| ‖u‖L2(Ω) � ‖f‖L2(Ω) + ‖g‖L2(Γ)

for all k ∈ R. If the stronger Assumption 1.7 holds, estimate (10) holds with 1 + |k|
replacing |k|.



232 DEAN BASKIN, EUAN A. SPENCE, AND JARED WUNSCH

The bound (10) is sharp. Indeed, in [73, Lemma 4.12] it was proved that given
any bounded Lipschitz domain, there exists an f such that the solution of the IIP with
g = 0 and this particular f satisfies |k|‖u‖L2(Ω) � ‖f‖L2(Ω). Furthermore Lemma 5.5
shows that if Ω is a ball and f = 0, then there exists a g such that the solution of the
IIP with f = 0 and this particular g satisfies |k|‖u‖L2(Ω) � ‖g‖L2(Γ).

Note that Assumption 1.6 includes the cases η = ±k, and thus the bound (10)
holds for the two most commonly occurring impedance boundary conditions, namely,
∂nu− ikγu = g and ∂nu+ ikγu = g.

For our application of this result to integral equations, we state a result on the
Dirichlet trace of the solution of the IIP.

Corollary 1.9 (bound on the interior impedance-to-Dirichlet map). Let Ω be a
bounded C∞ domain in two or three dimensions with boundary Γ. Given f ∈ L2(Ω),
g ∈ L2(Γ), and η satisfying Assumption 1.6, let u ∈ H1(Ω) be the solution to the
IIP (9). Then

(11) ‖∇Γ(γu)‖L2(Γ) + |k| ‖γu‖L2(Γ) � ‖f‖L2(Ω) + ‖g‖L2(Γ)

for all k ∈ R. If the stronger Assumption 1.7 holds, estimate (11) holds with 1 + |k|
replacing |k|.

We now state two further corollaries, which are relevant for the numerical analysis
of finite-element discretizations for the IIP. For simplicity, we state them for |k|
bounded away from zero.

Corollary 1.10 (bound on the inf-sup constant). Let Ω be a bounded C∞

domain in two or three dimensions with boundary Γ. Given f ∈ (H1(Ω))′, g ∈
H−1/2(Γ), and η satisfying Assumption 1.6, let u ∈ H1(Ω) be the solution to the
IIP (9). Then, given k0 > 0,

(12) ‖∇u‖L2(Ω) + |k| ‖u‖L2(Ω) � |k|
(
‖f‖(H1(Ω))′ + ‖g‖H−1/2(Γ)

)
for all |k| ≥ k0. Furthermore,

(13) inf
0�=u∈H1(Ω)

sup
0�=v∈H1(Ω)

|a(u, v)|
‖u‖H1

k(Ω) ‖v‖H1
k(Ω)

� 1

|k| ,

where a(·, ·), defined by (63) below, is the sesquilinear form of the variational formu-
lation of the IIP, and ‖ · ‖H1

k(Ω) is the weighted H1-norm defined by (25) below.

Corollary 1.11 (bound on the H2-norm). Let Ω be a bounded C∞ domain
in two or three dimensions with boundary Γ. Given f ∈ L2(Ω), g ∈ H1/2(Γ), and η
satisfying Assumption 1.6, let u ∈ H1(Ω) be the solution to the IIP (9). Then, given
k0 > 0,

(14) ‖u‖H2(Ω) � |k|
(
‖f‖L2(Ω) + ‖g‖H1/2(Γ)

)
for all |k| ≥ k0.

Shifting to a slightly different perspective, having proved the bound (10) for real k,
it is natural to impose the homogeneous impedance boundary condition ∂nu− iηγu =
0 and consider the resolvent-like operator family defined by solving the Helmholtz
equation with this (k-dependent!) boundary condition. That is, we define

RI,η(k) : L
2(Ω) → L2(Ω)
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by

RI,η(k)f = u,

where u is the solution to

(Δ + k2)u = f

satisfying

∂nu− iηγu = 0.

If η satisfies Assumption 1.6, then RI,η(k) is well defined when k ∈ R\{0}. Meanwhile,
the strict positivity of a implies that RI,η(k) is well defined and holomorphic for
Im k > 0. We can then use a simple perturbation argument to show the existence
of regions beneath the real axis free of poles (the equivalent of “resonances” in this
compact, non-self-adjoint setting); if we strengthen our assumptions to strict positivity
of b, this yields a full pole-free strip beneath the real axis, while mere nonnegativity
leaves the possibility of a singularity at k = 0.

The following result is stated with the stronger hypothesis and consequent pole-
free strip.

Theorem 1.12 (pole-free strip beneath the real axis). The operator family
RI,η(k) : L2(Ω) → L2(Ω) defined as the inverse of (Δ + k2) with boundary condi-
tion ∂nu − iηγu = 0, where η satisfies Assumption 1.7, is holomorphic on Im k > 0.
Furthermore there exists an ε > 0 such that RI,η(k) extends from the upper half-plane
to a holomorphic operator family on Im k > −ε, satisfying the uniform estimate

(15) ‖RI,η(k)‖L2(Ω)→L2(Ω) � (1 + |k|)−1

in that region.

1.2. Discussion of previous results related to Theorems 1.4, 1.5, 1.8,
and 1.12, and high-frequency estimates for the Helmholtz equation in gen-
eral. The main previously existing sharp bound for one of the DtN and NtD maps
is the bound (6) proved when Ω− is a Lipschitz domain that is star-shaped with re-
spect to a ball (in the sense of part (ii) of Definition 1.3). This bound was proved
by Morawetz and Ludwig in [59] without the smoothness requirements of the bound-
ary explicitly stated, but the same techniques apply to Lipschitz domains, modulo
some additional technical work; see [73, Remark 3.8] and [57, Appendix A]. The DtN
bounds (5) and (6) were also obtained in the strictly convex case by Cardoso, Popov,
and Vodev in [11] as well as by Sjöstrand [72]; see also the parametrix construction
in the appendix of [75]. Nonsharp bounds on the DtN and NtD maps were proved in
[4], [43], and [73]; see [73, section 1.2] for a discussion of all these results.

Of the bounds on the IIP in the literature, the only previously existing sharp result
was that (10) holds when Ω is Lipschitz and star-shaped with respect to a ball. This
was proved in two dimensions when Γ is piecewise smooth by Melenk [51, Proposition
8.1.4] and in three dimensions by Cummings and Feng [17, Theorem 1]. The technical
work referred to above can then be used to establish the bound when Γ is Lipschitz
(see, e.g., [29, Theorem 2.6], where the analogue of this bound is proved for a more
general class of wavenumbers). By the discussion immediately after Theorem 1.8,
this bound for star-shaped Lipschitz domains is sharp. Bounds for general Lipschitz
domains with positive powers of k in front of both ‖f‖L2(Ω) and ‖g‖L2(Γ) were obtained
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in [25, Theorems 3.6 and 4.7], [23, Theorem 2.4], and [73, Theorem 1.6]; see [73,
section 1.2] for more discussion.

Regarding the pole-free strip result of Theorem 1.12, the analogous result for
the exterior impedance problem follows from the exponential decay result of [1] for
the wave equation with damped boundary conditions (in an analogous way to how
Theorem 1.12 followed from the exponential decay in (61)). Furthermore, the recent
work of [63] on the exterior impedance problem gives quite precise bounds on the
locations of poles much deeper in the lower half-space than those considered here.

A crucial ingredient in the estimates obtained in this paper is the nontrapping
resolvent estimate, which we use to solve away errors for both Dirichlet and Neumann
exterior problems. If Ω+ is nontrapping, we have for any χ ∈ C∞

c (Ω+)

(16)
∥∥χ(Δ + k2)−1χ

∥∥
L2(Ω+)→L2(Ω+)

≤ C(1 + |k|)−1, k ∈ R

(see Theorem 3.1 below for a slightly refined formulation and generalizations). This
result follows from a combination of two separate ingredients. By work on propaga-
tion of singularities for the wave equation on manifolds with boundary by Melrose
[54], Taylor [81], and Melrose and Sjöstrand [55], we know that solutions to the
wave equation on nontrapping domains with compactly supported initial data be-
come smooth for t � 1. A parametrix method of Vainberg [82] or the methods of
Lax and Phillips [44] can then be used to turn this “weak Huygens principle” into a
resolvent estimate (and indeed to obtain a region of analyticity below the real axis
for the analytic continuation of the cutoff resolvent). The estimate (16) is known to
fail, by contrast, whenever there are trapped orbits, by the work of Ralston [65]. We
mainly use the estimate (16) as a black box in our estimates below, but we do need to
return to the Vainberg parametrix construction to prove a variant of (16) that deals
with Dirichlet data for the nontrapping Neumann resolvent (Lemma 4.3.)

1.3. The main ideas used to obtain Theorems 1.4, 1.5, 1.8, and 1.12.
We now give a brief overview of how the main results were obtained, with more detail
naturally given in sections 3–5.

In contrast to the proofs of the bounds on the NtD map and the IIP, our proof of
the DtN map bounds in Theorem 1.4 takes places solely in the setting of stationary
scattering theory; i.e., we never consider the associated problem for the wave equation.
We use a “gluing” argument, where outgoing solutions for the far field are “glued” to
solutions of an “auxiliary problem” in a bounded region. This type of argument goes
back at least to Phillips and Lax [64, section 5] and was used to obtain (nonsharp)
bounds on the DtN map in [43] and [73]. Our contribution is to choose a different
auxiliary problem from that considered in [43] and [73], with this change then yielding
the sharp result.

The main ingredient for our proof of the NtD map bounds in Theorem 1.5 is
a collection of restriction bounds for solutions of the wave equation with Neumann
boundary conditions due to Tataru [78]. These are used in conjunction with the
Vainberg parametrix construction briefly discussed in section 1.2 above.

For the bound on the IIP in Theorem 1.8 we use the results of Bardos, Lebeau,
and Rauch [7] on exponential decay of the energy of solutions of the wave equation
with damped boundary conditions, with the estimate (10) obtained by a Fourier-
transform argument. Once (10) has been established for k ∈ R, the pole-free strip
result in Theorem 1.12 then follows by a standard perturbation argument.

1.4. Application of the above results to integral equations. As mentioned
above, the results of Theorems 1.4, 1.5, and 1.8 can be applied to integral equations.
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Our main result in this direction concerns the standard integral equation used to solve
the Helmholtz exterior Dirichlet problem.

When u is the solution to the Helmholtz exterior Dirichlet problem, the Neumann
trace of u, ∂+n u, satisfies the integral equation

(17) A′
k,η(∂

+
n u) = fk,η

on Γ, where the integral operator A′
k,η is the so-called combined-potential or combined-

field integral operator (defined by (78) below), and fk,η is given in terms of the known
Dirichlet data γ+u (see (77)). Usually the parameter η is a real constant different
from zero, but in fact η will also be allowed to be a function of position on Γ.

We introduce the notation that P+
DtN denotes the exterior DtN map, as a mapping

from Hs+1/2(Γ) → Hs−1/2(Γ) for |s| ≤ 1/2, and P−,η
ItD denotes the interior impedance-

to-Dirichlet map, as a mapping from Hs−1/2(Γ) → Hs−1/2(Γ) for |s| ≤ 1/2 (see
section 2.1 below and [13, Theorems 2.31 and 2.32] for details on how these maps are
defined for these ranges of spaces).

The inverse of A′
k,η can be written in terms of the exterior DtN map P+

DtN and

interior impedance-to-Dirichlet map P−,η
ItD as follows:

(18) (A′
k,η)

−1 = I − (P+
DtN − iη)P−,η

ItD ;

this decomposition is implicit in much of the work on the combined-potential operator
A′

k,η, but (to the authors’ knowledge) was first written down explicitly in [13, Theorem
2.33]. We give another, more intuitive proof of this result in Lemma 6.1 below.

The operator A′
k,η is usually considered as an operator from L2(Γ) to itself (the

reasons for this are explained in section 6), and the bounds on the exterior DtN map
and interior impedance-to-Dirichlet map in Theorem 1.4 and Corollary 1.9 immedi-
ately yield the following bound on ‖(A′

k,η)
−1‖L2(Γ)→L2(Γ).

