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When is the error in the h–BEM for solving the Helmholtz equation bounded
independently of k?
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Abstract We consider solving the sound-soft scattering problem for the Helmholtz equation with the h–
version of the boundary element method using the standard second-kind combined-field integral equations.
We obtain sufficient conditions for the relative best approximation error to be bounded independently of k.
For certain geometries, these rigorously justify the commonly-held belief that a fixed number of degrees of
freedom per wavelength is sufficient to keep the relative best approximation error bounded independently of k.
We then obtain sufficient conditions for the Galerkin method to be quasi-optimal, with the constant of quasi-
optimality independent of k. Numerical experiments indicate that, while these conditions for quasi-optimality
are sufficient, they are not necessary for many geometries.
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1 Introduction

Integral equations are often used to solve acoustic, electromagnetic, and elastic scattering problems in
homogeneous media. In this paper, we consider solving the sound-soft scattering problem for the Helmholtz
equation in two or three dimensions using the standard second-kind combined-field integral equations. We
write these integral equations as

A′k,η v = f (1.1)

and
Ak,η φ = g. (1.2)

The operators A′k,η and Ak,η are defined by

A′k,η :=
1
2

I +D′k− iηSk, Ak,η :=
1
2

I +Dk− iηSk, (1.3)

where η ∈ R \ {0} is the coupling parameter (which is usually taken to be proportional to k), Sk is the
single-layer operator, Dk is the double-layer operator, and D′k is the adjoint double-layer operator (these three
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integral operators are defined by equations (1.10) and (1.14) below). The unknowns f and g are defined in
terms of the incident field by (1.11) and (1.13) respectively.

The equation (1.1) is the direct formulation, with the unknown v equal to the normal derivative on Γ of
the total field, where Γ denotes the boundary of the obstacle. The equation (1.2) is the indirect formulation,
and the physical meaning of φ is less clear than it is for v; it turns out that φ is the difference of traces of
certain exterior and interior Helmholtz boundary value problems (BVPs); see [12, p.132].

We consider the equations (1.1) and (1.2) as equations in L2(Γ ). Although there are several ways to
solve integral equations such as these, we restrict attention to the the Galerkin method, i.e. approximations
vN and φN are sought in a finite dimensional approximation space VN (where N is the dimension, i.e. the
total number of degrees of freedom). In this paper we consider the h–version of the Galerkin method, i.e.
VN consists of piecewise polynomials of degree p for some fixed p≥ 0. In the majority of the paper Γ is
C2, in which case VN will be the space of piecewise polynomials of degree p for some fixed p≥ 0 on shape
regular meshes of diameter h, with h decreasing to zero (see, e.g., [40, Chapter 4] for specific realisations);
in this case we denote VN ,vN , and φN by Vh, vh, and φh respectively, and note that N ∼ h−(d−1), where d is
the dimension. We also consider the case when Γ is the boundary of a 2–d polygon, and in this case VN will
consist of piecewise polynomials on a mesh appropriately graded towards the corners (we give more details
below).

In this paper we investigate the following two questions.

Question 1: What are sufficient conditions on N for

infwN∈VN ‖v−wN‖L2(Γ )

‖v‖L2(Γ )
and

infwN∈VN ‖φ −wN‖L2(Γ )

‖φ‖L2(Γ )
(1.4)

to be bounded independently of k as k→ ∞? (In other words, what are sufficient conditions for the relative
best approximation error to be bounded independently of k?)

Question 2: What are sufficient conditions on N for

‖v− vN‖L2(Γ )

infwN∈VN ‖v−wN‖L2(Γ )
and

‖φ −φN‖L2(Γ )

infwN∈VN ‖φ −wN‖L2(Γ )
(1.5)

to be bounded independently of k as k→ ∞? (In other words, what are sufficient conditions for the Galerkin
method to be quasi-optimal, with the constant of quasi-optimality independent of k?)

Answering both Questions 1 and 2 then gives us sufficient conditions on N for the relative errors

‖v− vN‖L2(Γ )

‖v‖L2(Γ )
and

‖φ −φN‖L2(Γ )

‖φ‖L2(Γ )
(1.6)

to be bounded independently of k as k→ ∞.

Regarding Question 1: It is generally believed that, for both discretisations in the domain and on the
boundary, employing a fixed number of degrees of freedom per wavelength is sufficient to keep the relative
best approximation error bounded independently of k. However, to the authors’ knowledge, this has only
ever been rigorously proved for the Helmholtz equation posed in a 1-d interval, where an explicit expression
for the solution is available.

Using results about the large–k asymptotics of the solution to the scattering problem, we prove that a
fixed number of degrees of freedom per wavelength is sufficient to keep the quantity in (1.4) involving v
bounded independently of k when either the obstacle is a 2-d smooth, convex domain with strictly positive
curvature or the obstacle is a convex polygon. (Since we use results about the asymptotics of the solution of
the scattering problem, these results only apply to the direct formulation (1.1), where the unknown in the
integral equation is related in a simple way to the solution.) In 2-d the function v is a function of one spatial
dimension, and thus these results are also, in some sense, one dimensional. However, the behaviour of v for
these two geometries incorporates complicated features of the solution (rays hitting a point of tangency, rays
hitting corners) that are not found when the Helmholtz equation is posed in a 1-d interval.
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We also prove that, under the sole geometric restriction that Γ is C2, the condition hk(d+1)/2 . 1 is
sufficient to keep both the quantities in (1.4) bounded independently of k. Although this is a more restrictive
condition than having a fixed number of degrees of freedom per wavelength (i.e. hk ∼ 1), especially when
d = 3, the novelty is that this result holds for general domains (even those trapping domains where the
inverse of the Helmholtz operator blows up as k→ ∞), and for both the direct and indirect formulations
(despite φ ’s lack of immediate physical relevance). These results are obtained by using the fact that the
integral operators A′k,η and Ak,η in (1.3) are compact perturbations of the identity when Γ is C2, and then
proving new k–explicit bounds on the operators Sk, D′k, and Dk as mappings from L2(Γ )→ H1(Γ ).

Regarding Question 2: We prove that for C2 star-shaped domains in 2- or 3-d, the quantities in (1.5) are
bounded independently of k if hk(d+1)/2 . 1. (We expect that this result holds for general nontrapping
domains, but the currently-available bounds on the inverses of A′k,η and Ak,η for these domains are not sharp
enough in their k–dependence to prove this.) Combining this result with the results addressing Question 1,
we have that for C2 star-shaped domains in 2- or 3-d, the quantities in (1.6) are bounded independently of k
if hk(d+1)/2 . 1.

We discuss the relation of these results to other existing results in detail in §1.2.2, but we note here that the
only other available bounds on (1.5) in the literature are valid when the obstacle is C3 and piecewise analytic
with strictly positive curvature [45] or is a ball [4], [18]. (An error analysis of the hp–BEM on analytic
domains has recently been conducted in [28], [31]. However, since these techniques are geared towards a
p–BEM, they yield a more restrictive condition than hk(d+1)/2 . 1 for k–independent quasi-optimality of the
h–BEM; for more discussion see §4.2.)

We obtain the bound on the quantities in (1.5) using the classic abstract projection-method argument
going back to Anselone [2] and Atkinson [3]. This argument treats the operators A′k,η and Ak,η as compact
perturbations of the identity, as is standard. The novelty, however, is that everything can be made k–
explicit by using (i) recently-proved k–explicit bounds on the norms of (A′k,η)−1 and A−1

k,η as operators
from L2(Γ )→ L2(Γ ), and (ii) new k–explicit bounds on the operators Sk, D′k, and Dk as operators from
L2(Γ )→ H1(Γ ).

1.1 Formulation of the problem

Let Ω− ⊂ Rd , d = 2 or 3, be a bounded Lipschitz open set with boundary Γ := ∂Ω−, such that the open
complement Ω+ := Rd \Ω− is connected. Let H1

loc(Ω+) denote the set of functions v such that v is locally
integrable on Ω+ and ψv ∈H1(Ω+) for every compactly supported ψ ∈C∞(Ω+) := {ψ|Ω+ : ψ ∈C∞(Rd)}.
Let γ+ denote the trace operator from Ω+ to Γ . Let n be the outward-pointing unit normal vector to Ω−,
and let ∂+

n denote the normal derivative trace operator from Ω+ to Γ that satisfies ∂+
n u = n · γ+(∇u) when

u ∈ H2
loc(Ω+). (We also call γ+u the Dirichlet trace of u and ∂+

n u the Neumann trace.)

Definition 1.1 (Sound-soft scattering problem) Given k > 0 and an incident plane wave uI(x) = exp(ikx ·
â) for some â ∈ Rd with |â|= 1, find uS ∈C2(Ω+)∩H1

loc(Ω+) such that the total field u := uI +uS satisfies

∆u+ k2u = 0 in Ω+, γ+u = 0 on Γ ,

and uS satisfies the Sommerfeld radiation condition,

∂uS

∂ r
(x)− ik uS(x) = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r.

It is well known that the solution to this problem exists and is unique; see, e.g., [12, Theorem 2.12].
The BVP in Definition 1.1 can be reformulated as an integral equation on Γ in two different ways. The

first, the so-called direct method, uses Green’s integral representation for the solution u, i.e.

u(x) = uI(x)−
∫

Γ

Φk(x,y)∂+
n u(y)ds(y), x ∈Ω+, (1.7)



4 I. G. Graham et al.

where Φk(x,y) is the fundamental solution of the Helmholtz equation given by

Φk(x,y) =
i
4

H(1)
0

(
k|x−y|

)
, d = 2, Φk(x,y) =

eik|x−y|

4π|x−y|
, d = 3 (1.8)

(note that to obtain (1.7) from the usual form of Green’s integral representation one must use the fact that uI

is a solution of the Helmholtz equation in Ω−; see, e.g., [12, Theorem 2.43]).
Taking the Dirichlet and Neumann traces of (1.7) on Γ , one obtains two integral equations for the

unknown Neumann boundary value ∂+
n u:

Sk∂
+
n u = γ+uI ,

(
1
2

I +D′k

)
∂

+
n u = ∂

+
n uI , (1.9)

where the integral operators Sk and D′k, the single-layer operator and the adjoint-double-layer operator
respectively, are defined for ψ ∈ L2(Γ ) by

Skψ(x) :=
∫

Γ

Φk(x,y)ψ(y)ds(y), D′kψ(x) :=
∫

Γ

∂Φk(x,y)
∂n(x)

ψ(y)ds(y), x ∈ Γ (1.10)

(when Γ is Lipschitz, the integral defining D′k is understood as a Cauchy principal value integral; see, e.g.,
[12, §2.3]).

Both integral equations in (1.9) fail to be uniquely solvable for certain values of k (for the first equation
in (1.9) these are the k such that k2 is a Dirichlet eigenvalue of the Laplacian in Ω−, and for the second
equation in (1.9) these are the k such that k2 is a Neumann eigenvalue). The standard way to resolve this
difficulty is to take a linear combination of the two equations, which yields the integral equation (1.1), where
v := ∂+

n u and
f (x) = ∂

+
n uI(x)− iηγ+uI(x), x ∈ Γ . (1.11)

Since Ω+ is Lipschitz, standard trace results imply that the unknown Neumann boundary value ∂+
n u is

in H−1/2(Γ ). When Ω+ is C2, elliptic regularity implies that ∂+
n u ∈ L2(Γ ) (since u ∈ H2

loc(Ω+)), but
∂+

n u ∈ L2(Γ ) even when Ω+ is Lipschitz via a regularity result of Nečas [36, §5.1.2], [29, Theorem 4.24
(ii)]. Therefore, even for Lipschitz Ω+ we can consider the integral equation (1.1) as an operator equation
in L2(Γ ), which is a natural space for the practical solution of second-kind integral equations since it is
self-dual. It is well known that, for η 6= 0, A′k,η is a bounded and invertible operator on L2(Γ ) (see [12,
Theorem 2.27]).

