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How should one choose the shift for the shifted Laplacian to be a good

preconditioner for the Helmholtz equation?

M. J. Gander · I. G. Graham · E. A. Spence
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Abstract There has been much recent research on preconditioning discretisations of the Helmholtz
operator ∆ + k2 (subject to suitable boundary conditions) with the inverse of a discrete version of
the so-called “shifted Laplacian” ∆ + (k2 + iε) for some ε > 0. (In practice this inverse is replaced
with a cheaper approximation in order to obtain a practically viable preconditioner.) Despite many
numerical investigations, there has been no rigorous analysis of how one should chose the shift. In
this paper we give sufficient conditions on ε for the matrix of the shifted problem to be a good
preconditioner for the original matrix as k → ∞. The results hold for finite element discretisations
of both the interior impedance problem and the sound-soft scattering problem (with the radiation
condition in the latter problem imposed as a far-field impedance boundary condition).

Keywords: Helmholtz equation, iterative method, preconditioning, high frequency, shifted Lapla-
cian preconditioner, GMRES.

1 Introduction

The Helmholtz equation is the simplest possible model of wave propagation. Although most appli-
cations are concerned with the propagation of waves in exterior domains, it is common to use as a
model problem the Helmholtz equation posed in an interior domain with an impedance boundary
condition, i.e.

∆u + k2u = −f in Ω, (1.1a)

∂nu − iku = g on Γ, (1.1b)

where Ω is a bounded Lipschitz domain in Rd (d = 2 or 3) with boundary Γ , and f and g are
prescribed functions. This paper is predominately concerned with the interior impedance problem
(1.1), but we also consider the exterior Dirichlet problem, with the radiation condition realised as
an impedance boundary condition (i.e. a first-order absorbing boundary condition).

The Helmholtz equation is difficult to solve numerically for the following two reasons:

1. The solutions of the homogeneous Helmholtz equation oscillate on a scale of 1/k, and so to
approximate them accurately one needs the total number of degrees of freedom, N , to be
proportional to kd as k increases. Furthermore, the pollution effect means that in some cases
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(e.g. for low-order finite element methods) having N ∼ kd is still not enough to keep the relative
error bounded independently of k as k increases. This growth of N with k leads to very large
matrices, and hence to large (and sometimes intractable) computational costs.

2. The standard variational formulation of the Helmholtz equation is sign-indefinite (i.e. not co-
ercive). This means that (i) it is hard to prove error estimates for the Galerkin method that
are explicit in k, and (ii) it is hard to prove anything a priori about how iterative methods be-
have when solving the Galerkin linear system; indeed, one expects iterative methods to behave
extremely badly if the indefinite system is not preconditioned.

Quite a lot of recent research has focused on preconditioning (1.1) using the discretisation of
the original Helmholtz problem with a complex shift:

∆u + (k2 + iε)u = −f in Ω, (1.2a)

∂nu − iηu = g on Γ. (1.2b)

The parameter η is usually chosen to be either k or
√

k2 + iε, and the analysis in this paper covers
both these choices. It is well-known that, with k fixed, the solution of (1.2) tends to the solution of
(1.1) as ε → 0; this is called the “principle of limited absorption”. When used as a preconditioner
for (1.1), the problem (1.2) is usually called the “shifted Laplacian preconditioner” (even though
the shift is added to the Helmholtz operator itself).

In some ways it is more natural to consider adding absorption to the problem (1.1) by letting
k 7→ k + iδ for some δ > 0 (with η then usually chosen as either k or k + iδ). The results in this
paper are equally applicable to this preconditioner, however we consider absorption in the form of
(1.2) since this form seems to be more prevalent in the literature.

The question then arises, how should one choose the “absorption” (or “shift”) parameter ε? In
this paper we investigate this question when (1.1) is solved using finite element methods (FEMs)
of fixed order.

Recall that the standard variational formulation of (1.2) (for any ε ≥ 0) is, given f ∈ L2(Ω),
g ∈ L2(Γ ), η > 0, and k > 0,

find u ∈ H1(Ω) such that aε(u, v) = F (v) for all v ∈ H1(Ω), (1.3)

where

aε(u, v) :=

∫

Ω

∇u · ∇v − (k2 + iε)

∫

Ω

uv − iη

∫

Γ

uv. (1.4)

and

F (v) :=

∫

Ω

fv +

∫

Γ

gv. (1.5)

The original Helmholtz problem that we are interested in solving, (1.1), is therefore (1.3) when
ε = 0 and η = k, and in this case we write a(u, v) instead of aε(u, v).

If VN is an N -dimensional subspace of H1(Ω) with basis {φi : i = 1, . . . , N} then the corre-
sponding Galerkin approximation of (1.3) is:

find uN ∈ VN such that aε(uN , vN ) = F (vN ) for all vN ∈ VN . (1.6)

The Galerkin equations (1.6) are equivalent to the N -dimensional linear system

Aεu = f , with Aε = S− (k2 + iε)M − iηN, (1.7)

where Sℓ,m =
∫

Ω
∇φℓ ·∇φm is the stiffness matrix, Mℓ,m =

∫
Ω

φℓφm is the domain mass matrix, and
Nℓ,m =

∫
Γ

φℓφm is the boundary mass matrix. When ε = 0 and η = k, (1.7) is the discretisation
of the original problem (1.1), in which case we write A instead of Aε in (1.7). Note that Aε and
A are both symmetric but not Hermitian.