Theorem 1.13. Let Ω+ ⊂ Rd, d = 2, 3, be a nontrapping domain, and suppose
that η satisfies Assumption 1.6. Then, given k0 > 0,

(19) ‖(A′
k,η)

−1‖L2(Γ)→L2(Γ) � 1

for all |k| ≥ k0.
Since the proof is so short, we include it in this introduction. The spaces H1

k(Γ)
used below are weighted Sobolev spaces defined in section 2 (in particular, see (25)).

Proof. The decomposition (18) implies that

(20) ‖(A′
k,η)

−1‖L2(Γ)→L2(Γ) ≤ 1 +
∥∥P+

DtN

∥∥
H1

k(Γ)→L2(Γ)

∥∥P−,η
ItD

∥∥
L2(Γ)→H1

k(Γ)

+ |η| ∥∥P−,η
ItD

∥∥
L2(Γ)→L2(Γ)

.

Theorem 1.4 implies that ‖P+
DtN‖H1

k
(Γ)→L2(Γ) � 1, and Corollary 1.9 implies that

‖P−,η
ItD‖L2(Γ)→H1

k(Γ)
� 1 (and thus ‖P−,η

ItD‖L2(Γ)→L2(Γ) � |k|−1
). These results, along

with the assumption on η, immediately give (19).
We make two immediate remarks regarding Theorem 1.13.
(1) The bound (19) is sharp, since it was proved in [12, Theorem 4.3] that

‖(A′
k,η)

−1‖L2(Γ) ≥ 2 when part of Γ is C1 and d = 2, 3.
(2) In this paper we focus on the direct integral equation for the exterior Dirichlet

problem, i.e., the equation where the unknown has an immediate physical
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meaning (in this case, it is the Neumann trace ∂+n u), but an analogous bound
to (19) holds for the inverse of the operator involved in the standard indirect
integral equation (where the unknown of the integral equation does not have
an immediate physical meaning); see, e.g., [13, Remark 2.24, section 2.6].

There have been two previous upper bounds on ‖(A′
k,η)

−1‖L2(Γ)→L2(Γ) proved in
the literature; the bound

(21) ‖(A′
k,η)

−1‖L2(Γ)→L2(Γ) � 1 +
k

|η|

when Ω− is a two- or three-dimensional Lipschitz domain that is star-shaped with
respect to a ball and η ∈ R\{0} was proved in [15, Theorem 4.3] using the Morawetz–
Ludwig DtN bound and Melenk’s bound on the IIP, both discussed in section 1.2.
Furthermore, using nonsharp bounds on P+

DtN and P−,η
ItD , the bound

(22) ‖(A′
k,η)

−1‖L2(Γ)→L2(Γ) � k5/4
(
1 +

k3/4

|η|
)

for η ∈ R \ {0} was proved in [73, Theorem 1.11] when either Ω− is a two- or three-
dimensional nontrapping domain, or Ω− is a nontrapping polygon.

An immediate application of the bound (19) is the following. An error analysis of
the h-boundary element method (i.e., the Galerkin method using subspaces consisting
of piecewise polynomials with fixed degree) applied to (17) was conducted in [31]. This
analysis required ‖(A′

k,η)
−1‖L2(Γ)→L2(Γ) � 1 and so covered the case when |η| ∼ k

and Ω− is star-shaped with respect to a ball, using the bound (21). Thanks to the
bound (19), however, this analysis is now valid when Ω+ is nontrapping and η satisfies
Assumption 1.6. (Note that the error analysis of the hp-boundary element method
conducted in [46], [52] only requires ‖(A′

k,η)
−1‖L2(Γ)→L2(Γ) � kβ for some β > 0, and

thus the bound (22) is sufficient for this analysis to be valid for nontrapping domains.)
The bound (19), used in conjunction with the recent results of Galkowski and

Smith [28], [34], on essentially the norm of A′
k,η, almost completes the study of the

conditioning of A′
k,η in the high-frequency limit, i.e., the study of

(23) cond(A′
k,η) := ‖A′

k,η‖L2(Γ)→L2(Γ)‖(A′
k,η)

−1‖L2(Γ)→L2(Γ)

for k large. This study was initiated back in the 1980s for the case when Ω− is a
ball [41], [42], [2], with the main question considered being how one should choose the
parameter η to minimize the condition number. The first works to consider domains
other than balls were [12], [15]. We discuss the implications of Theorem 1.13 and [34]
on the condition number of A′

k,η and the choice of η in section 7.
So far we have only discussed integral equations for the exterior Dirichlet problem.

The case of the exterior Neumann problem is more subtle, and we refer the reader to
sections 6.2–6.3 where this is discussed.

This subsection has discussed the application of the bounds of Theorems 1.4, 1.5,
and 1.8 to boundary integral equations for real k.

In a different direction, the pole-free strip for the IIP in Theorem 1.12 has the
following two applications in the theory of boundary integral equations.

(1) This result is used in [22], along with results from classical scattering theory
and effectively the relation (18), to show that A′

k,η is invertible for Im k > −δ,
for some δ > 0, when Ω+ is nontrapping and η satisfies Assumption 1.7.
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(2) The method of [85] for finding Dirichlet eigenvalues of the Laplacian using
boundary integral equations relies on the existence of a pole-free strip for
both the interior and exterior impedance problems (see [85, Remark 7.5]).
The former is guaranteed by Theorem 1.12, and the latter is guaranteed
by [1].

2. Notation and preliminaries. Let Ω− ⊂ Rd, d ≥ 2, be a bounded, Lipschitz
open set with boundary Γ := ∂Ω−, such that the open complement Ω+ := R

d \ Ω−
is connected. We denote the exterior and interior traces by γ±, and the exterior
and interior normal-derivative traces by ∂±n . The symbol χ will denote a function in
C∞

c (Ω+) that equals one in a neighborhood of Ω−. Additional assumptions about the
support of particular cutoffs will be stated explicitly.

The symbol Δ denotes the (nonpositive) Laplacian and � denotes the wave op-
erator ∂2t −Δ.

Given a function u ∈ C1(Rd \BR0) for some R0 > 0 and given λ ∈ C, we say that
u satisfies the Sommerfeld radiation condition with spectral parameter λ if

(24)
∂u

∂r
− iλu = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r.

We define the weighted norm

(25) ‖u‖2H1
k(X) := ‖∇u‖2L2(X) + k2‖u‖2L2(X)

(we use this notation with X either Ω+, Ω−, or Γ; in the latter case the gradient is
to be understood as the surface gradient ∇Γ).

More generally, for s ∈ R we let Hs
k(X) denote the weighted Sobolev space ob-

tained by interpolation and duality from the spaces of positive integer order

Hm
k (X) =

{
u ∈ L2(X) : |k|m−|α|

Dαu ∈ L2(X) for all |α| ≤ m
}
.

As usual (see, e.g., [80, section 4.4]) we may identify these spaces on manifolds with
boundary with the quotient space

Hs
k(Ω±) =

{
u ∈ Hs

k(R
n)
}
/
{
u : u|Ω± = 0

}
.

An easy interpolation (see, e.g., [14]) shows that an equivalent norm on Hs
k(X)

for s > 0 is ‖•‖Hs + |k|s‖•‖L2 , and we will use this fact freely below.
We will also have occasion to consider the domain of the self-adjoint operator

(−Δ+ k2)s/2, with Δ denoting the (nonpositive) Laplacian with Neumann or Dirich-
let boundary conditions and s ≥ 0. We let Ds

N,k, respectively, Ds
D,k, denote these

domains; for negative s the spaces are defined by duality: Ds
•,k = (D−s

•,k)
∗. As in [80,

section 5.A], we note that D1
N (Ω±) = H1

k(Ω), and so by interpolation we have

(26) Hs
k(Ω±) = Ds

N (Ω±), s ∈ [0, 1].

The norm with no subscript attached, ‖•‖, will denote the L2-norm throughout.
The following lemma connects Sobolev regularity in space-time to weighted Sobo-

lev regularity following the Fourier transform. Let F−1 denote the inverse Fourier
transform taking the time variable to frequency variable k.

Lemma 2.1. Let I ⊂ R be a bounded open interval. There exist CI such that∥∥F−1
t→ku(k, x)

∥∥
Hα

k
(X)

≤ CI‖u‖Hα(I×X)
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for every u ∈ Hα(R×X) supported in I ×X.
The proof is simply intertwining the elliptic operator (∂2t +Δ) with the Fourier

transform to obtain the result for α ∈ N, followed by interpolation and duality for the
general case.

2.1. Preparatory results for proving Theorems 1.4 and 1.5 (the DtN
and NtD bounds). The following interpolation result (which appears as [73, Lemma
2.3]) shows that the DtN bound (5) follows from (6), and the NtD bound (7) follows
from (8). To state this result, we denote the DtN map in Ω+ by P+

DtN and the NtD
map by P+

NtD (following the notation in [13, section 2.7]). P+
DtN is defined as a map

from H1/2(Γ) to H−1/2(Γ) by standard results about the solvability of the exterior
Dirichlet problem and the definition of the normal derivative, and the regularity result
of Nečas stated as Lemma 2.3 below implies that P+

DtN can be extended to a map
from H1(Γ) to L2(Γ). Analogous arguments hold for P+

NtD.
Lemma 2.2 (see [73, Lemma 2.3]). With Ω+, P

+
DtN , and P+

NtD defined above,∥∥P+
DtN

∥∥
H1/2(Γ)→H−1/2(Γ)

≤ ∥∥P+
DtN

∥∥
H1(Γ)→L2(Γ)

and, analogously, ∥∥P+
NtD

∥∥
H−1/2(Γ)→H1/2(Γ)

≤ ∥∥P+
NtD

∥∥
L2(Γ)→H1(Γ)

.

(Note that an analogous result holds for the interior impedance-to-Dirichlet map,
and thus the bound in Corollary 1.9 implies a bound on this map from H−1/2(Γ) to
H1/2(Γ), but we do not need this latter result in this paper.)

Having reduced the problem of obtaining the DtN and NtD bounds in Theorems
1.4 and 1.5 to the problem of obtaining the bounds between the spaces H1(Γ) and
L2(Γ), we now use the well-known fact that a Rellich-type identity can be used to
bound the (highest order terms of the) DtN and NtD maps, modulo terms in the
domain. The next lemma is a restatement of Nečas’ result for strongly elliptic systems
(see [60, sections 5.1.2 and 5.2.1], [50, Theorem 4.24]) applied to the specific case of
the Helmholtz equation, where we have kept track of the dependence of each term on
k (see [73, Lemma 3.5] for details).

Lemma 2.3 (DtN and NtD bounds inH1(Γ)–L2(Γ) modulo terms in the domain).
With Ω+ and χ as above, given f ∈ L2

comp(Ω+), let u ∈ H1
loc(Ω+) be a solution to

Δu+ k2u = −f .
(i) If γ+u ∈ H1(Γ), then ∂+n u ∈ L2(Γ) and

(27)
∥∥∂+n u∥∥2L2(Γ)

� ‖∇Γ(γ+u)‖2L2(Γ) + ‖χu‖2H1
k(Ω+) + ‖f‖2L2(Ω+) .

(ii) If ∂+n u ∈ L2(Γ), then γ+u ∈ H1(Γ) and

(28) ‖∇Γ(γ+u)‖2L2(Γ) �
∥∥∂+n u∥∥2L2(Γ)

+ |k|2 ‖γ+u‖2L2(Γ) + ‖χu‖2H1
k(Ω+) + ‖f‖2L2(Ω+) .

Therefore, to prove the bounds in Theorem 1.4 it is sufficient to prove that if
u ∈ H1

loc(Ω+) is the solution to the exterior Dirichlet problem for the homogeneous
Helmholtz equation, with H1-Dirichlet boundary data gD, then

‖χu‖H1
k(Ω+) � ‖γ+u‖H1

k(Γ)
.

Similarly, to prove the bounds in Theorem 1.5, it is sufficient to prove that u ∈
H1

loc(Ω+) is the solution to the exterior Neumann problem for the homogeneous
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Helmholtz equation, with L2-Neumann boundary data gN ; then with β as in Theo-
rem 1.5,

‖γ+u‖L2(Γ) � k−β
∥∥∂+n u∥∥L2(Γ)

and ‖χu‖H1
k(Ω+) � k1−β

∥∥∂+n u∥∥L2(Γ)

(we will actually prove the stronger result that the second bound holds with a smaller
power of k on the right-hand side, but this will not affect the bound on the NtD
map). The asymmetry between what we need to prove for the Neumann problem
versus what we need to prove for the Dirichlet problem is due to the fact that only
the H1-seminorm of the Dirichlet trace is controlled in (28), which is due to the
structure of the Rellich identity (see, e.g., [73, equation (3.13)]).