Instead of using Green’s integral representation to formulate the BVP as an integral equation, one can
pose the ansatz

uS(x) =
∫

Γ

∂Φk(x,y)
∂n(y)

φ(y)ds(y)− iη
∫

Γ

Φk(x,y)φ(y)ds(y) (1.12)

for φ ∈ L2(Γ ) and η ∈ R \ {0}; this is the so-called indirect method. Imposing the boundary condition
γ+uS =−γ+uI on Γ leads to the integral equation (1.2) with

g :=−γ+uI (1.13)

and where Dk is the double-layer operator, which is defined for ψ ∈ L2(Γ ) by

Dkψ(x) =
∫

Γ

∂Φk(x,y)
∂n(y)

ψ(y)ds(y), x ∈ Γ (1.14)

(as with D′k, the integral defining Dk is understood as a Cauchy principal value integral when Γ is Lipschitz).
Although the unknowns in the integral equations (1.1) and (1.2) are different, the identities∫

Γ

φ Skψ ds =
∫

Γ

ψ Skφ ds, and
∫

Γ

φ Dkψ ds =
∫

Γ

ψ D′kφ ds, (1.15)

for φ ,ψ ∈ L2(Γ ) (see [12, Equation 2.37]), mean that Ak,η and A′k,η are adjoint with respect to the real-valued
L2(Γ ) inner product, and so in particular satisfy∥∥Ak,η

∥∥
L2(Γ )→L2(Γ ) =

∥∥A′k,η
∥∥

L2(Γ )→L2(Γ ) and
∥∥A−1

k,η

∥∥
L2(Γ )→L2(Γ ) =

∥∥(A′k,η)−1∥∥
L2(Γ )→L2(Γ ) .
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In this paper we consider solving the integral equations (1.1) and (1.2) using the Galerkin method. Given
a finite-dimensional approximation space VN ⊂ L2(Γ ), the Galerkin method for the direct integral equation
(1.1) is

find vN ∈ VN such that
(
A′k,η vN ,wN

)
L2(Γ ) =

(
f ,wN

)
L2(Γ ) for all wN ∈ VN . (1.16)

For the indirect integral equation (1.2), the Galerkin method is

find φN ∈ VN such that
(
Ak,η φN ,wN

)
L2(Γ ) =

(
g,wN

)
L2(Γ ) for all wN ∈ VN . (1.17)

1.2 Statement of the main results and discussion

This paper contains six main theorems (Theorems 1.1, 1.2, 1.3, 1.4, 1.5, 1.6). The first three (1.1, 1.2, and
1.3) give sufficient conditions for the relative best approximation error to be bounded independently of k
(and thus provide an answer to Question 1). The next two (1.4 and 1.5) give sufficient conditions for the
h–version of the BEM to be quasi-optimal, with the constant of quasi-optimality independent of k (and thus
provide an answer Question 2). The last one (1.6) gives bounds on the norms of Sk,Dk, and D′k as operators
from L2(Γ )→ H1(Γ ); these bounds are the main new ingredients used to prove Theorems 1.3, 1.4, and 1.5.

In what follows, Vh is the space of piecewise polynomials of degree p for some fixed p≥ 0 on shape
regular meshes of diameter h, with h decreasing to zero. As above, u is the solution of the sound-soft
scattering problem of Definition 1.1, and v := ∂+

n u.
We use the notation a . b to mean a≤Cb for some constant C that is independent of k, η , and h. a & b

means b . a. If a . b and b . a we write a∼ b.

1.2.1 Results concerning Question 1

Theorem 1.1 (Bound on the best approximation error for smooth convex domains) If Ω− is a 2-d, C∞,
convex domain with strictly positive curvature then, given k0 > 0,

inf
wh∈Vh

‖v−wh‖L2(Γ ) . hk‖v‖L2(Γ ) (1.18)

for all k≥ k0. Thus, choosing hk . 1 keeps the relative best approximation error bounded independently of k.

The right-hand side of the bound (1.18) is not explicit in p. Nevertheless, using the same ideas used to
prove (1.18), one can show that infwh∈Vh ‖v−wh‖L2(Γ ) . (hk)p+1 ‖v‖L2(Γ ) . Therefore, for fixed p, one still
requires hk . 1 for this bound to prove that the relative best approximation error is bounded independently
of k.

Theorem 1.2 (Bound on the best approximation error for convex polygons) Let Ω− be a convex polygon,
and let

M(u) := sup
x∈Ω+

|u(x)|.

If M(u) . 1 then there exists a mesh on Γ with O(N) points such that, with VN the corresponding space of
piecewise polynomials, given k0 > 0,

inf
wN∈VN

‖v−wN‖L2(Γ ) .
k
N
‖v‖L2(Γ ) (1.19)

for all k ≥ k0. Thus, choosing N & k keeps the relative best approximation error bounded independently of k.
(We give the details of the mesh in the proof of the theorem.)

Regarding the assumption M(u) . 1, the best currently-available bound on M(u) is

M(u) . k1/2( logk
)1/2

, (1.20)

[24, Theorem 4.3], but numerical experiments in [14] and [13] indicate that M(u) . 1. Furthermore, if
Ω− is a star-shaped Lipschitz domain then the arguments in [35] can be used to show that, for any R > 0,
‖u‖L2(ΩR) . 1, where ΩR := Ω+∩{x : |x|< R}; this is consistent with M(u) . 1, but does not imply it.
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Theorem 1.3 (Bound on the best approximation error for general C2 domains) If Ω− ⊂Rd , with d = 2
or 3, and Γ is C2, then, given k0 > 0,

inf
wh∈Vh

‖v−wh‖L2(Γ ) . hk(d+1)/2 ‖v‖L2(Γ ) (1.21)

and
inf

wh∈Vh
‖φ −wh‖L2(Γ ) . hk(d+1)/2 ‖φ‖L2(Γ ) (1.22)

for all k ≥ k0. Thus, choosing hk(d+1)/2 . 1 keeps the relative best approximation error bounded indepen-
dently of k.

At first sight, it may seem surprising that Theorem 1.3 bounds the relative best approximation error
for both direct and indirect formulations with no restriction on the geometry (apart from Γ being C2),
since ‖v‖L2(Γ ) is strongly influenced by the geometry. Indeed, if Ω− is a star-shaped Lipschitz domain
then k1/2 . ‖v‖L2(Γ ) . k (see §3.2), but if Ω+ contains an elliptical cavity then there exist a sequence of
wavenumbers 0 < k1 < k2 < .. . with km→ ∞ as m→ ∞ and a constant γ > 0 such that ‖v‖L2(Γ ) & exp(γkm)
for all m≥ 1 (see [6, Equation 2.33], [12, §5.6.2], [43, §1.2]).

The results of Theorem 1.3 become more understandable when we note that the results of both Theorems
1.1 and 1.3 use the standard approximation theory result that, for w ∈ H1(Γ ),

inf
wh∈Vh

‖w−wh‖L2(Γ ) . h‖w‖H1(Γ ) (1.23)

[40, Theorem 4.3.22(b)]. The bound (1.18) is then obtained from the bound

‖v‖H1(Γ ) . k‖v‖L2(Γ ) (1.24)

for C∞, convex domains with strictly positive curvature, and the bounds (1.21) and (1.22) are obtained from
the bounds

‖v‖H1(Γ ) . k(d+1)/2 ‖v‖L2(Γ ) and ‖φ‖H1(Γ ) . k(d+1)/2 ‖φ‖L2(Γ ) (1.25)

for C2 domains. The bound (1.24) is obtained using results about the large–k asymptotics of v from [32],
converted into a format suitable for numerical analysis in [18]. The bounds in (1.25) are obtained by using
the fact that v and φ satisfy the integral equations (1.1) and (1.2) respectively. Indeed, when Γ is C2 the
operators A′k,η and Ak,η are compact perturbations of the identity, with Sk, Dk, and D′k all mapping L2(Γ ) to
H1(Γ ). In Theorem 1.6 below we prove k–explicit bounds on the norms of Sk, Dk, and D′k from L2(Γ ) to
H1(Γ ), and then taking the H1(Γ ) norms of the integral equations (1.1) and (1.2) and using these bounds
essentially yields (1.25).

When Ω− is a convex polygon, v /∈H1(Γ ) and thus we cannot use (1.23). Nevertheless, the bound (1.19)
is obtained from a result analogous to (1.23) where the H1–norm is replaced by a weighted H1–norm, Vh is
replaced by VN , and h is replaced by 1/N. The analogue of the bound (1.24) is then obtained using results
about the large–k asymptotics of v from [14], in a similar way to how (1.24) is obtained in the smooth convex
case.

To the authors’ knowledge, the only other Helmholtz BVP where rigorous results about the relative best
approximation error are available is the Helmholtz equation posed on a 1-d interval (with an impedance
boundary condition imposed at one end to ensure that the problem has a unique solution for all k). In this
case, the bound ‖u‖H1(Ω) . k‖u‖L2(Ω) can be verified using the explicit expression for the solution.

1.2.2 Results concerning Question 2

Before stating the two theorems concerning Question 2, we need to make the following definition.

Definition 1.2 (Star-shaped) If Ω− ⊂ Rd , d = 2 or 3, is a Lipschitz domain we say that it is star-shaped if
there exists a constant c > 0 such that x ·n(x)≥ c for every x ∈ Γ for which n(x) is defined. (This condition
is sometimes known as being star-shaped with respect to a ball; see, e.g., [34, Remark 3.5].)
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Theorem 1.4 (Sufficient conditions for the Galerkin method to be quasi-optimal) If Ω− is C2 and star-
shaped (in the sense of Definition 1.2) and |η | ∼ k then, given k0 > 0, there exists a C > 0 (independent of k
and h) such that if

hk(d+1)/2 ≤C, (1.26)

then both sets of Galerkin equations (1.16) and (1.17) have unique solutions which satisfy

‖v− vh‖L2(Γ ) . inf
wh∈Vh

‖v−wh‖L2(Γ ) (1.27)

and
‖φ −φh‖L2(Γ ) . inf

wh∈Vh
‖φ −wh‖L2(Γ ) (1.28)

respectively, for all k ≥ k0.

The assumption in Theorem 1.4 that Ω− is star-shaped is there to ensure that ‖(A′k,η)−1‖L2(Γ )→L2(Γ ) =
‖A−1

k,η‖L2(Γ )→L2(Γ ) is bounded independently of k when |η | ∼ k. The numerical experiments in [7, §5]
indicate that this property holds whenever Ω− is nontrapping, however the best currently-available bound on
‖(A′k,η)−1‖L2(Γ )→L2(Γ ) for nontrapping domains has a positive power of k on the right-hand side; see (3.3)
below. (The argument leading to (1.28) can be repeated with this worse bound on ‖(A′k,η)−1‖L2(Γ )→L2(Γ ),
however this yields quasi-optimality under a more restrictive mesh threshold than (1.26).)

Combining Theorems 1.3 and 1.4 we obtain the following result.

Corollary 1.1 (Bound on the relative errors in the Galerkin method) If Ω− is C2 and star-shaped (in
the sense of Definition 1.2) and |η | ∼ k then, given k0 > 0, there exists a C > 0 (independent of k and h) such
that if

hk(d+1)/2 ≤C,

then both sets of Galerkin equations (1.16) and (1.17) have unique solutions which satisfy

‖v− vh‖L2(Γ )

‖v‖L2(Γ )
. 1 and

‖φ −φh‖L2(Γ )

‖φ‖L2(Γ )
. 1 (1.29)

respectively, for all k ≥ k0.

Under a more restrictive mesh threshold we can sharpen the quasi-optimality estimates (1.27) and
(1.28) to show that the Galerkin solutions vh and φh are asymptotically just as good as the best possible
approximations to v and φ from Vh.

Theorem 1.5 (Sufficient conditions for the Galerkin method to be asymptotically optimal) If Ω− is C2

and star-shaped (in the sense of Definition 1.2), |η | ∼ k, and h is a function of k such that

hk(3d−1)/2→ 0 as k→ ∞,

then both sets of Galerkin equations (1.16) and (1.17) have unique solutions which satisfy

‖v− vh‖L2(Γ )

infwh∈Vh ‖v−wh‖L2(Γ )
and

‖φ −φh‖L2(Γ )

infwh∈Vh ‖φ −wh‖L2(Γ )
→ 1 as h→ 0.

How sharp are these results? The numerical experiments discussed in §5 show that for a wide variety of
2–d domains, the quasi-optimality (1.27) holds even when hk . 1 These results suggest that the h–BEM does
not suffer from the pollution effect, but we do not see this from Theorem 1.4. (For more discussion, see §5.)

How do these results compare with other results about the h–BEM in the literature? For second-kind
integral equations such as (1.1) and (1.2), there are several classical approaches to error analysis, all based, in
some sense, on the fact that each of A′k,η and Ak,η is a k–dependent compact perturbation of a k–independent
invertible operator. (This can easily be seen when Γ is C1, since in this case Dk, D′k, and Sk are compact
[21, Theorem 1.2], but the result is true even when Γ is Lipschitz [14, Theorem 2.7], [12, Theorem 2.25].)
Although these classical approaches establish quasi-optimality for the h–BEM applied to the integral
equations (1.1) and (1.2), the k–dependence of both the constant of quasi-optimality and the threshold after
which quasi-optimality holds has not been determined until now.

To the authors’ knowledge, there exist in the literature two sets of results that give k–explicit quasi-
optimality of the h–BEM applied to (1.1) and (1.2) (or any other integral equation used to solve the Helmholtz
equation). These are
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(a) results that use coercivity [18], [44], [45], and
(b) results that give sufficient conditions for quasi-optimality to hold in terms of how well the spaces Vh

approximate the solution of certain adjoint problems [4], [28], [31].