The “shifted Laplacian preconditioner” (applied in left-preconditioning mode) replaces the
solution of Au = f with the solution of:

A−1
ε Au = A−1

ε f . (1.8)

GMRES works well applied to this problem if ‖I − A−1
ε A‖2 is sufficiently small (and this can be

quantified by the Elman estimate recalled in Theorem 1.7 and Corollary 1.8 below).
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In practice, A−1
ε in (1.8) is replaced with an approximation of A−1

ε that is easy to compute
(e.g. a multigrid V-cycle). When doing this, it is sometimes useful to introduce a second absorption
parameter ε′ ≥ ε. Then, letting B−1

ε′ denote an approximation of A−1
ε′ , we replace (1.8) with

B−1
ε′ Au = B−1

ε′ f . (1.9)

Writing

I − B−1
ε′ A = I − B−1

ε′ Aε + B−1
ε′ Aε(I − A−1

ε A), (1.10)

we see that a sufficient condition for GMRES to converge in a k–independent number of steps is
that both ‖I−A−1

ε A‖2 and ‖I−B−1
ε′ Aε‖2 are sufficiently small. We write these two conditions as

(P1) A−1
ε is a good preconditioner for A

and

(P2) B−1
ε′ is a good preconditioner for Aε.

In other words, the task is to find ε, ε′ and Bε so that both properties (P1) and (P2) are satisfied.
At this stage, one might already guess that achieving both (P1) and (P2) imposes somewhat
contradictory requirements on ε. Indeed, on the one hand, (P1) requires ε to be sufficiently small
(since the ideal preconditioner for A is A−1, which is A−1

0 ). On the other hand, the larger ε is, the
less oscillatory the shifted problem is, and the cheaper it will be to construct a good approximation
to A−1

ε in (P2). These issues have been explored numerically in the literature (see the discussion
in §1.1 below), however there are no rigorous results about how to achieve either (P1) or (P2), and
hence no theory about the best choice of ε and ε′.

In this paper we perform the first step in this analysis by describing rigorously how large one
can choose ε so that (P1) still holds. In a subsequent paper [20] we will describe a class of domain
decomposition preconditioners and how ε and ε′ should be chosen for these so that (P2) holds.
The results of these two investigations allow us to make the best choice of ε and ε′ in the design
of preconditioners for A.

Before outlining the main results of this paper, we review the literature on the shifted Lapla-
cian preconditioner, focusing on the choices of ε proposed, and whether these choices are aimed at
achieving (P1) or (P2). (Although not all of this previous work concerns finite-element discretisa-
tions of the Helmholtz equation, in the discussion below we still use A to denote the discretisation
of the (unshifted) Helmholtz problem, and A−1

ε to denote the preconditioner arising from the
shifted Helmholtz problem.)

1.1 Previous work on the shifted Laplacian preconditioner

Preconditioning the Helmholtz operator with the inverse of the Laplacian was proposed in [2], and
preconditioning with (∆ − k2)−1 was proposed in [31].

Preconditioning the Helmholtz operator with (∆+iε)−1 was considered in [15] and [16], and then
preconditioning with (∆+k2 +iε)−1 was considered in [14] and [49]. For both preconditioners, the
authors chose ε ∼ k2, and constructed an approximation to the discrete counterpart of (∆ + iε)−1

or (∆ + k2 + iε)−1 using multigrid. (Using the notation above, preconditioning with the second
operator corresponds to choosing ε = ε′ ∼ k2 and constructing B−1

ε′ using a multigrid V-cycle.)
Preconditioning with (∆ + k2 + iε)−1 and ε ∼ k2 was then further investigated in the context of
multigrid in [7] and [44].

The choice ε ∼ k2 was motivated by analysis of the 1-d Helmholtz equation in an interval with
Dirichlet boundary conditions in [15, §5], [13, §5.1.2], [14, §3], with this analysis using the fact that
in this situation the eigenvalues of the Laplacian are known explicitly. The investigations in [15,
§5] and [13, §5.1.2] considered preconditioning the Helmholtz operator with (∆ + k2(a + ib))−1,
and found that, under the restriction that a ≤ 0, |λmax|/|λmin| was minimised for the operator
(∆ + k2(a + ib))−1(∆ + k2) when a = 0 and b = ±1. The eigenvalues of (∆ + k2(a + ib))−1(∆ + k2)
for this boundary value problem were plotted in [14, §3], and it was found that they were better
clustered for a = 1 and several choices of b ∼ 1 than for a = 0 and b = 1. (This eigenvalue clustering
can be seen as partially achieving (P1) at the continuous level).
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Another eigenvalue-analysis of the Helmholtz equation in 1-d with Dirichlet boundary condi-
tions was conducted in [17]. Here, the eigenvalues of a finite-difference discretisation of this problem
were calculated, and it was stated that ε < k is needed for the eigenvalues to be clustered around
one (which partially achieves (P1)). Furthermore, a Fourier analysis of multigrid in this paper
showed that ε ∼ k2 is needed for multigrid to converge for Aε (i.e. for (P2) to be achieved with
ε′ = ε).

Other uses of the shifted Laplacian preconditioner include its use with ε ∼ k2 in the context of
domain decomposition methods in [29], and its use with ε ∼ k in the sweeping preconditioner of
Enquist and Ying in [12] (these authors consider preconditioning the Helmholtz equation with k
replaced by k+iδ with δ ∼ 1, and this corresponds to choosing ε ∼ k). Finally we note that solving
the problem with absorption by preconditioning with the inverse of the Laplacian (i.e. aiming to
achieve (P2) with ε′ = 0) has been investigated in [24], [23].

Two points to note from this literature review are the following.