Finally, in our proof of the NtD estimates we will need the following lemma. It
is perhaps easiest to state this in terms of norms of u over ΩR := Ω+ ∩ BR, where
BR := {x : |x| < R}, but the result could be translated into norms of χu over Ω+ for
appropriate cutoff functions χ.

Lemma 2.4 (bounding the H1-norm via the L2-norm and the data). Given f ∈
L2
comp(Ω+), let u ∈ H1

loc(Ω+) be a solution of the Helmholtz equation Δu+ k2u = −f
in Ω+. Then, given R > supx∈Ω− |x|,

‖∇u‖2L2(ΩR) � 〈k〉2 ‖u‖2L2(ΩR+1)
+ 〈k〉−2 ‖f‖2L2(Ω+) + ‖γ+u‖L2(Γ)

∥∥∂+n u∥∥L2(Γ)

for all k ∈ R.
This result when one of γu and ∂nu is zero is proved in [73, Lemma 2.2]; a similar

result appears in [58, Lemma 1].

3. Exterior Dirichlet-to-Neumann estimates. In this section we prove The-
orem 1.4, i.e., a bound on the exterior DtN map for solutions of the Helmholtz equation
satisfying the Sommerfeld radiation condition.

The methods used here will be completely in the setting of stationary scattering
theory; i.e., we will never have recourse to energy estimates for solutions to the wave
equation (which is, of course, connected via Fourier transform). The energy estimates
that we present are more widely known in this latter setting, however—cf. Hörmander
[37, section 24.1] as well as the more general estimates of Kreiss and Sakamoto in
the context of general hyperbolic systems with a boundary condition satisfying the
uniform Lopatinski condition [40], [68], [69]. (In contrast, when dealing with the NtD
operator below, we need to use results known only in the wave equation setting.)

More specifically, the method we use to prove Theorem 1.4 consists of a “gluing”
argument, where outgoing solutions for the far field are “glued” to solutions of an
“auxiliary problem” in a bounded region; this type of argument goes back at least
to Phillips and Lax [64, section 5]. In our situation, estimates for the DtN map for
a lower-order “perturbation” of the Helmholtz equation are used in conjunction with
the resolvent estimate for the problem with homogeneous boundary conditions. This
argument was first used to obtain bounds on the DtN map in [43] and later refined
in [73]. Both these previous works use the equation Δw− k2w = 0 as the lower-order
perturbation and obtain nonsharp bounds on the Helmholtz DtN map. Here we use
the equation Δw+(k2+i|k|)w = 0 as the lower-order perturbation (i.e., the Helmholtz
equation with some absorption/damping), and this change is sufficient to prove the
sharp result.

Before we begin, it is helpful to recall the following resolvent estimates for the
Dirichlet problem (all but one of which hold for the Neumann problem as well).

Theorem 3.1 (resolvent estimates). Let f ∈ L2(Ω+) have compact support, and
let u ∈ H1

loc(Ω+) be a solution to the Helmholtz equation Δu + k2u = −f in Ω+
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that satisfies the Sommerfeld radiation condition (4) (with λ = k) and the boundary
condition γ+u = 0. If either

(a) Ω+ is a two- or three-dimensional nontrapping domain (in the sense of Defi-
nition 1.1), or

(b) Ω− is a nontrapping polygon (in the sense of Definition 1.2), or
(c) Ω− is a two- or three-dimensional Lipschitz domain that is star-shaped (in

the sense of Definition 1.3(i)),
then, given k0 > 0,

(29) ‖χu‖H1
k(Ω+) � ‖f‖L2(Ω+)

for all |k| ≥ k0.
Proof. The result for part (a) is proved in [82, Theorem 7] using the propagation

of singularities results of [55], [56]. (See also Vainberg’s book [83] for a broader survey
of these methods.) The result for part (b) was proved when Ω− is a nontrapping
polygon in [8, Corollary 3]. The bound (29) was proved when Ω− is a star-shaped
domain in two or three dimensions in [15, Lemma 3.8].

Lemma 3.2. If w satisfies

(30) Δw + (k2 + i|k|)w = 0 in Ω+

and the Sommerfeld radiation condition (4) with spectral parameter
√
k2 + i|k|, then,

given k0 > 0,

(31) ‖w‖2H1
k(Ω+) � |k| ‖γ+w‖L2(Γ)

∥∥∂+n w∥∥L2(Γ)

for all |k| ≥ k0.
Proof. Given k0 > 0, there exists a c > 0 such that Im

√
k2 + i|k| ≥ c; therefore,

since w satisfies the Sommerfeld radiation condition and the associated asymptotic
expansion (see, e.g., [16, Theorem 3.6]), w decays exponentially at infinity; hence w
and ∇w are both in L2(Ω+).

We can therefore apply Green’s identity (i.e., multiply the PDE (30) by w and
integrate by parts) and obtain that

−
∫
Γ

γ+w ∂
+
n w +

∫
Ω+

(k2 + i|k|)|w|2 − |∇w|2 = 0.

Taking the imaginary part of this last expression and using the Cauchy–Schwarz
inequality yields

(32) |k| ‖w‖2L2(Ω+) ≤ ‖γ+w‖L2(Γ)

∥∥∂+n w∥∥L2(Γ)
.

Taking the real part yields

(33) ‖∇w‖2L2(Ω+) ≤ k2 ‖w‖2L2(Ω+) + ‖γ+w‖L2(Γ)

∥∥∂+n w∥∥L2(Γ)
,

and combining (32) and (33) yields the result (31).
Lemma 3.3 (bound on the exterior Dirichlet problem with damping). Given

gD ∈ H1(Γ), let w be the solution of

Δw + (k2 + i|k|)w = 0 in Ω+, γ+w = gD on Γ,
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satisfying the Sommerfeld radiation condition (4) (note that the existence of a unique
solution to this problem follows from Remark 3.4 below). Then

(34) ‖w‖H1
k(Ω+) � ‖gD‖H1

k(Γ)
.

Remark 3.4 (existence of outgoing solutions to the Dirichlet problem with damp-
ing). If w satisfies Δw + (k2 + i|k|)w = 0, then w satisfies the Helmholtz equation
Δw+λ2w = 0 with λ =

√
k2 + i|k|. Since Imλ > 0, the existence of outgoing solutions

(i.e., solutions satisfying the Sommerfeld radiation condition (4)) to the Dirichlet and
Neumann problems for this equation follows in the same way as in the case Imλ = 0.
Indeed uniqueness is proved for Imλ ≥ 0 in [16, Theorem 3.13]. Existence in the case
Imλ = 0 is proved using integral equation results in [13, Corollary 2.28] (see also [13,
Theorem 2.10]), but the proof follows exactly the same steps as when Imλ > 0.

Proof of Lemma 3.3. Using the bound (31) in the Nečas result (27) (with w = u,
f = i|k|w) we find that∥∥∂+n w∥∥2

L2(Γ)
� ‖∇Γ(γ+w)‖2L2(Γ) + |k| ‖γ+w‖L2(Γ)

∥∥∂+n w∥∥L2(Γ)
.

Thus, absorbing the Neumann data term on the left-hand side, we have∥∥∂+n w∥∥L2(Γ)
� ‖∇Γ(γ+w)‖L2(Γ) + |k| ‖γ+w‖L2(Γ) .

Using this last expression in (31), we obtain (34).
Theorem 3.5 (bounds on solutions of the Helmholtz Dirichlet problem). Given

gD ∈ H1(Γ), let u be the solution of

(35) Δu+ k2u = 0 in Ω+, γ+u = gD,

satisfying the Sommerfeld radiation condition (4) (with λ = k). If Ω+ satisfies one
of the conditions (a), (b), and (c) in Theorem 3.1, then

(36) ‖χu‖H1
k(Ω+) � ‖gD‖H1

k(Γ)
.

Proof. Let w be as in Lemma 3.3. Let χ ∈ C∞
c (Ω+) be equal to one in a

neighborhood of Ω−, and define v by v := u − χw. This definition implies that
v ∈ H1

loc(Ω+) and satisfies the Sommerfeld radiation condition (4) (with λ = k),

Δv + k2v = h, and γ+v = 0,

where

h := i|k|χw − wΔχ− 2∇w · ∇χ.
Since h has compact support, the resolvent estimate (29) implies that

‖χv‖H1
k(Ω+) � ‖w‖H1

k(Ω+) ,

and thus

‖χu‖H1
k(Ω+) � ‖w‖H1

k(Ω+) .

Using the bound (34), we obtain the result (36).
Corollary 3.6. If Ω+ satisfies one of the conditions (a), (b), and (c) in The-

orem 3.1 and u is the outgoing solution to the Dirichlet problem (35), then

(37)
∥∥∂+n u∥∥L2(Γ)

� ‖gD‖H1
k(Γ)

.

Proof. This follows from combining the bound (36) with Lemma 2.3.
Proof of Theorem 1.4. The bound (6) is proved in Corollary 3.6 above. The

bound (5) then follows by Lemma 2.2.
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4. Exterior Neumann-to-Dirichlet estimates. In this section we prove The-
orem 1.5, i.e., a bound on the exterior NtD map for solutions of the Helmholtz equation
satisfying the Sommerfeld radiation condition.

This problem is subtler than obtaining bounds on the DtN map, since the Neu-
mann boundary condition does not satisfy the uniform Lopatinski condition, hence
the classic estimates of Kreiss and Sakamoto do not apply to the wave equation, nor
does the simple stationary argument used above for the Dirichlet problem. Indeed, the
problem becomes an intrinsically microlocal one, with the degeneracy of the normal
derivative at the glancing set making even global energy estimates extremely sensitive
to the boundary geometry (which was irrelevant to energy estimates in the Dirichlet
case).

The main technical ingredient in our argument is a collection of estimates proved
by Tataru [78] for solutions to the wave equation with Neumann (or indeed many
other) boundary conditions, which we now recall. The following is a restatement of
part of Theorem 9 of [78].

Theorem 4.1 (Tataru). Let Γ be smooth. Suppose v satisfies

(38)

�v = 0 on Ω+ × [0, T ],

∂+n v = g,

v(0) = vt(0) = 0.

Assume g ∈ L2(Γ× [0, T ]). Then

v ∈ Hα(Ω+ × [0, T ])

and

γ+v ∈ Hβ(Γ× [0, T ]),

where1

(39)

{
α = 2/3, β = 1/3 in general,

α = 5/6, β = 2/3 if Γ has strictly positive curvature.

Other results from [78] that we shall use (Theorems 3 and 5) estimate Dirichlet
data for solutions of the Helmholtz equation with homogeneous Neumann condition
and interior inhomogeneity.

Theorem 4.2 (Tataru). Let Γ be smooth. Suppose v ∈ H1
loc satisfies

(40)

�v = F on Ω+ × [0, T ],

∂+n v = 0,

v(0) = vt(0) = 0.

Assume F ∈ L2(Ω+ × [0, T ]). Then

γ+v ∈ Hα(Γ× [0, T ]),

where α is given by (39).

1The positive curvature used here in dimensions d = 2, 3 generalizes to a positive second funda-
mental form, in general dimension.
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We now turn to an estimate analogous to the usual nontrapping resolvent estimate
that will allow us to estimate the Dirichlet data of the Neumann resolvent for a
nontrapping obstacle.

Lemma 4.3. Assume that Ω+ is nontrapping. Let RN (k) denote the outgoing
Neumann resolvent on Ω+, acting on f ∈ Ds

N,k. Then for k � 1, for every s ∈ R

(41) ‖χRN (k)χf‖Ds+1
N,k

� ‖f‖Ds
N,k

and for s ∈ [0, 1]

(42) ‖γ+RN (k)χf‖Hs+α
k

� ‖f‖Ds
N,k
,

where α is given by (39).
We remark that 2α = 1 + β.
Proof. The first part of this estimate is essentially the standard nontrapping resol-

vent estimate, albeit considered in more general weighted spaces than L2. The second
part by contrast requires Tataru’s boundary estimates together with an examination
of the details of the Vainberg construction of a parametrix for the nontrapping resol-
vent [83, Chapter X]. This parametrix is indeed one of the usual routes to obtaining
the standard resolvent estimate ((41) with s = 0) from the weak Huygens principle
(eventual escape of singularities) and depends crucially on propagation of singular-
ities results that enable us to conclude weak Huygens from nontrapping of billiard
trajectories. For details, we refer the reader to Theorem 2 in [83, Chapter 10]; see
also [53] and [56] for the geometry and microlocal analysis aspects.