Regarding (a): in [18], A′k,η and Ak,η are proved to be coercive on L2(Γ ) when Γ is the circle or sphere,
η = k, and k is sufficiently large; i.e. it is shown that (for these domains) there exists a k0 > 0 such that, with
η = k, ∣∣(A′k,η ψ,ψ)L2(Γ )

∣∣& ‖ψ‖2
L2(Γ ) for all ψ ∈ L2(Γ ) (1.30)

and for all k ≥ k0 (and similarly for Ak,η ). In [45] it is proved that (1.30) holds when Ω− is a C3, piecewise
analytic, 2- or 3-d domain with strictly positive curvature, η & k, and k is sufficiently large [45, Theorem
1.2]. By Céa’s Lemma, these coercivity results imply that, for these domains, the Galerkin solutions vh and
φh exist for any h > 0, and the error esimate

‖v− vh‖L2(Γ ) .
(∥∥A′k,η

∥∥
L2(Γ )→L2(Γ )

)
inf

wh∈Vh
‖v−wh‖L2(Γ ) (1.31)

and an analogous one for ‖φ −φh‖L2(Γ ) hold for all sufficiently large k. To make the error estimate (1.31)
fully k–explicit, we need a k–explicit bound on ‖A′k,η‖L2(Γ )→L2(Γ ) when η ∼ k. When Γ is a circle or
sphere and η ∼ k, ‖A′k,η‖L2(Γ )→L2(Γ ) ∼ k1/3 [12, Theorem 5.12]. The best currently-available bound on
‖A′k,η‖L2(Γ )→L2(Γ ) (when η ∼ k) for smooth convex domains is ‖A′k,η‖L2(Γ )→L2(Γ ) ∼ k1/2 [12, Theorem
5.14] (although this is unlikely to be sharp).

The quasi-optimality result (1.31) is quite different from (1.27); although quasi-optimality is established
in (1.31) without any mesh threshold, the factor in front of the best approximation error grows with
k. Nevertheless, the results (1.27) and (1.31) can be compared if we use the bound (1.18) on the best
approximation error for 2-d smooth, convex domains with strictly positive curvature. Combining (1.31) with
(1.18) and using the bounds on ‖A′k,η‖L2(Γ )→L2(Γ ) discussed above, we see that when Γ is the circle the
Galerkin error is bounded independently of k (i.e. (1.29) holds) when k is sufficiently large and hk4/3 . 1.
We also have that when Ω− is a C∞, piecewise analytic, 2–d domain with strictly positive curvature, the
Galerkin error is bounded independently of k when k is sufficiently large and hk3/2 . 1. This result for C∞,
piecewise analytic, 2–d domains with strictly positive curvature is the same as that in Corollary 1.1, but the
result for the circle and sphere is slightly sharper than that in Corollary 1.1 (although Corollary 1.1 holds for
a much wider class of domains).

The final quasi-optimality result obtained via coercivity concerns a modification of the integral operator
A′k,η , denoted by Ak, that can also be used to solve the sound-soft scattering problem. This operator was
introduced in [44], and was proved to be coercive for all k > 0 when Ω− is a star-shaped Lipschitz domain.
Since ‖Ak‖L2(Γ )→L2(Γ ) . k1/2, the error estimate

‖v− vN‖L2(Γ ) . k1/2 inf
wN∈VN

‖v−wN‖L2(Γ ) (1.32)

holds for the Galerkin method applied to this integral equation on these domains. The error estimate (1.32)
is similar to (1.31) (since they both come from Céa’s lemma), although (1.32) is valid for a wider class of
domains.

Regarding (b): this method (which is often attributed to Schatz [41]) was applied to the h–BEM in [4]
and to the hp–BEM in [28] (using results in [31]). We discuss these results in more detail in §4.2, but note
here that, when applied to the h–BEM, these techniques yield a more restrictive condition than hk(d+1)/2 . 1
for (1.27) and (1.28) to hold.

Finally, it is instructive to compare the results of Theorems 1.4 and 1.5 to results about the quasi-
optimality and relative error of the h–FEM. The relevant results for the h–FEM in 1–d were obtained in
[26] (see also [25]). These authors considered the Helmholtz equation posed in a 1–d finite interval (with an
impedance boundary condition at one end of the interval to ensure that the solution exists for all k) and proved
that the h–FEM is quasi-optimal in the H1-semi-norm, with the constant of quasi-optimality independent
of k, if hk2 . 1 (this is shown in [25, Theorem 4.13] using [26, Lemma 3]), and numerical experiments
indicate that this result is sharp [26, Figures 7-9], [25, §4.5.4 and Figure 4.12]. Furthermore, these authors
showed that the relative error in both the H1-semi-norm and the L2-norm is bounded independently of k if
hk3/2 . 1 [26, Equation 3.25], [25, Equation 4.5.15], with numerical experiments indicating that this is sharp
[26, Figure 11], [25, Figure 4.13].



When is the error in the h–BEM for solving the Helmholtz equation bounded independently of k? 9

In [30, Proposition 8.2.7] it was proved that the h–FEM is quasi-optimal in 2– and 3–d (with the constant
of quasi-optimality independent of k) when hk2 . 1 and the domain is such that the solution is in H2 and
satisfies a certain stability estimate (when Ω− is star-shaped this stability estimate holds for the interior
impedance problem [30, Proposition 8.1.4] and the exterior Dirichlet problem [23, Proposition 3.3]). The
numerical experiments in [5, §3] indicate that, at least for certain 2-d problems, the relative error in the
L2-norm is bounded independently of k if hk3/2 . 1, although this has yet to be proven. (We note, however,
that [46, Theorem 6.1] proves that, under the stability estimate mentioned above, the weighted H1-norms of
u−uh and uh are bounded by norms of the data in both 2- and 3-d if hk3/2 . 1.)

Comparing the best currently-available results about the quasi-optimality of the h–FEM and the h–BEM
for star-shaped domains in 2-d (given by [30, Proposition 8.2.7] and Theorem 1.4 respectively), we see that
quasi-optimality holds (with the constant independent of k) for the h–FEM if hk2 . 1 and for the h–BEM if
hk3/2 . 1, rigorously confirming the observation that the pollution effect is less pronounced for the h–BEM
than for the h–FEM. 1

1.2.3 Bounds on ‖Sk‖L2(Γ )→H1(Γ ), ‖Dk‖L2(Γ )→H1(Γ ), and ‖D′k‖L2(Γ )→H1(Γ )

The main new ingredients in the proofs of Theorems 1.3, 1.4, and 1.5 are the following bounds on the norms
of Sk, Dk, and D′k as mappings from L2(Γ )→ H1(Γ ).

Theorem 1.6 (Bounds on ‖Sk‖L2(Γ )→H1(Γ ), ‖Dk‖L2(Γ )→H1(Γ ), and ‖D′k‖L2(Γ )→H1(Γ ))

(i) If Γ is Lipschitz then Sk is a bounded operator from L2(Γ ) to H1(Γ ) and, given k0 > 0,

‖Sk‖L2(Γ )→H1(Γ ) . 1+ k(d−1)/2 (1.33)

for all k ≥ k0.
(ii) If Γ is C2 then Dk and D′k are bounded operators from L2(Γ ) to H1(Γ ) with

‖Dk‖L2(Γ )→H1(Γ ) . 1+ k(d+1)/2 (1.34)

and ∥∥D′k
∥∥

L2(Γ )→H1(Γ ) . 1+ k(d+1)/2 (1.35)

for all k > 0.

These bounds should be compared to the following bounds proved in [11, Theorems 3.3 and 3.5] on the
norms of Sk, Dk, and D′k as mappings from L2(Γ )→ L2(Γ ) for general Lipschitz Ω−,

‖Sk‖L2(Γ )→L2(Γ ) . k(d−3)/2, ‖Dk‖L2(Γ )→L2(Γ ) . 1+k(d−1)/2,
∥∥D′k

∥∥
L2(Γ )→L2(Γ ) . 1+k(d−1)/2. (1.36)

We see that the powers of k on the right-hand sides of (1.33), (1.34), and (1.35) are exactly one more than
the respective powers of k on the right-hand sides of the bounds in (1.36). The reason that the bound (1.33)
is not valid uniformly for k > 0 is that it uses the bound on ‖Sk‖L2(Γ )→L2(Γ ) in (1.36), and when d = 2 the
power of k in the latter bound blows up as k→ 0 (but this does not happen to the bounds on ‖Dk‖L2(Γ )→L2(Γ )
and ‖D′k‖L2(Γ )→L2(Γ )).

The relationships (1.15) allow us to convert the bounds on Sk, Dk, and D′k as mappings from L2(Γ )→
H1(Γ ) into bounds on these operators from Hs−1/2(Γ )→ Hs+1/2(Γ ) for |s| ≤ 1/2.

Corollary 1.2 (i) If Γ is Lipschitz then Sk : Hs−1/2(Γ )→ Hs+1/2(Γ ) for |s| ≤ 1/2 and, given k0 > 0,

‖Sk‖Hs−1/2(Γ )→Hs+1/2(Γ ) . 1+ k(d−1)/2 (1.37)

for all k ≥ k0.

1 Of course, if the goal is to compute the solution in (a subset of) the domain, then after using the h–BEM one must evaluate the
integrals in Green’s integral representation (1.7) or the ansatz (1.12). This adds to the computational cost of the h–BEM, but the question
“which of the h–BEM and h–FEM achieves the goal of computing the solution with the least cost?” is independent of the question “to
what extent does each method suffers from the pollution effect?”
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(ii) If Γ is C2 then Dk and D′k are bounded operators from Hs−1/2(Γ ) to Hs+1/2(Γ ) for |s| ≤ 1/2 with

‖Dk‖Hs−1/2(Γ )→Hs+1/2(Γ ) . 1+ k(d+1)/2 (1.38)

and ∥∥D′k
∥∥

Hs−1/2(Γ )→Hs+1/2(Γ ) . 1+ k(d+1)/2 (1.39)

for all k > 0.

1.2.4 Results concerning Questions 1 and 2 for other boundary conditions

This paper is concerned with sound-soft acoustic scattering (i.e. the BVP has a zero Dirichlet boundary
condition), but here we briefly discuss whether results about Questions 1 and 2 exist (or can be obtained) for
other boundary conditions.

Regarding Question 1: Theorem 1.1, which concerns smooth convex domains, is proved using the
asymptotic results of [32] (adapted by [18] into a format suitable for our use). The techniques of [32] are also
applicable to the analogous BVP with zero Neumann or Robin boundary conditions (see [32, Sections 8 and
9]), and thus we expect results similar to Theorem 1.1 to hold for these BVPs (although with some non-trivial
technical work required to prove this). Theorem 1.2, which concerns convex polygons, is proved using
the asymptotics results of [14]. The analogous results for the corresponding BVP with a zero impedance
boundary condition were proved in [15, Theorem 2.1], and therefore these results could be used to obtain the
analogue of Theorem 1.2 for this BVP.

Regarding Question 2: to the authors’ knowledge, there do not yet exist any results concerning this
question posed for the standard combined-field integral equations used to solve the Neumann or impedance
problems (i.e. [12, Equations 2.73 and 2.77]). There do exist, however, results concerning this question
posed for certain modifications of the standard integral equations for the Neumann problem. Indeed, the
standard combined-field integral equations (both direct and indirect) for the Neumann problem contain the
hypersingular operator, and it is common to “regularise” this operator by either pre- or post-multiplying
by a smoothing operator (see, e.g., the literature review in [8, §1]). In [8], a k-explicit analysis of two such
(indirect) modifications is performed. In particular [8, Theorems 3.2 and 3.6] prove that these modifications
are continuous and coercive in L2(Γ ) when Γ is the circle or sphere (with k-explicit bounds for the norm and
coercivity constant); Céa’s lemma can therefore be used to prove a result analogous to (1.31). As discussed
in §1.2.2, such a result does not quite answer Question 2, but it does give a bound on the relative error of the
Galerkin solution (i.e. the analogue of (1.29)).

Outline of paper. In §2 we prove Theorem 1.6 (we do this first as Theorems 1.3, 1.4, and 1.5 depend on this
result). In §3 we prove Theorems 1.1, 1.2, and 1.3. In §4 we prove Theorems 1.4 and 1.5. In §5 we give the
results of numerical experiments concerning Question 2.

2 Proof of Theorem 1.6 (k–explicit bounds on ‖Sk‖L2(Γ )→H1(Γ ), ‖Dk‖L2(Γ )→H1(Γ ), and
‖D′k‖L2(Γ )→H1(Γ ))

We begin by recapping (i) some facts about the surface gradient and (ii) the method that was used to prove
the bounds (1.36) on ‖Sk‖L2(Γ )→L2(Γ ), ‖Dk‖L2(Γ )→L2(Γ ), and ‖D′k‖L2(Γ )→L2(Γ ).

Recap of facts about the surface gradient. Recall that for Γ Lipschitz there exists a unique operator ∇Γ , the
surface (or tangential) gradient, such that the mapping ∇Γ : H1(Γ )→ (L2(Γ ))d is bounded and if w is C1 in
a neighbourhood of Γ then

∇w(x) = ∇Γ w(x)+n(x)
∂w
∂n

(x) (2.1)

for almost every x ∈ Γ . For an explicit definition of ∇Γ in terms of a parametrisation of Γ see, e.g., [12,
Equation A.14]. The definition of ∇Γ implies that, for v ∈ H1(Γ ),

‖v‖H1(Γ ) ∼ ‖∇Γ v‖L2(Γ ) +‖v‖L2(Γ ) . (2.2)

Another property of ∇Γ that we use below is that, if Γ is C2 and τττ(x) is a unit tangent vector to Γ at a point
x ∈ Γ , then τττ(x) ·∇Γ v(x) is the directional derivative of v along a curve with tangent τττ(x). That is, given a
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point x ∈ Γ and tangent vector τττ(x), let C be the curve on Γ passing through x with tangent vector τττ(x). Let
xh be a point on C such that the arc between xh and x has length h, so xh = x+hτττ(x)+O(h2). Then

τττ(x) ·∇Γ v(x) = lim
h→0

v(xh)− v(x)
h

. (2.3)

To obtain the bounds on Dk and D′k, we need the following lemma about the surface gradient of integral
operators.