(i) All the analysis of how to choose ε has focused on studying the eigenvalues of A−1
ε A (and then

trying to either minimise |λmax|/|λmin| or cluster the eigenvalues around the point 1).
(ii) Almost all these investigations consider the Helmholtz equation posed in a 1-d interval with

Dirichlet boundary conditions, under the assumption that k2 is not an eigenvalue.

Recall that linear systems involving Hermitian matrices can be solved using the conjugate gradient
method, and bounds on the number of iterations can be obtained from information about the
eigenvalues of the matrix. However, if the matrix is non-Hermitian, general purpose iterative solvers
such as GMRES or BiCGStab are required, and information about the spectrum is usually not
enough to provide information about the number of iterations required. Even when A is Hermitian
(as is the case for Dirichlet boundary conditions, but not for impedance boundary conditions), Aε

is not Hermitian, and therefore the investigations of the eigenvalues of A−1
ε A discussed above are

not sufficient to provide bounds on the number of iterations (with this fact noted in [14]).

1.2 Statement of the main results

In this paper we prove several results that give sufficient conditions on ε for the shifted Laplacian
to be a good preconditioner for the Helmholtz equation, i.e. for (P1) to be satisfied.

The boundary value problems for the Helmholtz equation that we consider are

1. the interior impedance problem (1.1), and
2. the truncated sound-soft scattering problem.

By “the truncated sound-soft scattering problem” we mean the exterior Dirichlet problem (with
zero Dirichlet boundary conditions on the obstacle) where the radiation condition is imposed via
an impedance boundary condition on the boundary of a large domain containing the obstacle (i.e.
a first-order absorbing boundary condition); see Problem 2.4 and Figure 2.

We consider solving these boundary value problems with FEMs of fixed order. Although such
methods suffer from the pollution effect, they are still highly used in applications. We prove results
when

(a) the boundary of the domain is smooth and a quasi-uniform mesh is used, and
(b) the domain is non-smooth and locally refined meshes are used (under suitable assumptions).

For simplicity, we now state the main results of the paper for the interior impedance problem when
(a) holds (Theorems 1.4 and 1.5 below). The analogous result for the interior impedance problem
when (b) holds is Theorem 4.4, and the analogous result for the truncated sound-soft scattering
problem when (a) holds is Theorem 4.5.

Notation 1.1 We use the notation a . b to mean that there exists a C > 0 (independent of all
parameters of interest and in particular k, ε, and h) such that a ≤ C b. We say that a ∼ b if a . b
and a & b.

Throughout the paper we make the assumption that

ε . k2. (1.11)
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It is possible to derive analogous results for larger ε, but ε ∼ k2 is the largest value of the
shift/absorption usually considered in the literature and we do not expect interesting results for
larger ε.

Definition 1.2 (Star-shaped)

(i) The domain Ω is star-shaped with respect to the point x0 ∈ Ω if the line segment [x0,x] is
a subset of Ω for all x ∈ Ω.

(ii) The domain Ω is star-shaped with respect to the ball Ba(x0) (with a > 0 and x0 ∈ Ω) if Ω
is star-shaped with respect to every point in Ba(x0).

Remark 1.3 (Remark on star-shapedness) If Ω is Lipschitz (and so has a normal vector
at almost every point on the boundary) then Ω is star-shaped with respect to x0 if and only if
(x − x0) · n(x) ≥ 0 for all x ∈ ∂Ω for which n(x) is defined. Furthermore, Ω is star-shaped with
respect to Ba(x0) if and only if (x − x0) · n(x) ≥ a for all x ∈ ∂Ω for which n(x) is defined (for
proofs of these statements see [35, Lemma 5.4.1] or [26, Lemma 3.1]). Whenever we consider a
star-shaped domain (in either sense) in this paper, we assume that x0 = 0.

Theorem 1.4 (Sufficient conditions for A−1
ε to be a good preconditioner) Suppose that ei-

ther Ω is a C1,1 domain in 2- or 3-d that is star-shaped with respect to a ball or Ω is a convex
polygon and suppose that A and Aε are obtained using H1-conforming polynomial elements of fixed
order on a quasi-uniform mesh. Assume that ε . k2 and either η = k or η =

√
k2 + iε. Then,

given any k0 > 0 and C > 0, there exist C1, C2 > 0 (independent of h, k, and ε but depending on
k0 and C) such that if hk2 ≥ C and

hk
√
|k2 − ε| ≤ C1 (1.12)

then ∥∥I− A−1
ε A

∥∥
2
≤ C2

ε

k
(1.13)

for all k ≥ k0.

Therefore, if ε/k is sufficiently small, A−1
ε is a good preconditioner for A. (If absorption is added

to the original problem by letting k 7→ k + iδ, with corresponding Galerkin matrix Aδ, then the
analogue of (1.13) is ‖I − A

−1
δ A‖2 ≤ C3δ, and thus if δ is sufficiently small, A

−1
δ is a good

preconditioner for A.) Theorem 1.4 has the following consequence.

Theorem 1.5 (k-independent GMRES estimate) If the assumptions of Theorem 1.4 hold
and ε/k is sufficiently small, then when GMRES is applied to the equation A−1

ε Au = A−1
ε f it

converges in a k–independent number of iterations.

These two theorems are proved in §4, along with analogous results for non-quasi-uniform meshes.

Where do the requirements on h in Theorem 1.4 come from? The requirement (1.12) ensures that
the Galerkin method is quasi-optimal, with constant independent of k and ε, when it is applied to
the variational problem (1.3), and the proof of Theorem 1.4 requires this quasi-optimality. (Recall
that the best result so far about quasi-optimality of the h-FEM is that, under some geometric
restrictions, quasi-optimality holds with constant independent of k when hk2 . 1 [34, Prop. 8.2.7].
The condition (1.12) is the analogue of hk2 . 1 for the shifted problem; see Lemma 3.5 below for
more details.) We discuss the condition (1.12) more in Remark 4.2, but note that if quasi-optimality
could be proved under less restrictive conditions, then the bound (1.13) would hold under these
conditions too.