To establish the first part of the result, we recall that Vainberg’s estimate (see
also the “black-box” presentation of Vainberg’s method in [77]) yields

(43) ‖χ1RN (k)χ2‖L2→L2 � 〈k〉−1
.

We must extend to more general spaces in the domain and range. First, note that if
(Δ+k2)u = −f , f has compact support in a fixed region, and u satisfies the radiation
condition, then we of course can write, for χ0 compactly supported,

‖χ0Δu‖ ≤ k2‖χ0u‖+ ‖χ0f‖ � 〈k〉‖f‖;

hence for any χ with smaller support than χ0,

(44) ‖χu‖D2
N,k

� 〈k〉‖f‖,

i.e., in particular

(45) ‖χRN (k)χ‖L2→D2
N,k

� 〈k〉.

Thus we obtain by interpolating (43) and (45)

‖χRN (k)χ‖L2→D1
N,k

� 1.

Now once again if (Δ+ k2)u = −f , then (Δ+ k2)(−Δ+ k2)�u = −(−Δ+ k2)�f ;
hence by compact support of f the resolvent estimate yields∥∥χ0(−Δ+ k2)�u

∥∥
D1

N,k

�
∥∥(−Δ+ k2)�f

∥∥,
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so that for χ with smaller support than χ0 we have

‖χu‖D2�+1
N,k

� ‖f‖D2�
N,k
.

Interpolation now yields

‖χRN (k)χ‖Ds
N,k→Ds+1

N,k
� 1

for all s ≥ 0. Now duality (which exchanges k and −k) yields the estimate for s < 0
as well. This completes the proof of (41).

To prove (42) we begin by using the Vainberg parametrix construction as pre-
sented in [77] to establish the estimate for s = 0. In the notation of that paper, we
have (see the two displayed equations preceding (3.5))

RN (k)χ = R�(k)(I +K(k))−1,

where K(k) is a holomorphic family of operators that is shown to have small L2 → L2

operator norm for k � 1, so that (I+K(k)) is invertible there. The parametrix R�(k)
is defined by

(46) R�(k) = R̃(k)−Ft→k((1 − χc)Va(t)),

where χc = 1 near Ω−, and

R̃(k) = −iFt→k(ζH(t)U(t)χ).

Here χ (also called χa in [77]) is a cutoff equal to 1 in a neighborhood of Ω−, H(t) is
the Heaviside function,

U(t) =
sin t

√−Δ√−Δ

(sine propagator for the Neumann Laplacian), and ζ is a cutoff with

ζ(t, z) =

{
1, t ≤ |z|+ T0,

0, t ≥ |z|+ T ′
0,

for some T ′
0 ≥ T0. The term Va(t) is obtained by solving the free wave equation (i.e.,

with the obstacle removed) with forcing given by the error term −[�, ζ]U(t)χ and zero
Cauchy data. Happily, its analysis will be of no concern here, as the factor (1 − χc)
ensures that the corresponding term in (46) vanishes on Γ.

It thus suffices from (46) to know that γ+R̃(k) satisfies the desired estimates. To
see this, note that if f ∈ L2, ζU(t)f lies in L∞([0, T ];H1) for each T <∞, simply by
the functional calculus for the Neumann Laplacian and the identification of H1(Ω+)
with D1

N . Now Theorem 4.2 implies that

γ+ζH(t)U(t)χf ∈ Hα(R× Γ).

(Note that ζ has compact support in time in a neighborhood of the obstacle, so there
is no difference between local and global results here; note also that the factor of H(t)
does not affect the regularity since U(0) = 0.) We may now Fourier transform this
estimate by Lemma 2.1 to get

γ+R̃(k)f ∈ Hα
k
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when f ∈ L2.
Finally, we extend this to more general s in the estimate (42). Fix Fermi normal

coordinates near Γ with x denoting the normal variable (distance to Γ) and y denoting
coordinates along Γ. Let V denote any smooth, compactly supported vector field on
Ω+ such that near Γ, V is of the form

∑
aj(x, y)∂yj . Then V can be restricted to Γ

to give an (indeed, any arbitrary) vector field VΓ. Note that [Δ, V ] is then a second
order differential operator in the ∂yj ’s only near Γ; hence we have (cf. [79, p. 407])

[Δ, V ] : D2
N,k → L2.

Now if

(Δ + k2)u = −f ∈ H1
c (Ω+)

with u outgoing and f compactly supported in some fixed set, then we compute

V (Δ + k2)u = −V f,

and hence

(Δ + k2)V u+ [V,Δ]u = −V f.

Thus, applying the Neumann resolvent and restricting gives

(47) VΓγ+u = γ+V u = −γ+RN (k)V f − γ+RN (k)[V,Δ]u.

Now by the estimate (42) for s = 0 obtained above, we have

‖γ+RN (k)V f‖Hα
k
� ‖V f‖L2 � ‖f‖H1

k
.

Moreover, (41) yields u ∈ D2
N,k with norm estimated by ‖f‖H1

k
, and hence

‖[V,Δ]u‖L2 � ‖f‖H1
k
.

Thus, again by the s = 0 estimate (42),

‖γ+RN (k)[V,Δ]u‖Hα
k
� ‖f‖H1

k
,

and putting together our estimate for the two terms on the right-hand side of (47),
we have obtained, for any vector field VΓ on Γ,

(48) ‖VΓγ+RN (k)f‖Hα
k
� ‖f‖H1

k
.

Also, just the fact that f ∈ L2 and the s = 0 estimate gives

(49) 〈k〉‖γ+RN (k)f‖Hα
k
� 〈k〉‖f‖L2 � ‖f‖H1

k
.

Since VΓ was arbitrary, putting together (48) and (49) yields, for f compactly sup-
ported in a fixed set,

‖γ+RN (k)f‖H1+α
k

� ‖f‖H1
k
.
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Interpolating with the s = 0 estimate now yields (42) for the whole range s ∈
[0, 1].

Theorem 4.4. Let Ω+ be nontrapping. For each χ ∈ C∞
c (Ω+), there exists k0

so that solutions u of the Helmholtz equation

(50)
(Δ + k2)u = 0 in Ω+,

∂+n u|Γ = gN

satisfying the Sommerfeld radiation condition (4) enjoy the bounds

‖χu‖Hα
k (Ω+) � ‖gN‖L2(Γ)

and

‖γ+u‖Hβ
k (Γ) � ‖gN‖L2(Γ)

for k > k0. Here α and β are again given by (39).
Proof. Fix a cutoff function ϕ(t) compactly supported in (0, 1) with

∫
ϕ = 1.

Suppose that vκ is the solution of

�vκ = 0,

∂nvκ|Γ = ϕ(t)e−iκtgN (y) = hκ(t, y),

v = 0 for t < 0.

Note that ‖hκ‖L2(R×Ω+) � ‖gN‖L2(Γ) for all κ; this estimate and all those that
follow have implicit constants that are, crucially, uniform in κ.

Let I ⊂ R be an open interval containing suppϕ. By Tataru’s estimates in
Theorem 4.1 (and the compact support of vκ on I × Ω+) we obtain

‖vκ‖Hα(I×Ω+) � ‖hκ‖L2(I×Γ) � ‖gN‖L2(Γ).

We further choose ψ(t) a cutoff function supported in I and equal to 1 on suppϕ.
Then we also have

‖ψvκ‖Hα(R×Ω+) � ‖gN‖L2(Γ).

Hence by Lemma 2.1, ∥∥F−1(ψvκ)
∥∥
Hα

k (Ω+)
� ‖gN‖L2(Γ).

Now since vκ satisfies the wave equation, we have

�(ψvκ) = [�, ψ]vκ ∈ Hα−1(R× Ω+) ∩Hα−1(R;L2(Ω+))

with the norm of the right-hand side again estimated by a multiple of ‖gN‖. (Note also
that ψvκ has compact support in Ω+.) Hence since2 〈k〉−α+1

L2(Ω+) ⊂ Dα−1
N,k (Ω+) we

have

(51) (Δ + k2)F−1(ψvκ) ≡ eκ ∈ Dα−1
N,k (Ω+),

2We are of course using the fact that α− 1 < 0 here.
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where

‖eκ‖Dα−1
N,k

� ‖gN‖.

Now the nontrapping estimates for the Neumann resolvent as stated in Lemma 4.3
tell us that if RN (k) denotes the outgoing Neumann resolvent, then for k � 1 we
have3

‖χRN(k)[eκ]‖Hα
k
� ‖eκ‖Hα−1

k
,

� ‖gN‖.
Now consider

(52) u ≡ F−1(ψvκ)−RN (k)[eκ].

By the foregoing discussion we have

‖χu‖Hα
k
� ‖gN‖.

On the other hand, we have

(Δ + k2)u = 0

by construction. Moreover, since we used the Neumann resolvent in constructing u,

∂+n u = ∂+n F−1(ψvκ)

= F−1(ψ(t)ϕ(t)eiκtgN)

= ϕ̂(k − κ)gN .

Hence if we set κ = k, we obtain u as the (unique) solution of (50) satisfying the
radiation condition, and we have obtained the desired interior estimate.

To derive the boundary estimates, we use Lemma 4.3 as well as Theorem 4.1.
The latter implies that

γ+F−1(ψvk) ∈ Hβ
k ;

hence by (52) it suffices to consider the term RN (k)[eκ]. Returning to the definition
(51) of eκ, we note that we can in fact write

eκ = F−1(∂tf
1
κ + f2

κ), where f
i
κ ∈ Hα

c (I × Ω+).

Thus we obtain a slightly refined estimate on eκ:

eκ ∈ 〈k〉Hα
k (Ω+).

Now since α ∈ (0, 1), the estimate (42) of Lemma 4.3 yields an estimate on

γ+RN (k)[eκ] ∈ 〈k〉H2α
k (Ω+) ⊂ H2α−1

k (Ω+),

as desired. (Recall that 2α− 1 = β.)
Corollary 4.5. With notation as above,

‖χu‖H1
k(Ω+) � |k|1−α‖gN‖L2 , |k| ≥ k0.

3We are using the identification of Neumann domains and Sobolev spaces for exponents in [0, 1].
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Proof. This follows from combining the bounds in Theorem 4.4 with the result of
Lemma 2.4.

Corollary 4.6. With notation as above, we have

‖γ+u‖H1
k
� |k|1−β‖gN‖L2 , |k| > k0.

Proof. By the second part of Lemma 2.3, we have

‖γ+u‖H1
k
� ‖gN‖+ k‖γ+u‖+ ‖χRu‖H1

k
;

hence the results follow from the estimates on the second and third terms given above
in Theorem 4.4 and Corollary 4.5, respectively.

Proof of Theorem 1.5. The bound (8) follows from combining the bounds in
Corollaries 4.5 and 4.6 with Lemma 2.3 (note that 1− β > 1− α in both the general
and positive curvature cases). The bound (7) then follows by Lemma 2.2.

5. The interior impedance problem.

5.1. Motivation. For readers unfamiliar with the numerical analysis literature
on the Helmholtz equation, we explain in this section why the IIP is of interest to
numerical analysts (independent from the fundamental role it plays in the theory of
integral equations for exterior problems, which we discuss in sections 1.4 and 6).

The majority of research effort concerning numerical methods for Helmholtz prob-
lems is focused on solving scattering/exterior problems in two or three dimensions
(such as the exterior Dirichlet and Neumann problems considered in sections 3 and 4).
Boundary integral equations (BIEs) are in many ways ideal for this task, since they
reduce a d-dimensional problem on an unbounded domain to a (d − 1)-dimensional
problem on a bounded domain. However, there is still a very large interest in domain-
based (as opposed to boundary-based) methods such as the finite element method,
partly because these are usually much easier to implement than BIEs and partly be-
cause these domain-based methods usually generalize to the case when k is variable
(as occurs, for example, in seismic-imaging applications).