Lemma 2.1 If φ ∈ L1(Γ ) and

(i) κ(x,y) ∈C(Γ ×Γ ),
(ii) for all y ∈ Γ , the map x 7→ κ(x,y) is in C1(Γ \{y}), and

(iii) ∇Γ ,xκ(x,y) ∈ L∞(Γ ×Γ \{(x,y) : x = y}),

then

∇Γ ,x

(∫
Γ

κ(x,y)φ(y)ds(y)
)

=
∫

Γ

∇Γ ,xκ(x,y)φ(y)ds(y).

Proof (Sketch proof) Fix x ∈ Γ , and let τττ(x) be a unit tangent vector at x. With xh defined above, we need to
show that

lim
h→0

∫
Γ

(
κ(xh,y)−κ(x,y)

h

)
φ(y)ds(y) =

∫
Γ

τττ(x) ·∇Γ ,xκ(x,y)φ(y)ds(y). (2.4)

For ε > 0 we split the integral on the left-hand side of (2.4) into the integral over Γ ∩Bε(x) and the integral
over Γ \Bε(x). For the integral over Γ ∩Bε(x), the assumptions (i)-(iii) imply that κ(x,y) is Lipschitz as a
function of x, and thus the integrand is bounded independently of h. Therefore the integral over Γ ∩Bε(x)
tends to zero as ε → 0. By differentiation under the integral sign (using the dominated convergence theorem;
see, e.g., [22, Theorem 2.27]) the integral over Γ \Bε(x) equals∫

Γ \Bε (x)
τττ(x) ·∇Γ ,xκ(x,y)φ(y)ds(y).

By the assumption (iii) and another application of the dominated convergence theorem, this last integral
tends to the right-hand side of (2.4) as ε → 0.

Overview of the Riesz–Thorin method. The k–explicit bounds (1.36) on ‖Sk‖L2(Γ )→L2(Γ ), ‖Dk‖L2(Γ )→L2(Γ ),
and ‖D′k‖L2(Γ )→L2(Γ ) were obtained in [11] using the following idea. If T is an integral operator on Γ with
kernel t(x,y), i.e.,

T φ(x) =
∫

Γ

t(x,y)φ(y)ds(y),

then, using the definitions of the L1- and L∞-operator norms, it is straightforward to show that

‖T‖L1(Γ )→L1(Γ ) = esssup
y∈Γ

∫
Γ

∣∣t(x,y)
∣∣ds(x), (2.5a)

‖T‖L∞(Γ )→L∞(Γ ) = esssup
x∈Γ

∫
Γ

∣∣t(x,y)
∣∣ds(y) (2.5b)

(provided these integrals exist). The Riesz-Thorin interpolation theorem implies that

‖T‖L2(Γ )→L2(Γ ) ≤
(
‖T‖L1(Γ )→L1(Γ )

)1/2(
‖T‖L∞(Γ )→L∞(Γ )

)1/2

(see, e.g., [22, Theorem 6.27]), and thus a bound on ‖T‖L2(Γ )→L2(Γ ) can be obtained by bounding the integrals
on the right-hand sides of (2.5). In particular, if |t(x,y)| ≤ t̃(x,y), where t̃ is such that t̃(x,y) = t̃(y,x), then

‖T‖L2(Γ )→L2(Γ ) ≤ esssup
x∈Γ

∫
Γ

t̃(x,y)ds(y). (2.6)

To obtain a bound on ‖Sk‖L2(Γ )→L2(Γ ), we can apply the bound (2.6) with T = Sk and t̃(x,y) chosen as
|Φk(x,y)|. On the other hand, to obtain a bound on ‖Dk‖L2(Γ )→L2(Γ ) we write Dk as D0 +(Dk−D0) and
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apply (2.6) with T = Dk−D0; we do this because the singularity of Dk is too strong for the operator itself to
be bounded on L1(Γ ) and L∞(Γ ) for general Lipschitz Γ .

In this section, we obtain bounds on ‖Sk‖L2(Γ )→H1(Γ ), ‖Dk‖L2(Γ )→H1(Γ ), and ‖D′k‖L2(Γ )→H1(Γ ) by us-
ing the method above to obtain bounds on ‖∇Γ (Sk − S0)‖L2(Γ )→L2(Γ ), ‖∇Γ (Dk −D0)‖L2(Γ )→L2(Γ ), and
‖∇Γ (D′k −D′0)‖L2(Γ )→L2(Γ ). In [42, §1.2] it is shown that the bounds (1.36) can also be obtained using
Young’s inequality, and we note that the bounds on ‖∇Γ (Sk−S0)‖L2(Γ )→L2(Γ ), ‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ),
and ‖∇Γ (D′k−D′0)‖L2(Γ )→L2(Γ ) that we obtain below can also be obtained using this alternative method.

Since we plan on bounding quantities involving S0, D0, and D′0, before we begin we recall that Φ0(x,y) is
defined when d = 3 by the second equation in (1.8) with k = 0, and when d = 2 by Φ0(x,y) :=− 1

2π
log |x−y|.

Proof (Proof of the bound (1.33) on ‖Sk‖L2(Γ )→H1(Γ )) The fact that Sk : L2(Γ )→ H1(Γ ) for k ≥ 0 follows
from the harmonic analysis results summarised in, e.g., [33, Chapter 15], [12, Theorems 2.15 and 2.16]. The
bound on ‖Sk‖L2(Γ )→H1(Γ ) (1.33) follows by using (2.2) and combining the estimates ‖Sk‖L2(Γ )→L2(Γ ) .

k(d−3)/2 (proved in [11, Theorem 3.3]) and

‖∇Γ Sk‖L2(Γ )→L2(Γ ) . 1+ k(d−1)/2, (2.7)

using the fact that, given k0 > 0, there exists a C (depending on k0 when d = 2) such that k(d−3)/2 + 1 +
k(d−1)/2 ≤C(1+ k(d−1)2) for all k ≥ k0. To obtain (2.7), note that ∇Γ Sk equals the vector-valued boundary
integral operator defined by

∇Γ Skφ(x) =
∫

Γ

(
∇xΦk(x,y)−n(x)

∂Φk

∂n(x)
(x,y)

)
φ(y)ds(y), (2.8)

where the integral is understood as a Cauchy Principal Value; see [33, Chapter 15, §4]. When Γ is Lipschitz,
the singularity in the integral on the right-hand side of (2.8) has the same strength as the singularity in
the integral defining Dk, and thus the bound ‖∇Γ Sk−∇Γ S0‖L2(Γ )→L2(Γ ) . k(d−1)/2 follows in exactly the
same way as the bound ‖Dk−D0‖L2(Γ )→L2(Γ ) . k(d−1)/2 was proved in [11, Theorem 3.5] (indeed, the same
t̃(x,y) in (2.6) can be used for both Dk−D0 and ∇Γ Sk−∇Γ S0).

To prove the bounds on Dk and D′k when d = 2 we need the following bounds on H(1)
1 (t).

Lemma 2.2 (Bounds on the Hankel function H(1)
1 (t)) There exist constants c j > 0, j = 1, . . . ,5, such that∣∣∣∣ iπ2 tH(1)

1 (t)−1
∣∣∣∣≤ c1t1/2, (2.9)

∣∣∣∣( iπ
2

tH(1)
1 (t)−1

)′∣∣∣∣≤ c2t1/2 + c3t−1/2, (2.10)

∣∣∣∣ iπ2 tH(1)
1 (t)−1

∣∣∣∣≤ c4t, and (2.11)

∣∣∣∣( iπ
2

tH(1)
1 (t)−1

)′∣∣∣∣≤ c5(1+ t), (2.12)

for all t > 0. Furthermore, there exists a function h(t) that is continuous on [0,∞) such that

iπ
2

tH(1)
1 (t)−1 = t h(t) (2.13)

for all t ≥ 0.
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We postpone the proof of Lemma 2.2 until after the proofs of the bounds (1.34) and (1.35). To put the
bounds in Lemma 2.2 into context, we note that∣∣∣∣ iπ2 tH(1)

1 (t)−1
∣∣∣∣∼ t1/2 as t→ ∞ and ∼ t2 log(1/t) as t→ 0,

and ∣∣∣∣( iπ
2

tH(1)
1 (t)−1

)′∣∣∣∣∼ t1/2 as t→ ∞ and ∼ t log(1/t) as t→ 0,

with the asymptotics as t→ ∞ following from the asymptotics of H(1)
ν (t) as t→ ∞ for ν fixed [1, Equation

9.2.3], and the asymptotics as t → 0 following from the power series of J0(t) and Y0(t) about t = 0 [1,
Equations 9.1.12 and 9.1.13]. Therefore, the bounds (2.9) and (2.10) are sharp as t→ ∞, but not as t→ 0,
and neither (2.11) nor (2.12) are sharp as either t→ ∞ or t→ 0.

The key point is that, although the bounds (2.9)–(2.12) are generally not sharp as t→ ∞ and t→ 0, they
are valid for all t > 0. We need this property for the proofs below since we let t = k|x−y| and this quantity
can be arbitrarily small (since y can be equal to x) and arbitrarily large (since k can be arbitrarily large).

The reason we need two different bounds on each of iπ
2 tH(1)

1 (t)−1 and ( iπ
2 tH(1)

1 (t)−1)′ is the following.
We use these bounds to bound the kernels of ∇Γ (Dk−D0) and ∇Γ (D′k−D′0), and when doing this we
have two contradictory requirements. On the one hand, we would like large powers of t in the bounds,
since, with t = k|x−y|, these would show that the kernel is well-behaved when y = x. On the other hand,
we would like small powers of t, since these would lead to small powers of k in the resulting bounds on
‖∇Γ (Dk−D0)‖L2(Γ )→H1(Γ ) and ‖∇Γ (D′k−D′0)‖L2(Γ )→H1(Γ ). The remedy is to use the bounds with large
powers of t, (2.11) and (2.12), to show that the kernels of the integral operators are non-singular, and then use
the bounds with small powers of t, (2.9) and (2.10), to obtain bounds with small powers of k on the norms.

Before proving the bounds (1.34) and (1.35), we state and prove one final lemma that we use in the
proofs of (1.34) and (1.35).

Lemma 2.3 We have that ∣∣eit(it−1)+1
∣∣≤ 2t for all t ≥ 0, (2.14)∣∣eit(it−1)+1
∣∣≤ t2

2
for all t ≥ 0, (2.15)

and there exists a function g(t) that is continuous on [0,∞) such that

eit(it−1)+1 = t2g(t) (2.16)

for all t ≥ 0. Furthermore,

|eit −1| ≤ t and |eit −1| ≤
√

2t for all t ≥ 0. (2.17)

Proof The bounds (2.14) and (2.15) are proved in [11, Lemma 3.4], and (2.16) follows from Taylor’s
theorem. To obtain (2.17), we observe that

|eit −1|= 2|sin(t/2)|= min
(

2,2 |sin(t/2)|
)
≤min(2, t),

where we have used that |sinx| ≤ x for x > 0. Since min(2, t) ≤ t and min(2, t) ≤
√

2t, the bounds (2.17)
follow. (Note that the second bound in (2.17) is proved in this way in [11, Page 11].)

Proof (Proof of the bound (1.34) on ‖Dk‖L2(Γ )→H1(Γ )) When Γ is C2, Dk : L2(Γ )→ H1(Γ ) for all k ≥ 0;
see [37, Theorem 4.4.1]. (Note that [37, Theorem 4.4.1] is proved using [37, Theorem 4.3.1], which is valid
if the “surface Γ [is] regular enough”, however one can check that Γ being C2 is sufficient.)

We already have that ‖Dk‖L2(Γ )→L2(Γ ) . 1+ k(d−1)/2 for general Lipschitz domains from [11, Theorem
3.5], and so, by (2.2), we only need to show that

‖∇Γ Dk‖L2(Γ )→L2(Γ ) . 1+ k(d+1)/2.
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Since
‖∇Γ Dk‖L2(Γ )→L2(Γ ) ≤ ‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) +‖∇Γ D0‖L2(Γ )→L2(Γ ) ,

we only need to show that
‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) . 1+ k(d+1)/2 (2.18)

for all k > 0.
Following the Riesz–Thorin method outlined above, we aim to prove (2.18) by applying (2.6) with

T = ∇Γ (Dk−D0). The definition of Dk (1.14) implies that

(Dk−D0)φ(x) =
∫

Γ

κ(x,y)φ(y)ds(y),

where

κ(x,y) =− 1
4π

(
eik|x−y|(ik|x−y|−1

)
+1
) (x−y) ·n(y)
|x−y|3

(2.19)

for d = 3, and

κ(x,y) =
1

2π

(
iπ
2

k|x−y|H(1)
1

(
k|x−y|

)
−1
)

(x−y) ·n(y)
|x−y|2

(2.20)

for d = 2, where n(y) is the outward-pointing unit normal vector to Ω− at y ∈ Γ .
Our plan for the rest of the proof is as follows. We use Lemma 2.1 to show that

∇Γ ,x(Dk−D0)φ(x) =
∫

Γ

∇Γ ,xκ(x,y)φ(y)ds(y). (2.21)

We then find a κ̃(x,y) such that κ̃(x,y) is in L1(Γ ) as a function of y, κ̃(x,y) = κ̃(y,x), and

|∇Γ ,xκ(x,y)|. κ̃(x,y). (2.22)

The consequence of the Riesz–Thorin theorem (2.6) then implies that

‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) . esssup
x∈Γ

∫
Γ

κ̃(x,y)ds(y). (2.23)

In rest of the proof, we use the notation a . b to mean that a ≤ Cb where C is independent of k and
independent of x and y (so, in particular, any factors of |x−y| must be given explicitly in the bound).