When dealing with discretisations of the Helmholtz equation one expects to encounter a condi-
tion such as (1.12), however one does not usually expect to encounter a condition such as hk2 ≥ C
(although in practice this will always be satisfied). This second condition is only necessary when
η =

√
k2 + iε (and not when η = k), and arises from bounding ‖A−1

ε N‖2 independently of k, ε,
and h; see §1.3 below and Lemma 4.1.
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How sharp is the bound (1.13)? Numerical evidence suggests that (1.13) is sharp in the sense that
the right-hand side cannot be replaced by ε/kα for α > 1. Indeed, Figure 1 plots the boundary of the
numerical range of A−1

ε A for increasing k for each of the three choices ε = k, ε = k3/2, and ε = k2

(Recall that the numerical range of a matrix C is the set W (C) := {(Cx,x) : x ∈ C
N , ‖x‖2 = 1}.)

In this example, Ω is the unit square, η = k, f = 1, g = 0, VN is the standard hat-function basis
for conforming P1 finite elements on a uniform triangular mesh on Ω, and the mesh diameter h
is chosen to decrease proportional to k−2. The numerical range is computed using an accelerated
version of the algorithm of Cowen and Harel [8] (the algorithm is adapted to sparse matrices and
the eigenvalues are estimated by an iterative method, which avoids forming the system matrix).
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Fig. 1 The numerical range of A
−1
ε A, from top left to bottom for ε = k (top left), ε = k3/2 (top right), and ε = k2

(bottom), k = 10, 20, 40, 80

The figures show that when ε = k the numerical range remains bounded away from the origin
as k increases, whereas when ε = k3/2 or k2 the distance of the numerical range from the origin
decreases as k increases. This is consistent with the result of Theorem 1.4 since, when ‖x‖2 = 1,

∣∣(A−1
ε Ax,x

)∣∣ =
∣∣1 −

(
(I − A−1

ε A)x,x
)∣∣ ≥ 1 −

∥∥I − A−1
ε A

∥∥
2
≥ 1 − C2

ε

k
,

(where C2 is the constant in Theorem 1.4). This bound shows that when ε/k is small enough, the
numerical range is bounded away from the origin, although we cannot quantify “small enough”
here, since the value of C2 is unknown (although in principle one could work it out).

Of course, these experiments do not rule out the possibility that a bound such as

∥∥I − A−1
ε A

∥∥
2
≤ C3

ε

kα
(1.14)
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holds for some α > 1 and for some large C3. Nevertheless, in §6 we see that the condition “ε/k
sufficiently small” also arises when one considers how well the solution of the boundary value
problem with absorption (1.2) approximates the solution of the boundary value problem without
absorption (1.1), independently of any discretisations, and thus we conjecture that (1.14) does not
hold for any α > 1.

A disadvantage of the bound in Theorem 1.4 is that it seems to allow for the possibility that
‖I− A−1

ε A‖2 might grow with increasing k if ε ≫ k. However, we also prove the following result,
which rules out any growth.

Lemma 1.6 (Alternative bound on ‖I − A−1
ε A‖2) Under the conditions of Theorem 1.4 there

exists a C4 > 0 such that ∥∥I − A−1
ε A

∥∥
2
≤ C4, (1.15)

for all k ≥ k0.

In Table 1 we plot dist(0, W (A−1
ε A)) and also the number of GMRES iterations needed to

reduce the initial residual by six orders of magnitude, starting with a zero initial guess, when
GMRES is applied to A−1

ε Ax = A−1
ε 1. The difference between the two sets of results is that

results on the left are obtained with h = k−2 (in accordance with the conditions of Theorem 1.4),
and the results on the right are obtained with the less restrictive condition that h = k−3/2; we see
that the two sets of results are almost identical.

When ε = k the number of iterations stays constant as k increases (which is consistent with
Theorem 1.5), but when ε = k3/2 or ε = k2 the number of iterations grows with k. The results of
more extensive experiments are given in §5, but they all show similar behaviour (i.e. the number
of iterations remaining constant as k increases when ε = k, but increasing as k increases for larger
ε).

k ε = k ε = k3/2 ε = k2

10 0.76 (6) 0.46 (8) 0.15 (13)
20 0.75 (6) 0.34 (11) 0.055 (24)
40 0.74 (6) 0.23 (14) 0.017 (48)
80 0.73 (6) 0.14 (16) 0.0060 (86)

k ε = k ε = k3/2 ε = k2

10 0.76 (6) 0.45 (8) 0.14 (13)
20 0.75 (6) 0.34 (11) 0.054 (24)
40 0.74 (6) 0.23 (14) 0.017 (48)
80 0.73 (6) 0.14 (16) 0.0060 (86)

Table 1 dist(0, W (A−1
ε A)) and (in bold) the number of GMRES iterations needed to reduce the initial residual

by six orders of magnitude starting with a zero initial guess. The results on the left are obtained with h = k−2, and
the results on the right are obtained with h = k−3/2.