When solving scattering problems with domain-based methods, one must come to
grips with the unbounded nature of the domain. This is normally done by truncating
the domain: one chooses a (large) bounded domain Ω̃ ⊃ Ω−, imposes a boundary

condition on ∂Ω̃, and then solves the BVP in Ω̃ \ Ω−. If Ω̃ is a ball, one can choose

the boundary condition on ∂Ω̃ such that the solution to the BVP in Ω̃\Ω− is precisely
the restriction of the solution to the scattering problem—one does this by using the
explicit expression for the solution of the Helmholtz equation in the exterior of a
ball, and the relevant boundary condition on ∂Ω̃ involves the so-called Dirichlet-to-
Neumann operator (see, e.g., [39, section 3.2] for more details). Alternatively one can
impose approximate boundary conditions (often called absorbing boundary conditions
or nonreflecting boundary conditions since their goal is to absorb any waves hitting
∂Ω̃ instead of reflecting them back into Ω̃), the simplest one being ∂u/∂n− iku = 0

on ∂Ω̃. This can be viewed as an approximation to the radiation condition (4).
Therefore, in the simplest case, truncating a Helmholtz BVP in an unbounded

domain yields a BVP for the Helmholtz equation in the annulus-like region Ω̃ \ Ω−,
with an impedance boundary condition on ∂Ω̃, and either a Dirichlet or Neumann
boundary condition on Γ. Without a k-explicit bound on the solution of this BVP,
a fully k-explicit analysis of any numerical method is impossible, and therefore the
problem of finding k-explicit bounds on the solution of this truncated problem was
considered in [35], [71].
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Going one step further, although the geometry of the scatterer plays an important
role in determining the behavior of the solution, many features of numerical methods
for the Helmholtz equation (such as whether the so-called pollution effect occurs)
can be investigated without the presence of a scatterer at all; this then leads to
considering the Helmholtz equation posed in a bounded domain with an impedance
boundary condition, i.e., the IIP (and the impedance boundary condition can then
be viewed as a way of ensuring that the solution of the BVP is unique for all k).
The problem of finding k-explicit bounds on the solution of the IIP was therefore
considered in [25], [51], [17], [23], and [73].

Midway between, in some sense, the truncated scattering problem and the IIP are
BVPs posed on bounded domains, where impedance boundary conditions (or more
sophisticated absorbing boundary conditions) are posed on part of the boundary, and
Dirichlet or Neumann boundary conditions are posed on the rest. The most com-
monly studied such problem is the Helmholtz equation in a rectangle with impedance
boundary conditions on one side and Dirichlet boundary conditions on the other three,
motivated by the physical problem of scattering by a half-plane with a rectangular
indent (or “cavity”). Bounds on this problem were obtained in [6] and [45], and
the recent paper [19] seeks to determine the optimal dependence on k via numerical
experiments.

5.2. Interior impedance estimates. We begin with a result about uniqueness
of solutions of the IIP for complex values of the spectral parameter k.

Lemma 5.1 (uniqueness of the IIP). Consider the IIP (9) with

(53) η(x) = a(x)k + ib(x),

where a, b are real-valued C∞ functions on Γ.
(i) If there exists an a− > 0 such that

(54) a(x) ≥ a− > 0 for all x ∈ Γ,

and b(x) ≥ 0 on Γ, then the solution of the IIP is unique for all k �= 0 with
Im k ≥ 0.

(ii) If there exists an a− > 0 such that (54) holds and there also exists a b− > 0
such that

(55) b(x) ≥ b− > 0 for all x ∈ Γ,

then the solution of the IIP is unique for all k with Im k ≥ 0 (i.e., we now
also have uniqueness when k = 0).

Proof. If u is the solution of the homogeneous IIP (i.e., f = 0 and g = 0), then
applying Green’s identity and using the impedance boundary condition, we find that

ik

∫
Γ

a|γu|2 −
∫
Γ

b|γu|2 −
∫
Ω

|∇u|2 + k2
∫
Ω

|u|2 = 0.

Therefore, taking real and imaginary parts, and writing k = kR+ikI with kR, kI ∈ R,
we have

(56) −kI
∫
Γ

a|γu|2 −
∫
Γ

b|γu|2 −
∫
Ω

|∇u|2 + (k2R − k2I )

∫
Ω

|u|2 = 0

and

(57) kR

∫
Γ

a|γu|2 + 2kRkI

∫
Ω

|u|2 = 0.
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Proof of (i): If kR �= 0 and kI ≥ 0, then using the assumption (54) on a in (57),
we see that γu = 0. The impedance boundary condition then implies that ∂nu = 0,
and thus Green’s integral representation (see, e.g., [50, Theorem 7.5]) implies that
u = 0 in Ω. If kR = 0 and kI > 0, then using both the assumption (54) on a and the
assumption that b is nonnegative in (56), we see that u = 0 in Ω.

Proof of (ii): From part (i) we only need to consider the case when k = 0. Using
the assumption (55) in (56), we see that γu = 0 on Γ, and then u = 0 in Ω follows
from the steps above.

We now prove Theorem 1.8 by employing the estimates of Bardos, Lebeau, and
Rauch [7] for the wave equation with the damping boundary condition, i.e.,

�v = 0 on Ω,(58a)

(∂n + aγ∂t + bγ)v = 0 on Γ,(58b)

where a, b are smooth, real-valued functions on Γ with a strictly positive and b non-
negative.

First we give a short proof of the standard energy estimate for the wave equation,
but now considering the boundary condition (58) instead of the usual Dirichlet or
Neumann ones.

Lemma 5.2. Let F ∈ L2(R × Ω) and G ∈ L2(R × Γ) be supported in t > 0 and
let v solve

�v = F on Ω,

(∂n + aγ∂t + bγ)v = G on Γ,

v = 0 for t ≤ 0,

where a, b are smooth, real-valued functions on Γ with a strictly positive and b non-
negative. Then for any T

‖vt‖2 + ‖∇v‖2 +
∥∥∥b1/2γv∥∥∥2|t=T ≤ CT

(‖F‖2L2([0,T ]×Ω) + ‖G‖2L2([0,T ]×Γ)

)
.

Proof. Without loss of generality we can assume that F and G are both real.
Multiplying �v = F with vt and integrating over Ω, we find

∂

∂t

(∫
Ω

(|∇v|2 + (vt)
2
)
+

∫
Γ

b(γv)2
)

= −
∫
Γ

a(γvt)
2 +

∫
Γ

Gγvt +

∫
Ω

F vt.(59)

Using the Cauchy–Schwarz inequality on the second term on the right-hand side of
(59) and recalling that a is strictly positive, we see that we can bound the first two
terms by a multiple of

∫
Γ
G2. The other term on the right-hand side of (59) is bounded

by 1
2 (
∫
Ω
F 2 +

∫
Ω
(vt)

2), and the result then follows from Gronwall’s inequality (see,
e.g., [24, section 7.2.3]), using the fact that b ≥ 0.

In the proof of Theorem 1.8 below, the crucial microlocal ingredient will be the es-
timates on the wave equation with impedance boundary condition obtained by Bardos,
Lebeau, and Rauch [7]. These estimates involve a key geometric hypothesis, which
is that every generalized bicharacteristic in the sense of Melrose and Sjöstrand [56]
eventually hits the boundary (or, in the more general setting of [7], the control re-
gion) at a point that is nondiffractive as defined in [7, p. 1037].4 In our simple case

4Note that the negation of “nondiffractive” in this sense is not the same as “diffractive” in the
sense of [56].
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of compact Euclidean domains, we remark that these hypotheses are always satisfied.
Lemma 5.3. If Ω− ⊂ Rn is a compact domain with smooth boundary, then every

generalized bicharacteristic eventually hits the boundary at a nondiffractive point.
Proof. We first observe that a generalized bicharacteristic in a compact Euclidean

domain must eventually change momentum. Adopting the notation of Hörmander [36,
Definition 24.3.7], we claim that the only way the momentum can change along a
generalized bicharacteristic is when it hits the boundary at a point in H ∪ G \ Gd.
Here H denotes the “hyperbolic points” at which there is transverse reflection from
the boundary, while G \ Gd denotes the set of glancing points that are not diffractive.
To prove this assertion, we note that in the interior and at diffractive points (which
together constitute the remaining parts of the characteristic set), we have γ′(t) =
Hp(γ(t)), where γ denotes the bicharacteristic and Hp the Hamilton vector field,
which in this case is the constant vector field ξ · ∂x in T ∗

R
n (cf. Chapter 24 of [36]).

Now we further note that on G \ Gd, we have γ′(t) = HG
p (γ(t)) with HG

p the
“gliding vector field” of Definition 24.3.6 in [36]. This vector field still agrees with
Hp unless γ(t) ∈ G2, the points where contact with the boundary is exactly second
order. On the other hand, the “gliding points,” Gg ≡ G2 \Gd, are nondiffractive by the
definition of Bardos, Lebeau, and Rauch, since the second derivative of the boundary
defining function is strictly negative along the flow at such points (cf. Definition 24.3.2
of [36]).

Proof of Theorem 1.8. We begin by dealing with the case when a is positive. By
[7], if v satisfies (58) with initial data in the energy space, then all energy norms of
v enjoy exponential decay as t → ∞. Indeed, [7, Theorem 5.5 and Proposition 5.3]
prove this result for the case when b is nonnegative, and then the result for b ≡ 0
follows from [7, Theorem 5.6]; however, we emphasize that in this latter case it is just
the energy norm

‖vt‖2 + ‖∇v‖2 + ‖b1/2γv‖2

that converges to zero, while the value of the solution may converge to a nonzero
constant, since this norm does not in general control the L2-norm.

We let vκ denote the (unique) solution to the wave equation on R×Ω− satisfying

�vκ = e−iκtϕ(t)f,(60a)

(∂n + aγ∂t + bγ)vκ = e−iκtϕ(t)g,(60b)

vκ(t, x) = 0, t < 0,(60c)

where ϕ is a cutoff compactly supported in (0, 1) with
∫
ϕ = 1. Then the standard

energy estimate proved in Lemma 5.2 yields

‖(vκ)t‖2 + ‖∇vκ‖2 + ‖b1/2γvκ‖2
∣∣
t=1

� ‖f‖2L2(Ω) + ‖g‖2L2(Γ) .

Now since vκ satisfies the homogeneous wave equation for t ≥ 1 with initial data at
t = 1 controlled as above, [7, Theorem 5.5] yields, for some δ > 0,

(61) ‖(vκ)t‖2 + ‖∇vκ‖2 + ‖b1/2γvκ‖2 ≤ Ce−δt
( ‖f‖2L2(Ω) + ‖g‖2L2(Γ)

)
, t > 0.

Fourier transforming (60) gives

(Δ + k2)F−1vκ = −ϕ̂(k − κ)f,

(∂n − ikaγ + bγ)F−1vκ = ϕ̂(k − κ)g.
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Since ∥∥F−1v
∥∥
L2

x
≤ ‖v‖L1

t L2
x

the exponential decay estimate (61) implies that∥∥∇F−1vκ
∥∥+ |k|∥∥∇F−1vκ

∥∥ � ‖f‖+ ‖g‖, k ∈ R;

here we have made no use of the boundary term on the left-hand side of (61). If the
stronger Assumption 1.7 holds, we employ the more precise version of our Fourier
transformed estimates:∥∥∇F−1vκ

∥∥2 + |k|2∥∥F−1vκ
∥∥2

+ ‖b1/2γF−1vκ‖2 � ‖f‖2 + ‖g‖2, k ∈ R.

By the Poincaré–Wirtinger inequality5 and the positivity of b, the left side controls∥∥∇F−1vκ
∥∥2 + 〈k〉2∥∥F−1vκ

∥∥2
even at k = 0, giving us the stronger estimate (cf. discussion on pp. 1060–1061 of [7]):∥∥∇F−1vκ

∥∥+ 〈k〉∥∥F−1vκ
∥∥ � ‖f‖+ ‖g‖, k ∈ R.

Taking κ = k makes u ≡ vk the solution of the IIP (9) and yields the asserted
estimate (10) when a is strictly positive. This concludes the proof for a strictly
positive.