We now need to verify that the assumptions (i)-(iii) of Lemma 2.1 hold. Since Γ is C2, n is C1, and thus
the expressions (2.19) and (2.20) show that κ(x,y) is continuous for (x,y) ∈ Γ ×Γ , except possibly when
x = y. Writing (x−y) ·n(y) as |x−y|(̂x−y) ·n(y) and using the properties (2.16) and (2.13), we see that
κ(x,y) is continuous for all (x,y) ∈ Γ ×Γ , and thus the assumption (i) holds. The assumption (ii) follows
immediately from the expressions (2.19) and (2.20).

To prove that (iii) holds, we use (2.3) to find an explicit expression for τττ(x) ·∇Γ ,xκ(x,y) when τττ(x) is
an arbitrary unit tangent vector to x ∈ Γ . We make use of the fact that

κ(x,y) = f
(
|x−y|

)
(x−y) ·n(y), (2.24)

where

f (s) :=− 1
4π

(
eiks(iks−1

)
+1
) 1

s3 for d = 3, (2.25)

and

f (s) :=
1

2π

(
iπ
2

ksH(1)
1 (ks)−1

)
1
s2 for d = 2. (2.26)

Given a point x ∈ Γ and unit tangent vector τττ(x), let C be the curve on Γ passing through x with tangent
vector τττ(x). Let xh be a point on C such that the arc between xh and x has length h, so xh = x+hτττ(x)+O(h2).
By expanding |xh−y|2 = |(xh−x)+(x−y)|2 and using Taylor’s theorem, we find that

|xh−y|= |x−y|+hτττ(x) · (x−y)
|x−y|

+O(h2) as h→ 0. (2.27)
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With f (s) any differentiable function of s, Taylor’s theorem and the expressions (2.3) and (2.27) imply that

τττ(x) ·∇Γ ,x f
(
|x−y|

)
= τττ(x) · (x−y)

|x−y|
f ′
(
|x−y|

)
. (2.28)

Furthermore,
τττ(x) ·∇Γ

(
(x−y) ·n(y)

)
= τττ(x) ·n(y) = τττ(x) ·

(
n(y)−n(x)

)
. (2.29)

Using (2.24), (2.28), and (2.29), we then have that

τττ(x) ·∇Γ ,xκ(x,y) = τττ(x) · (x−y)
|x−y|

f ′
(
|x−y|

)
(x−y) ·n(y)+ f

(
|x−y|

)
τττ(x) ·

(
n(y)−n(x)

)
. (2.30)

Recall that our goal is to show that τττ(x) ·∇Γ ,xκ(x,y) is bounded on Γ ×Γ \{(x,y) : x = y}, for any tangent
vector τττ(x), and find a function κ̃(x,y) such that (2.22) holds.

The case d = 3. Using the bounds (2.14) and (2.15) and the definition of f (2.25), we find that

| f (s)|. k2s−1 and | f ′(s)|. k2s−2 for all k,s > 0.

Using these bounds in (2.30), along with the bounds

|n(x)−n(y)|. |x−y| and |(x−y) ·n(y)|. |x−y|2 (2.31)

(valid when Γ is C2; see, e.g., [17, Theorem 2.2]), we find that∣∣τ(x) ·∇Γ ,xκ(x,y)
∣∣. k2 for all (x,y) ∈ Γ ×Γ with x 6= y. (2.32)

Since τττ(x) was an arbitrary unit tangent vector, the bound (2.32) implies that ∇Γ ,xκ(x,y) is bounded on
Γ ×Γ \ {(x,y) : x = y}. Therefore, we can use Lemma 2.1 to obtain that (2.21) and (2.22) hold with
κ̃(x,y) = k2. The bound (2.23) then yields the bound (2.18) on ‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) when d = 3.

The case d = 2. Using the bounds (2.11) and (2.12) and the definition of f (2.26), we obtain that

| f (s)|. k
s

and | f ′(s)|. k(1+ ks)
s2 +

k
s2 for all k,s > 0.

Using these bounds in (2.30), along with the bounds in (2.31), we find that∣∣τ(x) ·∇Γ ,xκ(x,y)
∣∣. k + k2|x−y| for all (x,y) ∈ Γ ×Γ with x 6= y. (2.33)

Since τττ(x) was an arbitrary unit tangent vector, the bound (2.33) shows that ∇Γ ,xκ(x,y) is bounded on
Γ ×Γ \{(x,y) : x = y}, and thus (2.21) and (2.22) hold with κ̃(x,y) equal to the right-hand side of (2.33).
However, the consequence of the Riesz–Thorin theorem (2.23) then yields the bound

‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) . k + k2,

which is weaker than (2.18) when k is large. Having established that ∇Γ ,xκ(x,y) is bounded and thus that
(2.21) holds, we now seek a κ̃(x,y) with milder growth in k.

Using (2.9) and (2.10), we obtain that

| f (s)|. k1/2

s3/2 and | f ′(s)|. 1
s2

[
k3/2s1/2 +

k1/2

s1/2

]
for all k,s > 0.

Using these bounds in (2.30), we find that∣∣τ(x) ·∇Γ ,xκ(x,y)
∣∣. k3/2|x−y|1/2 +

k1/2

|x−y|1/2 (2.34)

for all (x,y) ∈ Γ ×Γ with x 6= y and for all k > 0. Since

sup
x∈Γ

∫
Γ

1
|x−y|1/2 ds(y) < ∞ when d = 2,

using the bound (2.34) in (2.23) yields the bound ‖∇Γ (Dk−D0)‖L2(Γ )→L2(Γ ) . k3/2 +k1/2. This bound then
implies the result (2.18) when d = 2, because there exists a C > 0 such that k1/2 + k3/2 ≤C(1+ k3/2) for all
k > 0.
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Whereas a bound on ‖Dk‖L2(Γ )→L2(Γ ) immediately yields a bound on ‖D′k‖L2(Γ )→L2(Γ ), we need to do a
little bit extra work to obtain the bound on ‖D′k‖L2(Γ )→H1(Γ ) from that on Dk.

Proof (Proof of the bound (1.35) on ‖D′k‖L2(Γ )→H1(Γ )) The kernel of D′k is identical to that of Dk except
that it involves n(x) instead of n(y). Inspecting the proof of the bound on ‖Dk‖L2(Γ )→H1(Γ ), we see that this
difference means that the proof of the bound for D′k follows from the proof of the bound for Dk if we can
show that ∣∣τττ(x) ·∇Γ ,x

(
(x−y) ·n(x)

)∣∣. |x−y|. (2.35)

Using (2.3), we have that

τττ(x) ·∇Γ ,x
(
(x−y) ·n(x)

)
= (x−y) ·

[
lim
h→0

n(xh)−n(x)
h

]
. (2.36)

Since Γ is C2, n is C1, and the quantity in square brackets is finite; the bound (2.35) then follows.

Proof (Proof of Corollary 1.2) Let C : Hs(Γ )→ Hs(Γ ) denote the operation of complex conjugation, i.e.,

C u(x) := u(x), x ∈ Γ ,

so that C is an anti-linear bounded operator on Hs(Γ ) for |s| ≤ 1. Then, if A∗ denotes the adjoint of a
bounded linear operator A on L2(Γ ), the relations (1.15) imply that

S∗k = C SkC and D∗k = C D′kC .

The relations (1.15) can then be written in terms of the duality pairing on Γ as

〈Skφ ,ψ〉Γ = 〈φ ,S∗kψ〉Γ and 〈Dkφ ,ψ〉Γ = 〈φ ,D∗kψ〉Γ . (2.37)

We concentrate on proving the bound on Sk (1.37); the bounds (1.38) and (1.39) on Dk and D′k respectively
follow in a similar manner.

We begin by proving that

‖Sk‖H−1(Γ )→L2(Γ ) ≤ ‖Sk‖L2(Γ )→H1(Γ ) . (2.38)

Indeed, using (2.37) we have that, for ψ ∈ L2(Γ ),

‖Skψ‖L2(Γ ) = ‖S∗kψ‖L2(Γ ) = sup
φ∈L2(Γ ),φ 6=0

∣∣〈S∗kψ,φ〉Γ
∣∣

‖φ‖L2(Γ )
= sup

φ∈L2(Γ ),φ 6=0

|〈ψ,Skφ〉Γ |
‖φ‖L2(Γ )

≤ sup
φ∈L2(Γ ),φ 6=0

‖ψ‖H−1(Γ ) ‖Skφ‖H1(Γ )

‖φ‖L2(Γ )

≤ ‖ψ‖H−1(Γ ) ‖Sk‖L2(Γ )→H1(Γ ) .

Since L2(Γ ) is dense in H−1(Γ ) the last inequality shows that Sk : H−1(Γ )→ L2(Γ ) and that (2.38) holds.
We then have that

‖Sk‖Hs−1/2(Γ )→Hs+1/2(Γ ) ≤ ‖Sk‖L2(Γ )→H1(Γ )

by interpolation (see, e.g., [29, Theorems B.2 and B.11]), and the result (1.37) follows.
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Proof (Proof of Lemma 2.2) We use the following integral representation of H(1)
0 ,

H(1)
0 (t) =−2i

π
eit
∫

∞

0

e−rt

r1/2(r−2i)1/2 dr, t > 0, (2.39)

[39, Chapter 7, Equation 13.07], [38, §2.12, Equation 12.31], where the branch cut of (r−2i)1/2 is taken so
that ℜ(r−2i)1/2 ≥ 0 for r ∈ [0,∞) (note that for this branch, ℑ(r−2i)1/2 ≤ 0 for r ∈ [0,∞)). Using (2.39)
and the facts that H(1)

1 (t) =−H(1)′
0 (t) and 1 = t

∫
∞

0 e−rtdr, we obtain

iπ
2

e−ittH(1)
1 (t)−1 =−t

∫
∞

0

e−rt

r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)
dr, t > 0. (2.40)

Since ℑ(r−2i)1/2 ≤ 0 for r ∈ [0,∞), we have

ℑ(r1/2(r−2i)1/2 + r− i)≤−1 for r ∈ [0,∞),

and then
|r1/2(r−2i)1/2 + r− i)| ≥ |ℑ(r1/2(r−2i)1/2 + r− i)| ≥ 1 for r ∈ [0,∞). (2.41)

Using (2.41) and the estimate |(r− 2i)1/2| ≥
√

2 for r ∈ [0,∞), we can estimate the modulus of the right
hand side of (2.40) by

t
∫

∞

0

e−rt

(2r)1/2 dr

and calculating this integral leads to the bound∣∣∣∣ iπ2 e−ittH(1)
1 (t)−1

∣∣∣∣≤
√

πt
2

(which is [11, Equation (1.24)]). Combining this bound with the triangle inequality and the second bound in
(2.17) gives the bound (2.9).

To obtain (2.10), we first rewrite (2.40) as

iπ
2

tH(1)
1 (t) = eit − eitt

∫
∞

0

e−rt

r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)
dr, t > 0. (2.42)

Differentiating both sides of (2.42) and estimating the integrals exactly as before, we obtain (2.10).
To obtain (2.11), note that the integral representation (2.40) gives∣∣∣∣ iπ2 e−ittH(1)

1 (t)−1
∣∣∣∣≤ t

∫
∞

0

e−rt

|r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)|
dr

≤ t
∫

∞

0

1
|r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)|

dr, (2.43)

and the integral on the right-hand side of (2.43) is finite. Using this last bound, the first bound in (2.17), and
the triangle inequality, we obtain (2.11).