1.3 The idea behind the proofs of Theorems 1.4 and 1.5

The idea behind Theorem 1.4. Noting that

I − A−1
ε A = A−1

ε (Aε − A) = −iεA−1
ε M − i(η − k)A−1

ε N, (1.16)

where M and N are as in (1.7), we see that a bound on ‖I − A−1
ε A‖2 can be obtained from

bounds on ‖A−1
ε M‖2 and ‖A−1

ε N‖2. We obtain bounds on ‖A−1
ε M‖2 and ‖A−1

ε N‖2 in Lemma
4.1 below using an argument that bounds these quantities when Aε is the Galerkin matrix of a
general variational problem and one has

(i) a bound on the solution operator of the continuous problem, and
(ii) conditions under which the Galerkin method is quasi-optimal.

In our context, we need the bound (i) and the conditions (ii) (along with the corresponding constant
of quasi-optimality) to be explicit in h, k, and ε.

Regarding (i): proving bounds on the solution of the Helmholtz equation posed in exterior
domains is a classic problem, and in particular can be achieved using identities introduced by
Morawetz in [38]. Bounds on the solution of the interior impedance problem (1.1) and the truncated
sound-soft scattering problem were proved independently (although essentially using Morawetz’s
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identities) in [34], [9], and [25] (see [6, §5.3], [45, §1.2] for discussions of this work). In this paper we
use Green’s identity to bound the solution of the shifted interior impedance problem (1.2) explicitly
in k and ε when ε & k and Ω is a general Lipschitz domain, and we use Morawetz’s identities to
bound the solution (again explicitly in k and ε) when ε . k and Ω is a Lipschitz domain that is
star-shaped with respect to a ball. (We also prove analogous results for the truncated sound-soft
scattering problem.)

Regarding (ii): k-explicit quasi-optimality of the h-version of the FEM was proved by Melenk in
[34] in the case ε = 0. Indeed Melenk showed that quasi-optimality holds with a quasi-optimality
constant independent of k under the condition that hk2 . 1. This result was obtained using
a duality argument that is often attributed to Schatz [42] along with the k-explicit bound on
the solution discussed in (i). We apply this argument to the case when ε > 0, with the only
difference being that the variational formulation of (1.2) is coercive when ε > 0 with coercivity
constant ∼ ε/k2 (see Lemma 3.1). Therefore, instead of the mesh threshold hk2 . 1 we obtain
hk
√
|k2 − ε| . 1, reflecting the fact that if ε = k2 then the uniform coercivity in this case implies

that quasi-optimality holds with no mesh threshold.
The argument used to bound ‖A−1

ε M‖2 and ‖A−1
ε N‖2 in Lemma 4.1 below can also be used

to bound ‖A−1
ε ‖2 (when Aε is the Galerkin matrix of a general variational problem) if one has (i)

and (ii) above. We have not been able to find this argument explicitly in the literature, although
it is alluded to in [30, Last paragraph of §2.4]. Furthermore, put another way, this argument states
that if the sesquilinear form satisfies a continuous inf-sup condition and the Galerkin solutions
exist, are unique, and are quasi-optimal, then one can obtain a discrete inf-sup condition. When
phrased in this way, this result can be seen as a special case of [32, Theorem 3.9].

The idea behind Theorem 1.5. Theorem 1.5 follows from Theorem 1.4 by using the Elman estimate
for GMRES.

Theorem 1.7 If the matrix equation Cx = y is solved using GMRES then, for m ∈ N, the
GMRES residual rm := Cxm − y satisfies

‖rm‖2

‖r0‖2

≤ sinm β, where cosβ =
dist

(
0, W (C)

)

‖C‖2

(1.17)

(recall that W (C) := {(Cx,x) : x ∈ CN , ‖x‖2 = 1} is the numerical range or field of values).

The bound (1.17) was originally proved in [11] (see also [10, Theorem 3.3]) and appears in the form
above in [3, Equation 1.2]. A variant of this theory, where the Euclidean inner product (·, ·) and
norm ‖ · ‖2 are replaced by a general inner product and norm, is used in [5].

Theorem 1.7 has the following corollary.

Corollary 1.8 If ‖I− C‖2 ≤ σ < 1, then in (1.17)

cosβ ≥ 1 − σ

1 + σ
and sin β ≤ 2

√
σ

(1 + σ)2
.

Theorem 1.5 follows from Theorem 1.4 by applying Corollary 1.8 with C = A−1
ε A. Indeed, Theorem

1.4 shows that if ε/k is sufficiently small, ‖I−C‖2 can be bounded below one, independently of k
and ε. Therefore GMRES converges and the number of iterations is independent of k.

1.4 Outline and preliminaries

In Section 2 we prove bounds that are explicit in k, η, and ε on the solutions of the shifted interior
impedance problem (1.2) and the shifted truncated sound-soft scattering problem. In Section 3
we prove results about the continuity and coercivity of aε(·, ·) and obtain sufficient conditions for
the Galerkin method applied to aε(·, ·) to be quasi-optimal (with all the constants given explicitly
in terms of k, η, and ε). In Section 4 we put the results of Sections 2 and 3 together to prove
Theorem 1.4 and its analogue for non-quasi-uniform meshes. In Section 5 we illustrate the theory
with numerical experiments. Section 6 contains some concluding remarks about approximating the
solution of (1.1) by the solution of (1.2), independently of any discretisations.
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Notation and recap of elementary results. Let Ω ⊂ Rd, d = 2, or 3, be a bounded Lipschitz domain
(where by “domain” we mean a connected open set) with boundary Γ . We do not introduce any
special notation for the trace operator, and thus the trace theorem is simply

‖v‖H1/2(Γ ) . ‖v‖H1(Ω) for all v ∈ H1(Ω) (1.18)

(see [33, Theorem 3.38, Page 102]), and the multiplicative trace inequality is

‖v‖2
L2(∂Ω) . ‖v‖L2(Ω) ‖v‖H1(Ω) for all v ∈ H1(Ω) (1.19)

[21, Theorem 1.5.1.10, last formula on Page 41].
Let ∂n denote the normal-derivative trace on Ω (with the convention that the normal vector

points out of Ω). Recall that if u ∈ H2(Ω) then ∂nu := n · ∇u, and, for u ∈ H1(Ω) with
∆u ∈ L2(Ω), ∂nu is defined so that Green’s first identity holds (see, e.g., [6, Equation (A.29)]).
Denote the surface gradient on Γ by ∇Γ ; see, e.g., [6, Equation A.14] for the definition of this
operator in terms of a parametrisation of the boundary.