When a is strictly negative, the sign convention of the Fourier transform and the
signs of the exponents in (60) can both be changed to give the corresponding estimate.
(Alternatively, by taking the complex conjugate of the BVP (9), we can prove (10)
when the boundary condition

(∂n + ikaγ + bγ)u = g

is imposed. If a is strictly negative, then we apply the bound above with a replaced
by −a, and this yields the desired result.)

We now prove Corollary 1.9, regarding the impedance-to-Dirichlet map, by using
Theorem 1.8 in conjunction with a simple energy estimate.

Proof of Corollary 1.9. Reiterating the integration by parts used to obtain
Lemma 5.1 but now including the inhomogeneities, we find that applying Cauchy–
Schwarz to our expression for the imaginary part of

∫
Ω f u yields for k ∈ R

k
∥∥√aγu∥∥2

L2(Γ)
�

∣∣∣∣∫
Γ

g γu

∣∣∣∣+ ∣∣∣∣∫
Ω

f u

∣∣∣∣.
Now applying Cauchy–Schwarz and the estimates of Theorem 1.8 to the resulting ‖u‖
term on the right-hand side gives the desired estimate on k2‖γu‖2.

The corresponding estimate for ∇Γ(γu) follows from the analogous estimate to
Lemma 2.3(ii) for bounded domains (the same proof employed by Nečas applies).

If b is strictly positive, we obtain the stronger estimate at k = 0 by examining
the real rather than the imaginary part of

∫
Ω
f u to estimate

∫
Γ
b|γu|2.

5Note that in employing the Poincaré–Wirtinger inequality, we may estimate the average value
of u by a multiple of ‖∇u‖+‖γu‖ by writing it as a multiple of

∫
u∇·x dx and integrating by parts.
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Proof of Corollary 1.10. We follow the argument in, e.g., [23, Theorem 2.5], [15,
text between (3.3) and (3.4)]. The variational formulation of the IIP is

(62) find u ∈ H1(Ω) such that a(u, v) = F (v) for all v ∈ H1(Ω),

where

(63) a(u, v) :=

∫
Ω

∇u · ∇v − k2u v − ik

∫
Γ

a γu γv +

∫
Γ

b γu γv

and

(64) F (v) := 〈f, v〉Ω + 〈g, γv〉Γ,
where 〈·, ·〉Ω and 〈·, ·〉Γ denote the duality pairings on Ω and Γ, respectively. Define
the sesquilinear form a0(·, ·) by

(65) a0(u, v) :=

∫
Ω

∇u · ∇v + k2u v − ik

∫
Γ

a γu γv +

∫
Γ

b γu γv.

Furthermore, define u0 ∈ H1(Ω) as the solution of the variational problem a0(u0, v) =
F (v) for all v ∈ H1(Ω), and define w ∈ H1(Ω) as the solution of the variational
problem a(w, v) = 2k2

∫
Ω u0 v for all v ∈ H1(Ω). These definitions imply that the

solution of (62) satisfies u = u0 + w.

Since b is nonnegative, Re a0(v, v) = ‖v‖2H1
k
(Ω); thus, by the Lax–Milgram lemma,

‖u0‖H1
k(Ω) � ‖F‖(H1

k(Ω))′ . The definition of w implies that w satisfies the IIP with

g = 0 and f = 2k2u0, and thus the bound (10) implies that ‖w‖H1
k
(Ω) � k2‖u0‖L2(Ω).

Combining these bounds on u0 and w, we obtain

(66) ‖u‖H1
k(Ω) � |k| ‖F‖(H1

k(Ω))′ .

The result on the inf-sup constant (13) then follows from, e.g., [70, Theorem 2.1.44].
The bound (12) follows from (66) using the definition of F (64).

Proof of Corollary 1.11. The bound (14) follows from combining the bounds (10)
and

‖u‖H2(Ω) � ‖Δu‖L2(Ω) + ‖u‖H1(Ω) + ‖∂nu‖H1/2(Γ) ,

where the latter is proved in, e.g., [33, Theorem 2.3.3.2, p. 106].
We now impose the homogeneous impedance boundary condition and consider the

operator RI,η(k) : L
2(Ω) → L2(Ω) defined by RI,η(k)f = u, where u is the solution

to (Δ + k2)u = f satisfying (∂n − iηγ)u = 0.
Following the discussion in section 1, we now proceed with the assumptions that

a and b are both strictly positive (i.e., (54) and (55) hold), so that RI,η(k) is well
defined for all Im k ≥ 0.

We break down the proof of Theorem 1.12 into several steps; the first step is to
prove that RI,η(k) is holomorphic on Im k > 0.

Lemma 5.4 (analyticity for Im k > 0). The operator family RI,η(k) : L
2(Ω) →

L2(Ω) with boundary condition

(67) ∂nu− i(ka+ ib)γu = 0,

where a, b are real-valued C∞ functions with a strictly positive on Γ and b nonnegative,
is holomorphic on Im k > 0.
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Proof. First note that the standard variational formulation of the IIP satisfies a
G̊arding inequality. Indeed, the sesquilinear form is given by (63) and so, since b is
nonnegative and Im k > 0, we have

Re a(v, v) + (1 + k2) ‖v‖2L2(Ω) ≥ ‖v‖2H1(Ω)

(note that we are using the unweighted norm on H1(Ω) since we are allowing for k
to be equal to zero). Fredholm theory then gives us well-posedness of the BVP as
a consequence of the uniqueness result in Lemma 5.1 (see, e.g., [50, Theorems 2.33
and 2.34]). Analyticity follows by applying the Cauchy–Riemann operator ∂/∂k to
the equations (Δ + k2)u = f and ∂nu − i(ka + ib)γu = 0 : we find that ∂u/∂k must
satisfy the IIP with zero interior and boundary data; hence by the uniqueness proved
above, it must vanish.

We now use a simple perturbation argument to get the existence of a pole-free
strip beneath the real axis.

Proof of Theorem 1.12. Lemma 5.4 states that RI,η(k) is holomorphic on Im k >
0, while Theorem 1.8 yields the estimate (15) for all k ∈ R (crucially using Assump-
tion 1.7). We can now perturb using this estimate to extend to analyticity below
the real axis, but we will need to consider the full inverse map on both interior and
boundary data (and in so doing, we will in fact prove a stronger result than stated,
involving both interior and boundary inhomogeneities). For the (unique) solution of
the IIP

(Δ + k2)u = f, (∂n − ikaγ + bγ)u = g

we set (
u
γu

)
= R̃I,η(k)

(
f
g

)
.

Then Corollary 1.9 shows that for k ∈ R,

R̃I,η(k) : L
2(Ω)⊕ L2(Γ) → H1

k(Ω)⊕H1
k(Γ).

Now for z ∈ C we may try to solve

(Δ + (k + z)2)u = f, (∂n − i(k + z)aγ + bγ)u = g

by perturbation; we easily see that this is equivalent to

(Δ + k2)u = f − (2kz + z2)u, (∂n − ikaγ + bγ)u = g + izaγu.

Hence, applying R̃I,η(k), we wish to solve(
u
γu

)
= R̃I,η(k)

(
f − (2kz + z2)u

g + izaγu

)
= R̃I,η(k)

(
f
g

)
− R̃I,η(k)M(z)

(
u
γu

)
,

where

M(z) =

(
2kz + z2 0

0 −iza

)
.

We can solve this by Neumann series (hence for a holomorphic solution with the same
k-dependent estimates as on the real axis) as long as, say,∥∥∥R̃I,η(k)M(z)

∥∥∥
L2⊕L2→L2⊕L2

<
1

2
.
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Since R̃I,η(k) has norm bounded by C〈k〉−1
on L2⊕L2, this requires only that |z| ≤ ε

for some ε > 0. Restricting to the case g = 0 gives the stated result.
Lemma 5.5 (sharpness of (10) when f = 0 and Ω is a ball). In Rd for any d ≥ 2

there exist families of solutions u to the interior impedance problem in the unit ball
Bd with boundary inhomogeneity g:

(68) Δu+ k2u = 0 in Bd and ∂nu− iηγu = g on Sd−1

with

k‖u‖L2(Bd) � ‖g‖L2(Sd−1).

Proof. Fix any spherical harmonic ϕ(θ) on Sd−1
θ with eigenvalue −μ2. Then the

function

u(r, θ) ≡ r1−d/2Jν(kr)ϕ(θ)

solves the Helmholtz equation in Bd if we set

ν =
1

2

√
(d− 2)2 + 4μ2.

We will let k → ∞ while letting μ (and hence ν) remain fixed.
The function u thus satisfies the IIP (with η = k) where

g ≡ (∂r − ik)u|r=1.

Now we let k → ∞ and examine the asymptotics of u and g. Since (see, e.g., [61,
equation (10.17.3)] for the standard Bessel function asymptotics employed here)

u = ϕ(θ)r1−d/2

√
2

πkr

(
cosω +O((rk)−1)

)
with

ω ≡ rk − 1

2
νπ − 1

4
π,

we have

(69) ‖u‖L2 � k−1/2

as k → ∞ with ν fixed. On the other hand, using the asymptotic expansion of J ′
ν

yields

∂ru = −ϕ(θ)r1−d/2k

√
2

πkr

(
sinω +O(k−1)

)
,

and hence at r = 1 we have

(∂r − ik)u ∼ ϕ(θ)

√
2k

π

(
cosω0 + i sinω0

)
with ω0 = k − 1

2νπ − 1
4π. Thus,

‖(∂r − ik)u‖L2(Sd−1) ∼ Ck1/2.
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Comparing this to (69) yields the desired estimate.
Remark 5.6 (extension to inhomogeneous problems). The results of this section

hold equally well, with identical proofs, if we generalize the flat Laplacian to an
inhomogeneous and/or anisotropic operator with smooth coefficients such as∑

∂ia
ij(x)∂j ,

with aij(x) strictly positive definite. The only difference is that we then need to
impose an auxiliary geometric hypothesis, as Lemma 5.3 no longer applies. In this
setting, motion along straight lines is replaced by the Hamiltonian dynamical system

(70)

ẋi(t) =
∑

aij(x)ξj ,

ξ̇i(t) = −1

2

∑ ∂akl(x)

∂xi
ξkξl.

It may easily be the case that trajectories of this system—which are lifts to the
cotangent bundle of geodesics with respect to the Riemannian metric aij(x)—fail to
reach the boundary at a nondiffractive point or indeed at all (e.g., aij may be locally
isometric in some region to more than half of a round sphere). Thus, we simply
need to impose geometric control by the boundary as a hypothesis: we insist that all
trajectories of (70) do reach the boundary at a nondiffractive point. The rest of our
results then follow as in the flat case.

6. Boundary integral equations for the exterior Dirichlet and Neumann
problems. In this section we derive both the integral equation (17) for the solution
of the exterior Dirichlet problem and the analogous equation for the solution of the
exterior Neumann problem. We then give a new proof of the decomposition (18)
(which is more intuitive than the proof in [13]), and we then prove an analogous
decomposition for the integral equation for the Neumann problem.

We note that there are now many good texts discussing the theory of integral
equations for the Helmholtz equation, for example, [50], [70], [76], [38]; we will use
[13] as a default reference (since it, like us, is concerned with the high-frequency
behavior of these integral operators).

If u is a solution of the homogeneous Helmholtz equation in Ω+, then an appli-
cation of Green’s formula yields

(71) u(x) = −
∫
Γ

Φk(x, y)∂
+
n u(y) ds(y) +

∫
Γ

∂Φk(x, y)

∂n(y)
γ+u(y) ds(y), x ∈ Ω+

(see, e.g., [13, Theorem 2.21]), where Φk(x, y) is the fundamental solution of the
Helmholtz equation given by

(72) Φk(x, y) =
i

4
H

(1)
0

(
k|x− y|), d = 2, Φk(x, y) =

eik|x−y|

4π|x− y| , d = 3.