Differentiating (2.42) and using (2.43) and (2.44), we see that to prove (2.12) we only need to show that∣∣∣∣∫ ∞

0

t r e−rtdr
r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)

∣∣∣∣. 1+ t, for t > 0. (2.44)

To prove (2.44) we split the integral over (0,∞) into integrals over (0,2) and (2,∞) so that we can use
the inequality

(r−2i)1/2 ≥max(r1/2,
√

2). (2.45)
Considering the integral over (0,2) and using (2.45) and (2.41), we have∣∣∣∣∫ 2

0

t r e−rtdr
r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)

∣∣∣∣≤ 1√
2

∫ 2

0
t r1/2e−rtdr =

1√
2t

∫ 2t

0
s1/2e−sds . t, (2.46)

where we have used the fact that exp(−s)≤ 1 for s≥ 0 to estimate the last integral.
For the second integral, we use (2.45) and (2.41) to obtain∣∣∣∣∫ ∞

2

t r e−rtdr
r1/2(r−2i)1/2(r1/2(r−2i)1/2 + r− i)

∣∣∣∣≤ t
∫

∞

2
e−rtdr = e−2t . 1. (2.47)

Combining the bounds (2.46) and (2.47), we obtain (2.44), and thus (2.12).
Finally, the claim (2.13) follows from (2.42) and Taylor’s theorem.
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3 Proofs of Theorems 1.1, 1.2, and 1.3 (concerning the relative best approximation errors)

The proofs in this section use upper bounds on ‖A′k,η‖L2(Γ )→L2(Γ ) and ‖Ak,η‖L2(Γ )→L2(Γ ), and the proofs
in §4 use upper bounds on ‖(A′k,η)−1‖L2(Γ )→L2(Γ ) and ‖A−1

k,η‖L2(Γ )→L2(Γ ). We therefore give a summary of
these bounds here.

3.1 Recap of upper bounds on ‖A′k,η‖L2(Γ )→L2(Γ ) and ‖(A′k,η)−1‖L2(Γ )→L2(Γ )

Theorem 3.1 (Upper bounds on ‖A′k,η‖L2(Γ )→L2(Γ ) and ‖Ak,η‖L2(Γ )→L2(Γ ) [11]) If Ω− ⊂ Rd , d = 2 or 3,
and Γ is Lipschitz then ∥∥A′k,η

∥∥
L2(Γ ) =

∥∥Ak,η
∥∥

L2(Γ ) . 1+ k(d−1)/2
(

1+
|η |
k

)
, (3.1)

for all k > 0 and η ∈ R [11, Theorem 3.6].

Note that (3.1) follows from the bounds (1.36) discussed in §2.

Theorem 3.2 (Upper bounds on ‖(A′k,η)−1‖L2(Γ )→L2(Γ ) and ‖A−1
k,η‖L2(Γ )→L2(Γ ) [16], [43])

(i) If Ω− ⊂ Rd , d = 2 or 3, is a Lipschitz domain that is star-shaped (in the sense of Definition 1.2) then∥∥(A′k,η)−1∥∥
L2(Γ )→L2(Γ ) = ‖A−1

k,η‖L2(Γ )→L2(Γ ) .

(
1+

1+ k
|η |

)
, (3.2)

for all k > 0 [16, Theorem 4.3].
(ii) If Ω+ ⊂ Rd , d = 2 or 3, is nontrapping (in the sense of [43, Definition 1.1]) or Ω− is a nontrapping

polygon (in the sense of [43, Definition 1.2]), then, given k0 > 0,∥∥(A′k,η)−1∥∥
L2(Γ )→L2(Γ ) = ‖A−1

k,η‖L2(Γ )→L2(Γ ) . k3/2
(

1+
k
|η |

)
(3.3)

for all k ≥ k0 and η ∈ R\{0} [43, Theorem 1.10].

3.2 Proofs of Theorems 1.1, 1.2, and 1.3

We first prove lower bounds on v and φ .

Lemma 3.1 If Γ is Lipschitz and v and φ are the solutions of (1.1) and (1.2) respectively, then, given k0 > 0,

‖v‖L2(Γ ) & k(3−d)/2 and ‖φ‖L2(Γ ) & k(1−d)/2 (3.4)

for all k ≥ k0.

Proof From the integral equations (1.1) and (1.2) and the definitions of f and g, (1.11) and (1.13) respectively,
we have that ∥∥A′k,η

∥∥
L2(Γ )→L2(Γ ) ‖v‖L2(Γ ) ≥ ‖ f‖L2(Γ ) = k‖n · â−η/k‖L2(Γ )

and ∥∥Ak,η
∥∥

L2(Γ )→L2(Γ ) ‖φ‖L2(Γ ) ≥ ‖γ+uI‖L2(Γ ) ∼ 1.

Choosing η = 0 and using the bounds (3.1) on ‖A′k,η‖L2(Γ )→L2(Γ ) and ‖Ak,η‖L2(Γ )→L2(Γ ), we obtain the
bounds (3.4).

Note that the upper bound on v for star-shaped domains, ‖v‖L2(Γ ) . k, mentioned in §1.2, follows from
the bound (3.2) on ‖(A′k,η)−1‖L2(Γ )→L2(Γ ) and the fact that ‖ f‖L2(Γ ) ∼ k (when |η | ∼ k). (In a similar manner,
we also have that ‖φ‖L2(Γ ) . 1.)
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Proof (Proof Theorem 1.1) As discussed in §1.2.1, if we can prove the bound (1.24) then the result (1.18)
follows from (1.23). Note that we only need to show that there exists a k1 > 0 and C > 0 (with C independent
of k) such that

‖v‖H1(Γ ) ≤Ck‖v‖L2(Γ ) for all k ≥ k1, (3.5)

since then, given k0 > 0, we have that

‖v‖H1(Γ ) ≤C′k‖v‖L2(Γ ) for all k ≥ k0,

where

C′ := max

{
C,

maxk0≤k≤k1 ‖v‖H1(Γ )

mink0≤k≤k1

(
k‖v‖L2(Γ )

)} .

In [18, Theorem 5.4, Corollary 5.5] it is proved that there exists k1 > 0 such that, for all k ≥ k1,

v(x) = kV (x,k) exp(ik x · â), (3.6)

and the estimates
|V (x,k)|. 1 and |Dn

Γ ,xV (x,k)|. 1+ k(n−1)/3

hold uniformly for x ∈ Γ , for all n≥ 1, where DΓ ,x is any first order differential operator on Γ . Thus

‖V ( . ,k)‖L2(Γ ) . 1 and ‖∇Γ V ( . ,k)‖L2(Γ ) . 1 (3.7)

for all k ≥ k1. Now, by differentiating (3.6) we obtain

∇Γ ,xv(x) = k
(

iv(x)
(
â− (â ·n(x))n(x)

)
+ ∇Γ ,xV (x,k)exp(ik x · â)

)
, (3.8)

and thus
|v|H1(Γ ) ≤ k

(
‖v‖L2(Γ ) +‖∇Γ V (·,k)‖L2(Γ )

)
Using the lower bound on v in (3.4) and the bound on ∇Γ V (3.7), we obtain that |v|H1(Γ ) . k‖v‖L2(Γ ) for all
k ≥ k1. This implies (3.5), and so we are done.

Proof (Proof Theorem 1.2) We first introduce some notation. Let Ω− be a convex polygon with ns sides
and let the vertices of the polygon be numbered P1 to Pns . Let ωm ∈ (π,2π) be the exterior angle at Pm. We
use the convention that Pns+1 = P1 and ωns+1 = ω1. Let Γm denote the side of the polygon connecting the
vertices Pm and Pm+1, let Lm denote its length.

We now recall some results about the behaviour of v on Γ that were originally proved in [14] and
recapped in [12, §3.3.1]. Let v(s) equal v(x,k) restricted Γm, where s denotes the distance of x from Pm. We
use the following decomposition of v(s),

v(s) = V0(s)+ k
[
V +

m (s)eiks +V−m (Lm− s)e−iks
]
, s ∈ [0,Lm] (3.9)

[12, Equation 3.36]. The function V0(s) equals V0(x,k) restricted to Γm, where

V0(x,k) =


2

∂uI

∂n
(x) on illuminated sides

0 on shadow sides,

where the shadow is defined to be such that n(x) · â ≥ 0 (i.e. sides with grazing incidence are also in the
shadow). Given k0 > 0, the functions V +

m (t), m = 1, . . . ,ns, satisfy the bounds∣∣∣∣ ∂ n

∂ tn V +
m (t)

∣∣∣∣. M(u)
kn

(kt)αm+n if t ≤ 1/k (3.10)

for all k ≥ k0 and n≥ 0, where αm := 1−π/ωm ∈ (0,1/2) [12, Theorem 3.9], [14, Corollary 3.4]. Similar
bounds hold for V−m (t) with αm replaced by αm+1. Furthermore, given k0 > 0,∣∣∣∣ ∂ n

∂ tn V±m (t)
∣∣∣∣. M(u)

kn

(kt)1/2+n if t ≥ 1/k (3.11)
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for all k ≥ k0 and n≥ 0 [12, Theorem 3.10], [14, Theorem 3.2], and similarly for V−m (t) after replacing αm
by αm+1.

These results mean that, in a k–dependent neighbourhood of Pm,

V +
m (s)∼ s−αm and (V +

m )′(s)∼ s−αm−1 as s→ 0,

(and similarly for V−m ) where the omitted constant depends on k. Therefore,

sβm |V +
m (s)| and sβm+1|(V +

m )′(s)| ∈ L2(Γm) if βm > αm−1/2.

This behaviour motivates the definition of the following weighted norm. Given βm, m = 1, . . . ,ns, with
αm−1/2 < βm < 0, let

‖v‖2
L2

w(Γ ) :=
ns

∑
m=1
‖v‖2

L2
w(Γm) ,

where

‖v‖2
L2

w(Γm) :=
∫ Lm/2

0
s2βm |v(s)|2 ds︸ ︷︷ ︸

=:I1

+
∫ Lm

Lm/2
(Lm− s)2βm+1 |v(s)|2 ds︸ ︷︷ ︸

=:I2

+
∫ Lm/2

0
s2βm+2 |v′(s)|2 ds︸ ︷︷ ︸

=:I3

+
∫ Lm

Lm/2
(Lm− s)2βm+1+2 |v′(s)|2 ds︸ ︷︷ ︸

=:I4

. (3.12)

The decomposition (3.9), the bounds (3.10) and (3.11), and the fact that βm > αm− 1/2 then imply that
‖v‖L2

w(Γ ) < ∞.
The approximation of such functions v by piecewise polynomials of fixed degree on graded meshes is

classical, with sample references being [10], [19]. The result [19, Lemma 2.10] implies that if the mesh on
Γm is given by (si)2N

i=1, with

si :=
Lm

2

(
i
N

)qm

and sN+i := Lm−
Lm

2

(
N− i

N

)qm

for i = 0, . . . ,N,

and qm >−1/βm, then

inf
wN∈VN

‖v−wN‖L2(Γ ) .
1
N
‖v‖L2

w(Γ ) , (3.13)

where VN is the corresponding space of piecewise polynomials of fixed degree. Recalling the beginning of
the proof of Theorem 1.1, we see that the result (1.19) follows from (3.13) if we can show that there exists a
k1 > 0 such that

‖v‖L2
w(Γ ) . k‖v‖L2(Γ ) for all k ≥ k1. (3.14)

That is, with I j, j = 1, . . . ,4, defined as in (3.12), we need to show that, for every m,

I1 + I2 + I3 + I4 . k2 ‖v‖2
L2(Γ ) . (3.15)

We now bound each of the I j separately. Before we begin, we note that 2βm +1 > 0 since 2αm ≥ 0. Using
(3.9), we have that

I1 .
∫ Lm/2

0
s2βm |V0(s)|2 ds+ k2

∫ Lm/2

0
s2βm |V +

m (s)|2 ds+ k2
∫ Lm/2

0
s2βm |V−m (Lm− s)|2 ds. (3.16)

Recall that V0(s) is ∂uI/∂n restricted to Γm, and

∂uI

∂n
(x) = ik eikx·â â ·n(x), (3.17)

and thus the first term on the right-hand side of (3.16) is . k2. For the second term on the right-hand side of
(3.16), we assume that kLm ≥ 2, split the integral into integrals over (0,1/k) and (1/k,Lm/2), and use the
bounds (3.10) and (3.11) to find that

k2
∫ Lm/2

0
s2βm |V +

m (s)|2 ds . k2(M(u)
)2

[∫ 1/k

0

s2βm

(ks)2αm
ds+

∫ Lm/2

1/k

s2βm

ks
ds

]
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.
k2
(
M(u)

)2

k2βm+1

[∫ 1

0

t2βm

t2αm
dt +

∫ kLm/2

1
t2βm−1dt

]

. k2(M(u)
)2
[

1
k2βm+1 +

1
k

]
,

. k2(M(u)
)2 using the fact that 2βm +1 > 0.

For the third term on the right-hand side of (3.16), we use the fact that kLm ≥ 2 and the bound (3.11) to
obtain

k2
∫ Lm/2

0
s2βm |V−m (Lm− s)|2 ds . k2(M(u)

)2
∫ Lm/2

0

s2βm

k(Lm− s)
ds,

. k
(
M(u)

)2
.