Finally, we repeatedly use the inequalities

2ab ≤ a2

δ
+ δb2 (1.20)

and
1

2
(a + b)2 ≤ a2 + b2 ≤ (a + b)2, (1.21)

where a, b, and δ are all > 0. (Recalling Notation 1.1, we see that (1.21) implies that a + b ∼√
a2 + b2.)

2 Bounds on the solution operators to the problems with absorption

In this section we prove bounds that are explicit in k, η, and ε on the solutions of the shifted
interior impedance problem and the shifted truncated sound-soft scattering problem. First, we
define precisely what we mean by these problems.

Problem 2.1 (Interior Impedance Problem with absorption) Let Ω ⊂ Rd, with d = 2 or
3, be a bounded Lipschitz domain with outward-pointing unit normal vector n and let Γ := ∂Ω.
Given f ∈ L2(Ω), g ∈ L2(Γ ), η ∈ C \ {0} and ε ≥ 0, find u ∈ H1(Ω) such that

∆u + (k2 + iε)u = −f in Ω, (2.1a)

∂nu − iηu = g on Γ. (2.1b)

Remark 2.2 (Existence and uniqueness) One can prove using Green’s identity that the solu-
tion of the Problem 2.1 (if it exists) is unique; see §2.1.2. One can prove via Fredholm theory (using
the fact that H1(Ω) is compactly contained in L2(Ω)) that uniqueness implies existence in exactly
the same way as for the problem with ε = 0.

Remark 2.3 (The choice of η) If one thinks of the impedance boundary condition as being a
first order approximation to the Sommerfeld radiation condition, then for the unshifted problem
η should be equal to k, and for the shifted problem η should be equal to

√
k2 + iε. With ηR and

ηI denoting the real and imaginary parts of η respectively, we prove bounds under the assumption
that ηR ∼ k and 0 ≤ ηI . k. These assumptions cover both the case that η = k and the case that
η =

√
k2 + iε (recall that we assume that ε . k2).

Problem 2.4 (Truncated sound-soft scattering problem with absorption) Let ΩD be a
bounded Lipschitz open set in Rd (d = 2 or 3) such that the open complement Ω+ := Rd \ ΩD is
connected. Let ΩR be a bounded Lipschitz domain such that ΩD ⊂ ΩR ⊂ Rd with d(ΩD, ∂ΩR) > 0
(where d(·, ·) is the distance function). Let ΓR := ∂ΩR, ΓD := ∂ΩD, and Ω := ΩR \ ΩD (thus
∂Ω = ΓR ∪ ΓD and ΓR ∩ ΓD = ∅). Given f ∈ L2(Ω), g ∈ L2(ΓR), η ∈ C \ {0}, and ε ≥ 0, find
u ∈ H1(Ω) such that

∆u + (k2 + iε)u = −f in Ω, (2.2a)

∂nu − iηu = g on ΓR, (2.2b)

u = 0 on ΓD. (2.2c)
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If ε = 0, η = k, ΩR is a large ball containing ΩD, and f and g are chosen appropriately, then the
solution of the truncated sound-soft scattering problem is a classical approximation to the solution
of the sound-soft scattering problem (see, e.g., [6, Equation (2.16)]); Figure 2 shows ΩR and ΩD

in this case. We use the convention that on ΓD the normal derivative ∂nv equals nD · ∇v for v
that are H2 in a neighbourhood of ΓD, and similarly ∂nv = nR · ∇v on ΓR, where nD and nR are
oriented as in Figure 2. Note that Remarks 2.2 and 2.3 also apply to Problem 2.4.

ΩR

ΩD

ΓR

ΓD

nR

nD

Fig. 2 An example of the domains ΩD and ΩR in Problem 2.4.

We go through the details of the bounds for Problem 2.1 in §2.1, and then outline in §2.2 the
(small) modifications needed to the arguments to prove the analogous bounds for Problem 2.4.

2.1 Bounds on the interior impedance problem with absorption

Remark 2.5 (The adjoint problem) All the bounds on the solution of the interior impedance
problem proved in this section are also valid when the signs of ε and η are changed; i.e. the bounds
also hold for the solution of

∆w + (k2 − iε)w = −f in Ω, (2.3a)

∂nw + iηw = g on Γ (2.3b)

(under the same conditions on ε and η). This fact is not immediately obvious (one has to go through
the proofs and check).

Remark 2.6 (Regularity) Let u be the solution of Problem 2.1. Since f ∈ L2(Ω) we have that
∆u ∈ L2(Ω), and since g ∈ L2(Γ ) we have that ∂nu ∈ L2(Γ ). These two facts imply that u ∈ H1(Γ )
by a regularity result of Nečas for Lipschitz domains [40, §5.2.1], [33, Theorem 4.24(ii)].

We now state the two main results of this section.