Taking the exterior Dirichlet and Neumann traces of (71) on Γ and using the jump
relations for the single- and double-layer potentials (see, e.g., [13, equation (2.41)], we
obtain the two integral equations

(73) Sk∂
+
n u =

(
−1

2
I +Dk

)
γ+u
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and

(74)

(
1

2
I +D′

k

)
∂+n u = Hkγ+u,

where Sk, Dk are the single- and double-layer operators, D′
k is the adjoint double-

layer operator, and Hk is the hypersingular operator. These four integral operators
are defined for φ ∈ L2(Γ), ψ ∈ H1(Γ), and x ∈ Γ by

Skφ(x) :=

∫
Γ

Φk(x, y)φ(y) ds(y), Dkφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(y)
φ(y) ds(y),

(75)

D′
kφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(x)
φ(y) ds(y), Hkψ(x) :=

∂

∂n(x)

∫
Γ

∂Φk(x, y)

∂n(y)
ψ(y) ds(y).

(76)

When Γ is Lipschitz, the integrals defining Dk and D′
k must be understood as Cauchy

principal value integrals, and even when Γ is smooth there are subtleties in defining
Hkψ for ψ ∈ L2(Γ), which we ignore here (see, e.g., [13, section 2.3]).

6.1. The Dirichlet problem. In the case of the Dirichlet problem, the integral
equations (73) and (74) are both integral equations for the unknown Neumann trace
∂+n u. However, (73) is not uniquely solvable when −k2 is a Dirichlet eigenvalue of the
Laplacian in Ω−, and (74) is not uniquely solvable when −k2 is a Neumann eigenvalue
of the Laplacian in Ω−. (This is because if w solves the interior Helmholtz equation,
Green’s formula yields (

1

2
I +Dk

)
γ−w = Sk∂

−
n w;

hence existence of nullspace of these operators is equivalent to existence of Dirichlet/
Neumann eigenvalues.)

The standard way to resolve this difficulty is to take a linear combination of the
two equations, which yields the integral equation

(77) A′
k,η∂

+
n u = Bk,ηγ+u,

where

(78) A′
k,η :=

1

2
I +D′

k − iηSk

and

(79) Bk,η := Hk + iη

(
1

2
I −Dk

)
.

If η ∈ R \ {0}, then the integral operator A′
k,η is invertible (on appropriate Sobolev

spaces), and so (17) can then be used to solve the exterior Dirichlet problem for all
(real) k. Furthermore one can then show that if η ∈ R \ {0}, then A′

k,η is a bounded
invertible operator from Hs(Γ) to itself for −1 ≤ s ≤ 0 [13, Theorem 2.27].

For the general exterior Dirichlet problem it is natural to pose Dirichlet data in
H1/2(Γ) (since γ+u ∈ H1/2(Γ)). The mapping properties of Hk and Dk (see [13,
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Theorems 2.17 and 2.18]) imply that Bk,η : Hs+1(Γ) → Hs(Γ) for −1 ≤ s ≤ 0, and
thus Bk,ηγ+u ∈ H−1/2(Γ). This indicates that we should consider (77) as an equation
in H−1/2(Γ).

Unfortunately evaluating the H−1/2(Γ) inner product numerically is expensive,
and thus it is not practical to implement the Galerkin method on (17) as an equation
in H−1/2(Γ) (for a short overview of proposed solutions to this problem, see [13,
section 2.11]). Fortunately, we can bypass this problem in the case of plane-wave
or point-source scattering. Indeed, in this case γ+u ∈ H1(Γ) and ∂+n u ∈ L2(Γ) [13,
Theorem 2.12]. Since Bk,ηγ+u and A′

k,η∂
+
n u are then in L2(Γ), we can consider (77) as

an equation in L2(Γ), which is a natural space for implementing the Galerkin method.

6.2. The Neumann problem. In the case of the Neumann problem we can
view (77) as an equation to be solved for γ+u. Indeed, given ∂+n u ∈ H−1/2(Γ), we
have A′

k,η∂
+
n u ∈ H−1/2(Γ) and Bk,ηγ+u ∈ H−1/2(Γ). Equation (77) can then be cast

as the variational problem on H1/2(Γ): find φ ∈ H1/2(Γ) such that

〈Bk,ηφ, ψ〉Γ = 〈A′
k,η∂

+
n u, ψ〉Γ for all ψ ∈ H1/2(Γ),

where recall that 〈·, ·〉Γ is the duality pairing betweenH−s(Γ) andHs(Γ) for 0 ≤ s ≤ 1.
Although this gives a practically realizable Galerkin method, the fact that Bk,η

is a first-kind operator means that the condition number of the discretized system
depends on the discretization, and thus it is desirable to precondition the equation
with an operator of opposite order before discretizing (see, e.g., [76, section 13] for a
discussion of this technique in general).

For Bk,η this strategy amounts to multiplying (74) by an operator R : H−1(Γ) →
L2(Γ) and then adding it to −iη multiplied by (73). This results in the equation

(80) B̃k,ηγ+u = Ã′
k,η∂

+
n u,

where

B̃k,η := RHk + iη

(
1

2
I −Dk

)
and

Ã′
k,η := R

(
1

2
I +D′

k

)
− iηSk.

The mapping properties of R and the boundary integral operators Sk, Dk, D
′
k, Hk

imply that both B̃k,η and Ã′
k,η are bounded operators mapping L2(Γ) to itself, and

thus, in the case when ∂+n u ∈ L2(Γ), (80) can be considered as an integral equation
in L2(Γ). Of course, R must satisfy some additional conditions to ensure that (80)
has a unique solution for all k > 0.

The most common choice is to take R = S0, motivated by the Calderón identity

S0H0 = −1

2
I +D2

0

[13, equation (2.56)] and the fact that S0(Hk −H0) is compact (since Hk −H0 has a
weakly singular kernel; see [13, equation (2.25)]).

The choice R = Sik was proposed in [10] and further used and analyzed in, e.g.,
[9], [84]. Other choices for R include principal symbols of certain pseudodifferential
operators [9] and (for the indirect analogue of (80)) approximations of the NtD map
[3, section 8].
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6.3. Decompositions of inverses of combined potential operators. The
decomposition (18) of (A′

k,η)
−1 in terms of P+

DtN and P−,η
ItD is implicit in much of the

work on A′
k,η, but was first written down explicitly in [13, Theorem 2.33], along with

the analogous decomposition for B−1
k,η (as a special case of the decomposition of the

inverse of the integral operator for the exterior impedance problem).
In Lemma 6.1 below we provide an alternative, more intuitive proof of these

decompositions. We also give the analogous decomposition of the operator B̃−1
k,η in

terms of P+
NtD and P−,η,R

ItD , where the operator P−,η,R
ItD : L2(Γ) → L2(Γ) maps g ∈

L2(Γ) to the Dirichlet trace of the solution of the BVP

Δu+ k2u = 0 in Ω−, R∂−n u− iηγ−u = g on Γ

(assuming appropriate conditions on R are imposed so that this BVP has a unique
solution for all k > 0).

Lemma 6.1. We have the following expressions for the inverses of combined-
potential operators:

(A′
k,η)

−1 = I − (P+
DtN − iη)P−,η

ItD ,(81)

(Bk,η)
−1 = P+

NtD − (I − iηP+
NtD)P−,η

ItD ,(82)

(B̃k,η)
−1 = P+

NtDR
−1 − (I − iηP+

NtDR
−1)P−,η,R

ItD .(83)

Proof of Lemma 6.1. We recall (e.g., from section 2.5 of [13]) the formula for the
interior and exterior Calderón projectors, which project onto pairs of Dirichlet and
Neumann data for solutions to the Helmholtz equation in Ω− and Ω+ (with radiation
condition), respectively. In terms of layer potentials, we may write these operators as

Π± =
1

2
I ±Mk, Mk ≡

(
Dk −Sk

Hk −D′
k

)
.

(Here we have departed from the notation of [13] for the Calderón projectors—these
authors use P±—as the letter P is somewhat overloaded.)

These definitions imply that(−iη 1
) ·Π− =

(−Bk,η A′
k,η

)
.

Hence

(84)
(−iη 1

) ·Π−

(
φ
ψ

)
= g ⇐⇒ −Bk,ηφ+A′

k,ηψ = g.

On the other hand, since Π− projects to Cauchy data for the interior Helmholtz
problem, we assuredly find that

(85)
(−iη 1

) ·Π−

(
φ
ψ

)
= g

means that

Π−

(
φ
ψ

)
are Cauchy data for the interior impedance problem; hence we may rewrite

Π−

(
φ
ψ

)
=

(
P−,η
ItD (g)

P−,η
ItN (g)

)
.
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Since Π+ +Π− = I, we now find that

Π+

(
φ
ψ

)
=

(
φ− P−,η

ItD (g)

ψ − P−,η
ItN (g)

)
.

Note that the right-hand side is now guaranteed to be Cauchy data for a solution of
the exterior Helmholtz equation (with radiation condition), and hence we may write
its two components in terms of one another via the maps P+

DtN and P+
NtD.

Now we split into the special cases of φ = 0 or ψ = 0. In the former case we have

Π+

(
0
ψ

)
=

( −P−,η
ItD (g)

−P+
DtN (P−,η

ItD (g))

)
(where we have written the second component in terms of the first using P+

DtN ). Thus

ψ =
(−iη 1

) · (0
ψ

)
=

(−iη 1
) · (Π+ +Π−)

(
0
ψ

)
=

(−iη 1
) · ( −P−,η

ItD (g)

−P+
DtN (P−,η

ItD (g))

)
+ g,

where we have used (85) to evaluate the Π− term. Likewise, when ψ = 0 we have

Π+

(
φ
0

)
=

(
φ− P−,η

ItD (g)

P+
DtN (φ− P−,η

ItD (g))

)
.

Thus

−iηφ =
(−iη 1

) · (φ
0

)
=

(−iη 1
) · (Π+ +Π−)

(
φ
0

)
=

(−iη 1
) · ( φ− P−,η

ItD (g)

P+
DtN (φ− P−,η

ItD (g))

)
+ g.

In both cases, solving for ψ (respectively, φ) and recalling (84) gives the desired
expression in terms of g (in the latter case, we use that φ = P+

NtD ◦ P+
DtNφ).

Finally, to obtain the formula for B̃−1
k,η, we apply the same argument as for B−1

k,η,
but where we consider (−iη R

) · Π−

throughout, rather than (−iη 1
) · Π−.

The estimate B−1
k,η analogous to the estimate (19) on (A′

k,η)
−1 is as follows.

Lemma 6.2. Let Ω+ ⊂ Rd, d = 2, 3, be a smooth, nontrapping domain and
suppose that η satisfies Assumption 1.6. Then, given k0 > 0,

(86)
∥∥∥B−1

k,η

∥∥∥
L2(Γ)→H1

k(Γ)
� |k|1−β

for all |k| ≥ k0, where β is as in Theorem 1.5.
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Since this integral operator is not used in practice, however (as explained in
section 6.2), we do not include the proof. Note that an estimate from H−1/2(Γ) to
H1/2(Γ) can be obtained from (86) by interpolation.

The decomposition of B̃−1
k,η given by (83) below and the sharp bounds on P+

NtD in

Theorem 1.5 reduce the problem of bounding ‖B̃−1
k,η‖L2(Γ)→L2(Γ) to that of bounding

P−,η,R
ItD for the different choices of R; however, we do not pursue this further here.

7. Concluding remarks: The conditioning of A′
k,η. In section 1.4 we stated

that the present paper combined with the recent work of Galkowski and Smith almost
completes the study of the high-frequency behavior of ‖A′

k,η‖ and ‖(A′
k,η)

−1‖, and
thus of the condition number

(87) cond(A′
k,η) := ‖A′

k,η‖L2(Γ)→L2(Γ)‖(A′
k,η)

−1‖L2(Γ)→L2(Γ).

We conclude this paper by justifying this remark in section 7.1, but then also ques-
tioning in section 7.2 whether the condition number is an appropriate object to study
in relation to A′

k,η.

7.1. Upper bounds on cond(A′
k,η). We begin by recalling the recent sharp

bounds on ‖Sk‖L2(Γ)→L2(Γ) and ‖Dk‖L2(Γ)→L2(Γ) proved in [28, Theorem 2], [34,
Theorem A.1]. (Note that ‖Dk‖L2(Γ)→L2(Γ) = ‖D′

k‖L2(Γ)→L2(Γ), and so these bounds
are sufficient to bound ‖A′

k,η‖L2(Γ)→L2(Γ).)
Theorem 7.1 (see [28, Theorem 1.2], [34, Theorem A.1], [27, Theorem 4.4]).