Therefore, putting the bound on the terms on the right-hand side of (3.16) together we have that

I1 . k2 + k2(M(u)
)2

. (3.18)

In a similar way, we find that an identical bound holds for I2.
To determine the k–dependence of I3 and I4, we need to estimate v′(s). Differentiating (3.9), we have that

v′(s) = V ′0(s)+ ik2
[
eiksV +

m (s)− e−iksV−m (L− s)
]
+ k
[
eiks(V +

m )′(s)− e−iks(V−m )′(L− s)
]
. (3.19)

The function V ′0(s) is the surface gradient on Γm of (3.17), and thus ∼ k2. Since our only lower bound on
‖v‖L2(Γ ) is ‖v‖L2(Γ ) & k1/2 (3.4), we need to estimate the term in (3.19) involving V ′0(s) in way other than
‖V ′0‖L2(Γm) . k2 . k3/2‖v‖L2(Γ ) (as this last inequality is too weak to give us (3.14)). Our plan is to express
V ′0(s) in terms of V0(s), and thus in terms of v(s), V +

m (s), and V−m (s). Taking the surface gradient of (3.17),
and recalling that n(x) is constant on Γm, we have that

∇Γ ,x

(
∂uI

∂n
(x)
)

=−k2 eikx·â (â ·n(x))(â · τττ(x)) = ik(â · τττ(x))
∂uI

∂n
(x),

where τττ(x) is a unit tangent vector on Γm. If â · τττ(x) = 0 (i.e. the incident wave is perpendicular Γm) then
V ′0(s) = 0 and (3.19) implies that

|v′(s)|. k2
[
|V +

m (s)|+ |V−m (Lm− s)|
]
+ k
[
|(V +

m )′(L− s)|+ |(V−m )′(s)|
]
. (3.20)

If â · τττ(x) 6= 0 then V ′0(s) = ikAV0(s) with A = â · τττ(x) (which is constant on each side). Therefore,

v′(s) = ikA
[
v(s)− k

(
V +

m (s)eiks +V−m (Lm− s)e−iks)]+ ik2
[
eiksV +

m (s)− e−iksV−m (Lm− s)
]

+ k
[
eiks(V +

m )′(s)− e−iks(V−m )′(Lm− s)
]
,

and

|v′(s)|. k|v(s)|+ k2
[
|V +

m (s)|+ |V−m (Lm− s)|
]
+ k
[
|(V +

m )′(s)|+ |(V−m )′(Lm− s)|
]

(3.21)

We proceed assuming that â · τττ(x) 6= 0 (and thus (3.21) holds); the argument in the case when â · τττ(x) = 0
(and (3.20) holds) is almost identical.

Using (3.21) in the definition of I3, we have that

I3 . k2
∫ Lm/2

0
s2βm+2|v(s)|2 ds+ k4

∫ Lm/2

0
s2βm+2

(
|V +

m (s)|2 + |V−m (Lm− s)|2
)

ds

+ k2
∫ Lm/2

0
s2βm+2

(
|(V +

m )′(s)|2 + |(V−m )′(Lm− s)|2
)

ds. (3.22)
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Now, the first term on the right-hand side of (3.22) is . k2‖v‖2
L2(Γ ). Using the bounds (3.10) and (3.11), the

second term on the right-hand side of (3.22) is

. k4(M(u)
)2

[∫ 1/k

0

s2βm+2

(ks)2αm
ds+

∫ Lm/2

1/k

s2βm+2

ks
ds+

∫ Lm/2

0

s2βm+2

k(Lm− s)
ds

]

. k4(M(u)
)2
[

1
k2βm+3 +

1
k

+
1
k

]
. k3(M(u)

)2 since 2βm +3 > 2.

Using the bounds (3.10) and (3.11) again, the third term on the right-hand side of (3.22) is

. k2(M(u)
)2
[∫ 1/k

0
s2βm+2 k2

(ks)2αm+2 ds+
∫ Lm/2

1/k
s2βm+2 k2

(ks)3 ds+
∫ Lm/2

0
s2βm+2 k2

(k(Lm− s))3 ds
]

. k2(M(u)
)2
[

1
k2βm+1 +

1
k

+
1
k

]
. k2(M(u)

)2 since 2βm +1 > 0.

Therefore,
I3 . k2 ‖v‖2

L2(Γ ) + k3(M(u)
)2 + k2(M(u)

)2; (3.23)

in a similar way, we find that an identical bound holds for I4. Using the bounds (3.18), (3.23) and their
counterparts for I2 and I4, we have that

I1 + I2 + I3 + I4 . k2 + k2(M(u)
)2 + k2 ‖v‖2

L2(Γ ) + k3(M(u)
)2

, (3.24)

If M(u) . 1, then the right-hand side of (3.24) is . k2‖v‖2
L2(Γ ) + k3. Since ‖v‖2

L2(Γ ) & k from (3.4), the
bound (3.15) holds and the proof is complete.

Proof (Proof of Theorem 1.3) If we can prove the bounds in (1.25), then the results (1.21) and (1.22) follow
by combining (1.25) and (1.23).

To prove the first inequality in (1.25), we begin by choosing η = k and writing the integral equation (1.1)
as

1
2

v+Lkv = f ,

where Lk := D′k− ikSk. Since Lk : L2(Γ )→ H1(Γ ) when Γ is C2 and f ∈ H1(Γ ), we have that v ∈ H1(Γ ).
Using the triangle inequality

1
2
‖v‖H1(Γ ) ≤ ‖ f‖H1(Γ ) +‖Lk‖L2(Γ )→H1(Γ ) ‖v‖L2(Γ ) . (3.25)

The definition of f (1.11) implies that, when η = k, ‖ f‖L2(Γ ) ∼ k and ‖ f‖H1(Γ ) ∼ k2, and then, using the
bounds in Theorem 1.6 we have that

‖v‖H1(Γ ) . k2 + k(d+1)/2 ‖v‖L2(Γ ) ∼ k(d+1)/2
(

k(3−d)/2 +‖v‖L2(Γ )

)
.

The lower bound on ‖v‖L2(Γ ) in (3.4) then implies the result on v in (1.25).
For the bound on φ in (1.25), we follow the proof of the bound on v and obtain the analogue of (3.25)

‖φ‖H1(Γ ) .
∥∥γ+uI∥∥

H1(Γ ) + k(d+1)/2 ‖φ‖L2(Γ ) .

Direct calculation shows that ‖γ+uI‖H1(Γ ) ∼ k, and thus

‖φ‖H1(Γ ) . k(d+1)/2
(

k(1−d)/2 +‖φ‖L2(Γ )

)
.

Using the lower bound (3.4) yields the bound on φ in (1.25).
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4 Proofs of Theorems 1.4 and 1.5 (quasi-optimality for h–version of the BEM)

4.1 Proofs of Theorems 1.4 and 1.5

In this section we assume that |η | ∼ k, and write the combined potential operators A′k,η and Ak,η as λ I +Lk,
where λ = 1/2 and Lk equals one of D′k− iηSk or Dk− iηSk. (Since |η | ∼ k the parameter η does not appear
explicitly in the notation Lk.) Therefore, the integral equation (1.1) becomes

(λ I +Lk)v = f , (4.1)

and (1.2) becomes (λ I +Lk)φ = g. In the rest of this section we only consider the direct equation (4.1), but
we note that the analysis for the indirect equation is identical.

We assume that Γ is C2 and we consider the h–version of the Galerkin method, i.e. we seek vh ∈ Vh, the
space of piecewise polynomials of degree p for some fixed p≥ 0 on shape regular meshes of diameter h,
with h decreasing to zero. The Galerkin equations (1.16) can then be written as(

(λ I +Lk)vh,wh
)

L2(Γ ) = ( f ,wh)L2(Γ ) for all wh ∈ Vh. (4.2)

If Ph denotes the orthogonal projection from L2(Γ ) onto Vh then the Galerkin equations (4.2) are equivalent
to the operator equation

(λ I +PhLk)vh = Ph f (4.3)

[3, §3.1.2].
We begin with a simple, classical lemma.

Lemma 4.1 If

‖(I−Ph)Lk‖L2(Γ )→L2(Γ )

∥∥(λ I +Lk)−1∥∥
L2(Γ )→L2(Γ ) ≤

δ

1+δ
(4.4)

for some δ > 0, then the Galerkin equations have a unique solution, vh, which satisfies the quasi-optimal
error estimate

‖v− vh‖L2(Γ ) ≤ λ (1+δ )
∥∥(λ I +Lk)−1∥∥

L2(Γ )→L2(Γ ) inf
wh∈Vh

‖v−wh‖L2(Γ ) . (4.5)

Proof Since δ > 0, the hypothesis (4.4) implies that∥∥I− (λ I +Lk)−1(λ I +PhLk)
∥∥

L2(Γ )→L2(Γ ) ≤
(

δ

1+δ

)
< 1. (4.6)

Using the fact that (I−A) is invertible if ‖A‖< 1 (with ‖(I−A)−1‖ ≤ (1−‖A‖)−1), the bound (4.6) implies
that (λ I +Lk)−1(λ I +PhLk) is invertible, with∥∥(λ I +PhLk)−1(λ I +Lk)

∥∥
L2(Γ )→L2(Γ ) ≤

1
1−δ/(1+δ )

= 1+δ .

Therefore, (λ I +PhLk) is invertible with∥∥(λ I +PhLk)−1∥∥
L2(Γ )→L2(Γ ) ≤ (1+δ )

∥∥(λ I +Lk)−1∥∥
L2(Γ )→L2(Γ ) . (4.7)

Since

v− vh = v− (λ I +PhLk)−1Ph f

= (λ I +PhLk)−1(λv−Ph( f −Lkv))

= λ (λ I +PhLk)
−1 (I−Ph)v,

the result (4.5) follows from the bound (4.7).

The following corollary follows from Lemma 4.1 when we have an estimate of the smoothing power of
Lk.
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Corollary 4.1 If
N(k) := ‖Lk‖L2(Γ )→H1(Γ ) < ∞ (4.8)

then, for any δ > 0, there exists a Cδ > 0 such that the condition

hN(k)
∥∥(λ I +Lk)−1∥∥

L2(Γ )→L2(Γ ) ≤ Cδ (4.9)

ensures that the quasi-optimal estimate (4.5) holds.

Proof By the standard approximation theory result (1.23), we have that

‖(I−Ph)Lk‖L2(Γ )→L2(Γ ) . hN(k) (4.10)

and so the result then follows from Lemma 4.1 (with Cδ taken to be δ/(1+δ ) divided by the hidden constant
in (4.10)).

We now use Theorems 1.6 and 3.2 to get a k–explicit bound on the left-hand side of (4.9), and this proves
Theorem 1.4.

Proof (Proof of Theorem 1.4) Since Ω− is C2, the bounds on Sk, Dk, and D′k in Theorem 1.6 imply that,
given k0 > 0,

‖Lk‖L2(Γ )→H1(Γ ) . k(d+1)/2 (4.11)

for all k ≥ k0. Furthermore, since Ω− is star-shaped, the bound (3.2) implies that, given k0 > 0,∥∥(λ I +Lk)−1∥∥
L2(Γ )→L2(Γ ) . 1

for all k ≥ k0. Using these two bounds, we see that there exists a C > 0 such that if hk(d+1)/2 ≤C then the
condition (4.9) is satisfied, and the result follows.

To prove Theorem 1.5 we use the classical “superconvergence argument” for second kind integral
equations; see, e.g., [9].

Lemma 4.2 Suppose that both the conditions (4.8) and

M(k) :=
∥∥(λ I +L∗k)

−1Lk
∥∥

L2(Γ )→H1(Γ ) < ∞ (4.12)

hold (where L∗k is the adjoint of Lk). Then the condition (4.9) is sufficient to ensure that the Galerkin equations
have a unique solution and furthermore there exists a C0 independent of h and k such that if

C0 hC(k)≤ 1 (4.13)

then
inf

wh∈Vh
‖v−wh‖L2(Γ ) ≤ ‖v− vh‖L2(Γ ) ≤

[
1+C0 hC(k)

]
inf

wh∈Vh
‖v−wh‖L2(Γ ) , (4.14)

where
C(k) = N(k)+

(
λ +‖Lk‖L2(Γ )→L2(Γ )

)
M(k). (4.15)

Proof If we apply Ph to (4.1) and subtract the resulting equation from (4.3) then we obtain

λ (vh−Phv) = PhLk(v− vh). (4.16)

Writing
‖v− vh‖2

L2(Γ ) =
(
v− vh,v−Phv

)
L2(Γ ) +

(
v− vh,Phv− vh

)
L2(Γ ), (4.17)

we see that to prove (4.14) we essentially have to show that the second term on the right-hand side of (4.17)
goes to zero more quickly than ‖v− vh‖2

L2(Γ ). This is done by taking the inner product of (4.16) with v− vh

to obtain

λ
(
v− vh,Phv− vh

)
L2(Γ ) =−

(
v− vh,PhLk(v− vh)

)
L2(Γ )

=
(
v− vh,(I−Ph)Lk(v− vh)

)
L2(Γ )−

(
v− vh,Lk(v− vh)

)
L2(Γ ). (4.18)
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Using the Cauchy-Schwarz inequality and (4.10), we estimate the first term on the right-hand side of (4.18)
by ∣∣(v− vh,(I−Ph)Lk(v− vh)

)
L2(Γ )

∣∣. hN(k)‖v− vh‖2
L2(Γ ) . (4.19)

The second term on the right-hand side of (4.18) can be rewritten as(
v− vh,Lk(v− vh)

)
L2(Γ ) =

(
(λ I +Lk)−1(λ I +Lk)(v− vh),Lk(v− vh)

)
L2(Γ )

=
(
(λ I +Lk)(v− vh),(λ I +L∗k)

−1Lk(v− vh)
)

L2(Γ )

=
(
(λ I +Lk)(v− vh),(I−Ph)(λ I +L∗k)

−1Lk(v− vh)
)

L2(Γ ),

where the last line uses the Galerkin orthogonality (4.16), i.e. the fact that Ph(λ I +Lk)(v− vh) = 0. Hence,
using again the Cauchy-Schwarz inequality and (4.10), we have that∣∣(v− vh,Lk(v− vh)

)
L2(Γ )

∣∣ . h
(
λ +‖Lk‖L2(Γ )→L2(Γ )

)
M(k) ‖v− vh‖2

L2(Γ ) . (4.20)

Therefore, using (4.19) and (4.20) in (4.18) and using the definition of C(k) (4.15), we obtain∣∣(v− vh,Phv− vh
)

L2(Γ )

∣∣. hC(k) ‖v− vh‖2
L2(Γ ) .