Theorem 2.7 (Bound for ε > 0 for general Lipschitz Ω) Let u solve Problem 2.1, let η =
ηR + iηI and assume that ηI ≥ 0, ηR > 0. Then, given k0 > 0, there exists a C > 0, independent
of ε, k, ηR, and ηI , such that

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤ C

[
k2

ε2

(
1 +

ε

k2
+
( ε

k2

)2
)
‖f‖2

L2(Ω) +
k2

εηR

(
1 +

ε

k2

)
‖g‖2

L2(Γ )

]
(2.4)

for all k ≥ k0, ηR > 0, and ε > 0.

Assuming that ε . k2, we obtain the following corollary.
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Corollary 2.8 If the conditions in Theorem 2.7 hold and, in addition, ε . k2, then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) .

[
k2

ε2
‖f‖2

L2(Ω) +
k2

εηR
‖g‖2

L2(Γ )

]
(2.5)

for all k ≥ k0, ηR > 0, and ε > 0. In particular, if ηI ≥ 0, ηR ∼ k, and ε ∼ k then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) .
[
‖f‖2

L2(Ω) + ‖g‖2
L2(Γ )

]
, (2.6)

while if ηI ≥ 0, ηR ∼ k, and ε ∼ k2 then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) .

[
1

k2
‖f‖2

L2(Ω) +
1

k
‖g‖2

L2(Γ )

]

for all k ≥ k0.

This corollary shows how the k-dependence of the bounds on the solution operator improves as ε
is increased from k to k2.

As ε → 0, the right-hand side of (2.5) blows up. A bound that is valid uniformly in this limit
can be obtained by imposing some geometric restrictions on Ω.

Theorem 2.9 (Bound for ε/k sufficiently small when Ω is star-shaped with respect to
a ball and Lipschitz) Let Ω be a Lipschitz domain that is star-shaped with respect to a ball (see
Definition 1.2), and let u be the solution of Problem 2.1 in Ω. If ηR ∼ k and |ηI | . k then, given
k0 > 0, there exist c and C (independent of k, ε, and η and > 0) such that, if ε/k ≤ c for all
k ≥ k0, then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤ C
[
‖f‖2

L2(Ω) + ‖g‖2
L2(Γ )

]
for all k ≥ k0. (2.7)

Remark 2.10 (The case ε = 0) The bound (2.7) for ε = 0 was proved for d = 2 in [34, Prop.
8.1.4] and for d = 3 in [9, Theorem 1] using essentially the same methods we use here (see Remark
2.16 for more details).

It is useful for what follows to combine the results of Theorems 2.7 and 2.9 to form the following
corollary.

Corollary 2.11 (Bound for ε . k2) If Ω is star-shaped with respect to a ball, ε . k2, ηR ∼ k,
and 0 ≤ ηI . k, then, given k0 > 0,

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) .
[
‖f‖2

L2(Ω) + ‖g‖2
L2(Γ )

]
(2.8)

for all k ≥ k0.

In §3 we find sufficient conditions for the Galerkin method applied to Problem 2.1 to be quasi-
optimal. To do this, we need a bound on the H2-norm of the solution (in cases where the solution
is in H2(Ω)), and this can be obtained by combining the following lemma with the bound (2.8).

Lemma 2.12 (A bound on the H2(Ω) norm) Let u be the solution of Problem 2.1, and as-
sume further that g ∈ H1/2(Γ ). If Ω is C1,1 (in 2- or 3-d) then u ∈ H2(Ω) and there exists a C
(independent of k and ε) such that

‖u‖H2(Ω) ≤ C

[
(1 + k)

√
‖∇u‖2

L2(Ω) + k2 ‖u‖2
L2(Ω) + ‖f‖L2(Ω) + ‖g‖H1/2(Γ )

]
(2.9)

for all k > 0 and ε ≥ 0. Furthermore, if Ω is a convex polygon and g ∈ H
1/2
pw (Γ ) (i.e. H1/2 on

each side) then the bound (2.9) also holds, with ‖g‖H1/2(Γ ) replaced by ‖g‖
H

1/2
pw (Γ )

(i.e. the sum of

the H1/2–norms of g on each side).
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Proof of Lemma 2.12. First consider the case when Ω is C1,1. By [21, Theorem 2.3.3.2, Page 106],
if v ∈ H1(Ω) with ∆v ∈ L2(Ω) and ∂nv ∈ H1/2(Γ ) then

‖v‖H2(Ω) .
(
‖∆v‖L2(Ω) + ‖v‖H1(Ω) + ‖∂nv‖H1/2(Γ )

)
. (2.10)

The bound (2.9) then follows from (2.10) by using (i) the fact that u satisfies the PDE (2.1a) and
boundary conditions (2.1b), and (ii) the trace theorem (1.18).

When Ω is a convex polygon, the result (2.9) will follow if we can again establish that (2.10)

holds (except with the condition that ∂nv ∈ H1/2(Γ ) replaced by ∂nv ∈ H
1/2
pw (Γ )). (There is a

slight subtlety in that we need to show that ‖u‖
H

1/2
pw (Γ )

. ‖u‖H1(Ω), but this follows from the trace

result for polygons in [21, Part (c) of Theorem 1.5.2.3, Page 43] using the fact that u is continuous
at the corners of the polygon. This latter fact follows from the Sobolev embedding theorem [33,
Theorem 3.26] and the fact that u ∈ H1(Γ ), which follows from the regularity result of Nečas [33,
Theorem 4.24 (ii)] since u ∈ H2(Ω) implies ∂nu ∈ L2(Γ ).)