With Ω− and Γ defined in section 1.1, if Γ is a finite union of compact embedded C∞

hypersurfaces, then there exists k0 such that, for k ≥ k0,

‖Sk‖L2(Γ)→L2(Γ) � k−1/2 log k, ‖Dk‖L2(Γ)→L2(Γ) � k1/4 log k.

If Γ is a finite union of compact subsets of C∞ hypersurfaces with strictly positive
curvature, then

‖Sk‖L2(Γ)→L2(Γ) � k−2/3 log k, ‖Dk‖L2(Γ)→L2(Γ) � k1/6 log k.

Moreover, modulo the factor log k, all of the estimates are sharp.
Note that in two dimensions the sharp bound ‖Sk‖L2(Γ)→L2(Γ) � k−1/2 was proved

in [12, Theorem 3.3].
Combining these bounds with the bounds on ‖(A′

k,η)
−1‖, (21) and (19), as well

as bounds when Γ is the circle or sphere obtained by [30], [18], [5] (see the review in
[13, section 5.4]), we obtain the following theorem.

Theorem 7.2 (upper bounds on the condition number).
(a) Let Ω− be star-shaped with respect to a ball, with Γ piecewise smooth. When

d = 2, if

k3/4 log k � |η| � k,

then

(88) cond(A′
k,η) � k1/2.

When d = 3, if

k3/4 � |η| � k,
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then

(89) cond(A′
k,η) � k1/2 log k.

(b) If Ω− is nontrapping and η satisfies Assumption 1.6 (which includes the case
|η| ∼ k), then (88) holds when d = 2 and (89) holds when d = 3.

(c) If Ω− is star-shaped with respect to a ball, Γ is the finite union of smooth
surfaces with strictly positive curvature, and

k5/6 � |η| � k,

then

(90) cond(A′
k,η) � k1/3 log k.

In particular, if Ω− is a two- or three-dimensional ball (i.e., Γ is the circle or sphere),
then cond(A′

k,η) � k1/3 when

k2/3 � |η| � k.

Earlier we stated that this theorem “almost completes” the study of cond(A′
k,η).

One thing that is missing is a lower bound on cond(A′
k,η) that shows the choice |η| ∼ k

is optimal. Indeed, in two dimensions, if Γ contains a straight line segment, then by
[12, Theorem 4.2]

∥∥A′
k,η

∥∥
L2(Γ)→L2(Γ)

� |η|
k1/2

+O
( |η|
k

)
+ 1

as k → ∞, uniformly in |η|. The only existing lower bound on ‖(A′
k,η)

−1‖ is ‖(A′
k,η)

−1‖
≥ 2, which holds if a part of Γ is C1 [12, Lemma 4.1], and with this alone we cannot
rule out the possibility that cond(A′

k,η) � k1/2 for a choice of |η| � k but � k3/4 log k
(although we do not expect this to be the case).

7.2. Should we really be interested in the condition number? To be
concrete, we consider solving numerically the integral equation (17) (as an equation
in L2(Γ)) via the Galerkin method; i.e., given a sequence of finite-dimensional nested
subspaces VN ⊂ L2(Γ), we seek vN ∈ VN such that

(91) (A′
k,ηvN , wN )L2(Γ) = (fk,η, wN )L2(Γ) for all wN ∈ VN .

We restrict our attention to the case when VN consists of piecewise polynomials (and so
we do not consider, e.g., subspaces involving oscillatory basis functions; see, e.g., [13]
and the references therein), and furthermore we only consider the h-boundary element
method (BEM) (i.e., the piecewise polynomials have fixed degree but decreasing mesh
width h).

Given a basis of VN , (91) becomes a system of linear equations; for simplicity we
do not consider preconditioning this system.

For the high-frequency numerical analysis of this situation, there are now, roughly
speaking, two tasks:

1. We expect that the subspace dimension N (∼ h−(d−1)) must grow with k in
order to maintain accuracy, and we would like k- and η-explicit bounds on
the required growth.
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2. One usually solves the linear system with an iterative solver such as the
generalized minimal residual method (GMRES); we expect the number of
iterations required to achieve a prescribed accuracy to increase with k, and
we would like k- and η-explicit bounds on this growth.

Regarding 1: The analysis in [31] shows that there exists a C > 0 such that if

h
(
‖D′

k‖L2(Γ)→H1(Γ) + |η| ‖Sk‖L2(Γ)→H1(Γ)

)
‖(A′

k,η)
−1‖L2(Γ)→L2(Γ) ≤ C,

then the sequence of Galerkin solutions vN is quasi-optimal (with the constant of
quasi-optimality independent of k), i.e.,∥∥∂+n u− vN

∥∥
L2(Γ)

� min
wN∈VN

∥∥∂+n u− wN

∥∥
L2(Γ)

;

see [31, Corollary 4.1]. Therefore, minimizing

(92)
(
‖D′

k‖L2(Γ)→H1(Γ) + |η| ‖Sk‖L2(Γ)→H1(Γ)

)
‖(A′

k,η)
−1‖L2(Γ)→L2(Γ)

gives the least restrictive condition on h.
This is not quite the same as minimizing the condition number, but if we believe

that the L2 → H1-norms of D′
k and Sk are proportional to the L2 → L2-norms (with

the same constant of proportionality), as they are in the case of the circle and sphere
at least (with “constant” of proportionality k), then minimizing (92) is equivalent to
minimizing the condition number.6

Two remarks:
• In [31] bounds on the L2 → H1-norms are obtained, and it is shown that if
|η| ∼ k and Ω− is both C2 and star-shaped with respect to a ball, then the
quantity in (92) is bounded by k3/2 in two dimensions, yielding the condition
for quasi-optimality hk3/2 � 1. In the case of the circle/sphere, better bounds
on the norms can be used to obtain the condition for quasi-optimality hk4/3 �
1. In practice, one sees that the h-BEM is quasi-optimal when hk � 1 (i.e., it
does not suffer from the pollution effect)—see, e.g., [31, section 5]—but this
observation has yet to be established rigorously.

• Here we have only talked about the h-BEM; the hp-BEM (where the polyno-
mial degree, p, is variable) is less sensitive to the value of η and the norms of
A′

k,η and (A′
k,η)

−1; see [46], [52] for more details.
Regarding 2: In the discussion above we noted that, in practice, hk � 1 is

sufficient to ensure k-independent quasi-optimality of the Galerkin method. Since
N ∼ h−(d−1), this condition implies that as k increases, the size of the linear system
must grow like k(d−1) to maintain accuracy. Iterative methods, such as GMRES, are
then the methods of choice for solving such large linear systems.

For Hermitian matrices there are well-known bounds on the number of iterations
of the conjugate gradient method in terms of the condition number of the matrix [32,
Chapter 3], and for normal matrices there are well-known bounds on the number of
GMRES iterations in terms of the location of the eigenvalues (which can be rewrit-
ten in terms of the condition number) [67, Theorem 5], [66, Corollary 6.33] (how
satisfactory these bounds are is another question, but they exist). In contrast, for

6The methods used to prove the bounds in Theorem 7.1 also appear to be able to prove the
corresponding L2 → H1 bounds with an extra factor of k on the right-hand sides [26]; thus the
proportionality discussed above would hold.
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nonnormal matrices it is not at all clear that the condition number tells us anything
about the behavior of GMRES (at least, there do not exist any bounds on the number
of iterations in terms of the condition number of nonnormal matrices).

As a partial illustration of this in the context of Helmholtz integral equations, the
recent work of Marburg [47], [49] has emphasized that, at least for certain collocation
discretizations of the integral equation (77), used as an integral equation for the
Neumann problem, the sign of η affects the number of GMRES iterations (with η = k
leading to much smaller iteration counts than η = −k). An analogous effect occurs
for similar collocation discretizations of the integral equation (77) used as an equation
to solve the Dirichlet problem, with the choice of η = k much better than η = −k
[48]. In contrast, the condition number estimates in Theorem 7.2 are independent of
the sign of η, suggesting that the condition number is not the right tool to investigate
the behavior of GMRES.

A concept that does give bounds on the number of GMRES iterations for non-
normal matrices is coercivity. On the operator level (for A′

k,η on L2(Γ)), coercivity is
the statement that there exists an αk,η > 0 such that

|〈A′
k,ηφ, φ

〉
L2(Γ)

| ≥ αk,η ‖φ‖2L2(Γ) for all φ ∈ L2(Γ),

and the matrix of the Galerkin method (91) then inherits an analogous property (see,
e.g., [74, equation (1.20)]). If A′

k,η is coercive, then the so-called Elman estimate for
GMRES [21], [20, Theorem 3.3], [62, section 1.3.2] can be used to prove a bound on
the number of GMRES iterations required to achieve a prescribed accuracy, with the
bound given in terms of αk,η and ‖A′

k,η‖L2(Γ)→L2(Γ); see [74, equation (1.21)].
It is not clear whether bounds on the number of GMRES iterations obtained via

this method are sharp, and so far A′
k,η has only been proved to be coercive when η � k

and Ω− is strictly convex (and under additional smoothness assumptions on Γ), so
we do not yet know enough to make a provably optimal choice of η via this approach.
However, we do know that the sign of η does matter for coercivity. Indeed, when Ω−
is a ball, A′

k,η is coercive when η = k [18], but not when η = −k [74, section 1.2].
The dependence of coercivity on the sign of η is consistent, therefore, with the results
of Marburg that indicate that the number of GMRES iterations for A′

k,η depends on
the sign of η.
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Núñez (University of California at Irvine) for helpful conversations. The authors also
thank the referees for their constructive comments.

REFERENCES

[1] L. Aloui, Stabilisation Neumann pour l’équation des ondes dans un domaine extérieur, J.
Math. Pures Appl. (9), 81 (2002), pp. 1113–1134.

[2] S. Amini, On the choice of the coupling parameter in boundary integral formulations of the
exterior acoustic problem, Appl. Anal., 35 (1990), pp. 75–92.

[3] X. Antoine and M. Darbas, Integral Equations and Iterative Schemes for Acoustic Scattering
Problems, preprint, 2011.

[4] V. M. Babich, On the asymptotics of the Green’s functions of certain wave problems: I.
Stationary case, Mat. Sb. (N.S.), 86 (1971), pp. 513–533.

[5] L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite
variational problems, SIAM J. Numer. Anal., 45 (2007), pp. 37–53.



SHARP ESTIMATES FOR THE HELMHOLTZ EQUATION 265

[6] G. Bao, K. Yun, and Z. Zhou, Stability of the scattering from a large electromagnetic cavity
in two dimensions, SIAM J. Math. Anal., 44 (2012), pp. 383–404.

[7] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), pp. 1024–
1065.

[8] D. Baskin and J. Wunsch, Resolvent estimates and local decay of waves on conic manifolds,
J. Differential Geom., 95 (2013), pp. 183–214.

[9] Y. Boubendir and C. Turc, Wave-number estimates for regularized combined field boundary
integral operators in acoustic scattering problems with Neumann boundary conditions, IMA
J. Numer. Anal., 33 (2013), pp. 1176–1225.

[10] O. Bruno, T. Elling, and C. Turc, Regularized integral equations and fast high-order solvers
for sound-hard acoustic scattering problems, Internat. J. Numer. Methods Engrg., 91
(2012), pp. 1045–1072.

[11] F. Cardoso, G. Popov, and G. Vodev, Asymptotics of the number of resonances in the
transmission problem, Comm. Partial Differential Equations, 26 (2001), pp. 1811–1859.

[12] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number
estimates for combined potential boundary integral operators in acoustic scattering, J.
Integral Equations Appl., 21 (2009), pp. 229–279.

[13] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and E. A. Spence, Numerical-asymp-
totic boundary integral methods in high-frequency acoustic scattering, Acta Numer., 21
(2012), pp. 89–305.

[14] S. N. Chandler-Wilde, D. P. Hewett, and A. Moiola, Interpolation of Hilbert and Sobolev
spaces: Quantitative estimates and counterexamples, Mathematika, 61 (2015), pp. 414–443.

[15] S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time-harmonic scat-
tering, SIAM J. Math. Anal., 39 (2008), pp. 1428–1455.

[16] D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley &
Sons, New York, 1983.

[17] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic
and elastic Helmholtz equations, Math. Models Methods Appl. Sci., 16 (2006), pp. 139–160.
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