Finally, combining this with (4.17) and using the Cauchy-Schwarz inequality, we have that(
1− (C0/2)C(k)h

)
‖v− vh‖L2(Γ ) ≤ ‖v−Phv‖L2(Γ )

for some constant C0. If the threshold (4.13) holds, then we have the result (4.14).

Proof (Proof of Theorem 1.5) This follows from Lemma 4.2 if we can prove that

M(k) . kd . (4.21)

Indeed, using the bound (4.11) on Lk as a mapping from L2(Γ )→ H1(Γ ) and (4.21) we find that
hk(3d−1)/2→ 0 ensures that C0 hC(k)→ 0.

To bound M(k), we consider u and g related by

(λ I +L∗k)
−1Lku = g. (4.22)

This equation implies that if ‖g‖H1(Γ ) ≤ c‖u‖L2(Γ ) then M(k)≤ c. Now, from (4.22), (λ I +L∗k)g = Lku, and
therefore, using (4.11), we find that

λ ‖g‖H1(Γ ) . k(d+1)/2
(
‖g‖L2(Γ ) +‖u‖L2(Γ )

)
. (4.23)

We now need to bound ‖g‖L2(Γ ) in terms of ‖u‖L2(Γ ). To do this we use the bound (3.2) on
‖(λ I + L∗k)

−1‖L2(Γ )→L2(Γ ) and the bound (1.36) on ‖Lk‖L2(Γ )→H1(Γ ) to obtain ‖g‖L2(Γ ) . ‖Lku‖L2(Γ ) .

k(d−1)/2‖u‖L2(Γ ). The result (4.21) follows from using this last bound in (4.23).

4.2 Comparison with the results of [4], [28], and [31]

As mentioned in §1.2.2, the papers [4] and [28] investigate quasi-optimality of the Galerkin method applied
to (1.1) and (1.2) using a method that obtains sufficient conditions for quasi-optimality to hold in terms of
how well the spaces VN approximate the solution of certain adjoint problems. This method is often attributed
to Schatz [41]; for examples of its use and further development see [20, §4], and the references therein.

We now compare the results of [4] and [28] to the analysis in §4.1. We focus on the indirect equation
(1.2), since this allows us to keep the notation consistent with that in [28], and we write Ak,η as λ I +Lk when
doing so links these results to the analysis in §4.1.

In [4], the method discussed above is used to prove that

‖φ −φN‖L2(Γ ) .
(∥∥Ak,η

∥∥
L2(Γ )→L2(Γ )

)
inf

wN∈VN
‖φ −wN‖L2(Γ ) (4.24)
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provided that ∥∥Ak,η
∥∥

L2(Γ )→L2(Γ )

∥∥(I−PN)(λ I +L∗k)
−1Lk

∥∥
L2(Γ )→L2(Γ ) is sufficiently small, (4.25)

where PN denotes the orthogonal projection from L2(Γ ) onto VN [4, Corollary 3.3]. Choosing VN = Vh and
using the approximation result (1.23), we see that the condition (4.25) becomes

h
∥∥Ak,η

∥∥
L2(Γ )→L2(Γ ) M(k) is sufficiently small, (4.26)

where M(k) is defined by (4.12) (see also [4, Corollary 3.6]).
The presence of ‖Ak,η‖L2(Γ )→L2(Γ ) in the error estimate (4.24) means that this estimate will not give us

k–independent quasi-optimality for general domains (since for many domains ‖Ak,η‖L2(Γ )→L2(Γ ) grows with
k; see [11, §4], [12, §5.2.2]). However, when Γ is the circle or sphere and η = k2/3, ‖Ak,η‖L2(Γ )→L2(Γ ) . 1;
see [4, Corollary 3.11], [12, Theorem 5.12]. Furthermore, there is some numerical evidence that, with this
choice of η ,

M(k) . k (4.27)

[4, Figure 3.1]. Therefore, if Γ is the circle or sphere, η = k2/3, and (4.27) holds, then (4.24) and (4.26)
become

‖φ −φh‖L2(Γ ) . inf
wh∈Vh

‖φ −wh‖L2(Γ ) provided hk . 1.

The analysis in [28] treats Ak,η as a perturbation of the k–independent, invertible operator A0 := 1/2+
D0− iS0, and employs the general method discussed above to obtain that

‖φ −φN‖L2(Γ ) . inf
wN∈VN

‖φ −wN‖L2(Γ ) (4.28)

provided that ∥∥(I−PN)(Ak,η −A0)
∥∥

L2(Γ )→L2(Γ ) is sufficiently small (4.29)

and ∥∥(I−PN)(A∗k,η)−1(A∗k,η −A∗0)
∥∥

L2(Γ )→L2(Γ ) is sufficiently small (4.30)

(where the omitted constant in (4.28) contains ‖A0‖L2(Γ )→L2(Γ )) [28, Theorem 3.8 and Corollary 3.10].

The novel decompositions of Ak,η , A−1
k,η , and their adjoints in [31] show that if VN = Vh,p (the space

of piecewise polynomials of degree p on uniform meshes of mesh size h) and ‖(A∗k,η)−1‖L2(Γ )→L2(Γ ) is
bounded polynomially in k then the conditions (4.29) and (4.30) are satisfied when p & logk and hk . p [28,
Corollary 3.18]. These conditions on h and p can be satisfied with the total number of degrees of freedom
∼ kd−1, and thus this result proves that the hp–BEM does not suffer from the pollution effect. (Note that
the assumption that ‖(A∗k,η)−1‖L2(Γ )→L2(Γ ) = ‖A−1

k,η‖L2(Γ )→L2(Γ ) is bounded polynomially in k is ensured for
nontrapping domains by the bound (3.3).)

Although the methods in [28] and [31] are geared towards the hp–BEM (with the underlying assumption
that p will tend to infinity to obtain exponential convergence) we can take p to be constant and obtain
a condition on h for quasi-optimality of the h–BEM. Indeed, taking p to be constant and assuming that
‖A−1

k,η‖L2(Γ )→L2(Γ ) . 1 (as it is when Ω− is star-shaped by (3.2)), we find that [28, Theorem 3.17] implies
that (4.28) holds when if hk6 . 1.

We can use the results of the present paper to obtain better bounds on the quantities in (4.29) and (4.30)
for the h–BEM. Indeed, using the approximation theory result (1.23), we see that if ‖A−1

k,η‖L2(Γ )→L2(Γ ) . 1
then the condition (4.29) is almost identical to (4.9). The bounds in Theorem 1.6 therefore show that the
condition (4.29) is satisfied if hk(d+1)/2 . 1 (and ‖A−1

k,η‖L2(Γ )→L2(Γ ) . 1). Similarly, we see that the condition
(4.30) is essentially the condition that hM(k) is sufficiently small, and then the bound on M(k) (4.21) (valid
when ‖A−1

k,η‖L2(Γ )→L2(Γ ) . 1) implies that this is satisfied when hkd . 1.
In summary, the best result for the h–BEM that can be obtained from the results in [4], [28], and [31]

is that if Ω− is C2 and star-shaped (in the sense of Definition 1.2) then the quantities in (1.5) are bounded
independently of k if hkd . 1; this is a weaker result than that of Theorem 1.4.
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5 Numerical experiments concerning Question 2

Our numerical examples involve the direct operator A′k,−k = 1/2+D′k + ikSk, where the coupling parameter
η is taken to be −k. The geometries considered are polygons, and we use the canonical element maps to
define the ansatz spaces Vh,p of piecewise polynomials of degree p on uniform meshes Th of mesh size h.
The BEM operators D′k and Sk are set up with an hp–quadrature with 10 quadrature points in each direction
per quadrature cell. Details of the fast quadrature technique employed are described in [27].

Denoting by PTh,p : L2(Γ )→ Vh,p the Galerkin projector, which is characterized by

(A′k,−k(u−PTh,pu),v)L2(Γ ) = 0 for all v ∈ Vh,p,

we approximate the Galerkin error ‖I−PTh,p‖L2(Γ )→L2(Γ ) by the formula

‖I−PTh,p‖L2(Γ )→L2(Γ ) ≈ sup
06=v∈Vh,pmax

‖v−PTh,pv‖L2(Γ )

‖v‖L2(Γ )
, pmax = 5. (5.1)

As described in [28, §4], we evaluate for p ∈ {0,1} the expression√
1+ γ2

p := sup
06=v∈Vh,pmax

‖v−PTh,pv‖L2(Γ )

‖v‖L2(Γ )
, (5.2)

using an appropriate SVD;
√

1+ γ2
p is therefore an approximation to the quantity involving v in (1.5) (see

[28, Lemma 4.1]). At the same time, the Galerkin matrix corresponding to the space Vh,pmax is used to get
estimates for the norms ‖A′k,−k‖L2(Γ )→L2(Γ ) and ‖(A′k,−k)

−1‖L2(Γ )→L2(Γ ).

Example 5.1 The geometry is the rectangle Ω− = (0,1/2)× (0,5) and the numerical results are presented
in Figure 5.1. By the star-shapedness of Ω− we have ‖(A′k,−k)

−1‖L2(Γ )→L2(Γ ) . 1 (see Theorem 3.2) which
is clearly visible in Figure 5.1. Furthermore, Figure 5.1 suggests an even better bound than the estimate
‖A′k,−k‖L2(Γ )→L2(Γ ) . k1/2 given in Theorem 3.1. The values γ0 and γ1 computed according to (5.2) are
obtained on uniform meshes keeping kh fixed. Specifically, with L = 11 being the length of Γ , the number of
degrees of freedom per wavelength

Nλ := 2π
N(p+1)

Lk
is Nλ = 2π for p = 0 and 4π for p = 1. Despite using a uniform mesh (for a polygonal domain Ω−), the
values of γ0 and γ1 are practically constant over a large range of values of k. The value γ1 is consistently
smaller than γ0, reflecting the better approximation properties of the space Vh,1 over the space Vh,0.

Example 5.2 The geometry is the C-shaped domain given by

Ω− = ((−r/2,r/2)× (−r/3,r/3))\ ((−r/6,r/6)× (0,r/3)), r = 1/2.

For different values of the parmeter m ∈ 3N, we select the number of elements N and the wavenumber k
according to

N = 20m, k =
3mπ

r
.

The choice of these wavenumbers is motivated by the analysis in [11, §5] where it is shown that
‖(A′k,−k)

−1‖L2(Γ )→L2(Γ ) & k0.9. Figure 5.2 suggests that this estimate is sharp. At the same time, it con-
firms the bound ‖Ak,−k‖L2(Γ )→L2(Γ ) . k1/2. The table presents for the cases p = 0 and p = 1 the values of
γp given by (5.2) when keeping kh fixed. Specifically, the number of degrees of freedom per wavelength
Nλ := 2π

N(p+1)
Lk where L = 4r is the length of Γ ; then, Nλ ≈ 6.6 for p = 0 and Nλ ≈ 13.2 for p = 1. The

values γp are practically constant as k is increased, so the condition kh ∼ 1 appears to be sufficient for
k–independent quasi-optimality. It is worth noting that, since ‖(A′k,−k)

−1‖L2(Γ )→L2(Γ ) grows with k, the
analysis in §4 suggests more stringent conditions on the relation between h and k than in the case of the
star-shaped geometry of Example 5.1 (although this analysis is only valid when Γ is C2, and thus not when
Ω− is a polygon as in these examples).
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Fig. 5.1 Rectangular domain (see Example 5.1 for details)
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Fig. 5.2 C-shaped domain (see Example 5.2 for details)

Summary. The numerical experiments in these two examples (along with similar numerical results when Γ

is a circle or an ellipse in [28, §4]) indicate that k–independent quasi-optimality holds when hk ∼ 1, even
in some situations where the norm of the solution operator (i.e. ‖(A′k,η)−1‖L2(Γ )→L2(Γ )) grows with k. This
should be contrasted with the well-known fact that hk∼ 1 is not sufficient for k–independent quasi-optimality
of the h–FEM, even when the solution operator is bounded independently of k. These observations about the
quasi-optimality of the h–BEM have yet to be proved rigorously, however, with the analysis in §4 yielding
the more restrictive condition hk3/2 . 1 (in 2–d) for k–independent quasi-optimality (under the assumption
that ‖(A′k,η)−1‖L2(Γ )→L2(Γ ) . 1).
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