The bound (2.10) can be established when Ω is a convex polygon by combining two results in
[21] and performing some additional work as follows. When Ω is a convex polygon and v is such
that v ∈ H1(Ω), ∆v ∈ L2(Ω), and ∂nv = 0 on Γ , then

‖v‖H2(Ω) .
(
‖∆v‖L2(Ω) + ‖v‖L2(Ω)

)
(2.11)

by [21, Theorem 4.3.1.4, Page 198]. When ∂nv 6= 0 but is in H
1/2
pw (Γ ) then v ∈ H2(Ω) by [21,

Corollary 4.4.3.8, Page 233] (note that the sum in [21, Equation 4.4.3.8] is empty since Ω is
convex). Therefore, by linearity, to prove that the bound (2.10) holds when Ω is a convex polygon

we only need to show that for these domains there exists a lifting operator G : H
1/2
pw (Γ ) → H2(Ω)

with ∂nG(g) = g and
‖G(g)‖H2(Ω) . ‖g‖

H
1/2
pw (Γ )

(2.12)

(in fact we show below that this is the case when Ω is any polygon). Using a partition of unity it is
sufficient to construct such an operator when (i) Ω is a half-space, and (ii) Ω is an infinite wedge.

For (i), given g define G(g) to be the solution of the Neumann problem for Laplace’s equation
in Ω (with Neumann data g). The explicit expression for the solution in terms of the Fourier
transform shows that (2.12) is satisfied.

For (ii), first consider the case when the wedge angle is π/2 (i.e. a right-angle). By linearity
we can take g to be zero on one side of the wedge. Introduce coordinates (x1, x2) so that g 6= 0
on the positive x1–axis and g = 0 on the positive x2–axis. Extend g to the negative x1–axis by
requiring that g is even about x1 = 0 (note that this extension is continuous, so if g is in H1/2

on {(x1, 0) : x1 ∈ (0,∞)} then g is in H1/2 on {(x1, 0) : x1 ∈ (−∞,∞)}). The solution of the
Neumann problem for Laplace’s equation in the half-space {(x1, x2) : x2 > 0} then satisfies ∂nu = 0
on the positive x2–axis, and thus this function satisfies the requirements of the lifting. A lifting for
a wedge of arbitrary angle can be obtained from a lifting for a right-angled wedge by expressing
the function in polar coordinates and rescaling the angular variable. (Note that all our liftings
up to this point have satisfied Laplace’s equation. Rescaling the angular variable means that the
resulting function does not satisfy Laplace’s equation, but is still in H2(Ω).)

2.1.1 Green, Rellich, and Morawetz identities for the Helmholtz equation

For the proofs of Theorems 2.7 and 2.9 we need the following identities.

Lemma 2.13 (Green, Rellich, and Morawetz identities for the Helmholtz equation)
Let v ∈ C2(D) for some domain D ⊂ Rd, and let

Lv := ∆v + k2v, Mv := x · ∇v + αv,

for k and α ∈ R. Then, on the domain D,

vLv = ∇ ·
[
v∇v

]
− |∇v|2 + k2|v|2 (Green), (2.13)

2ℜ
(
x · ∇vLv

)
= ∇ ·

[
2ℜ
(
x · ∇v ∇v

)
+ (k2|v|2 − |∇v|2)x

]
+ (d − 2)|∇v|2 − dk2|v|2
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(Rellich), (2.14)

2ℜ
(
MvLv

)
= ∇ ·

[
2ℜ
(
Mv∇v

)
+ (k2|v|2 − |∇v|2)x

]
+ (d − 2 − 2α)|∇v|2 + (2α − d)k2|v|2

(Morawetz). (2.15)

Proof of Lemma 2.13. The identities (2.13) and (2.14) can be proved by expanding the divergences
on the right-hand sides; for (2.13) this is straightforward, but for (2.14) this is more involved; see,
e.g., [46, Lemma 2.1] for the details. The identity (2.15) is then (2.14) plus 2α times the real part
of (2.13).

Remark 2.14 All three of the identities in Lemma 2.13 are formed by multiplying the Helmholtz
operator Lv by a function of v, say Nv, and then expressing this quantity as the divergence of
something plus some non-divergence terms. The multiplier Nv = v is associated with the name of
Green, and (2.13) is a special case of the pointwise form (as opposed to integrated form) of Green’s
first identity. The multiplier Nv = x ·∇v was introduced by Rellich in [41], and identities resulting
from multipliers that are derivatives of v are thus often called Rellich identities. The idea of taking
Nv to be a linear combination of v and a derivative of v (in general Z ·∇v− ikβv+αv for Z a real
vector field and β and α real scalar fields) was used extensively by Morawetz in the context of the
Helmholtz and wave equations; see [37], [39], and [38]. The identity (2.15) is essentially contained
in [38, §I.2] and [39]; see [47, Remark 2.7] for more details. For more discussion of Rellich and
Morawetz identities, see [6, §5.3].

For the proofs of Theorems 2.7 and 2.9, we integrate the indentities (2.13) and (2.15) over Ω.

Lemma 2.15 (Integrated forms of the Green and Morawetz identities) With Ω as in
Problem 2.1, define the space V by

V :=
{
v : v ∈ H1(Ω), ∆v ∈ L2(Ω), ∂nv ∈ L2(Γ ), v ∈ H1(Γ )

}
, (2.16)

(note that either of the conditions ∂nv ∈ L2(Γ ) or v ∈ H1(Γ ) can be dropped from the definition
of V by the results of Nečas [40, §5.1.2, 5.2.1], [33, Theorem 4.24]). Then, with Lv and Mv as in
Lemma 2.13, if v ∈ V then

∫

Ω

vLv =

∫

Γ

v ∂nv +

∫

Ω

k2|v|2 − |∇v|2 (2.17)

and
∫

Ω

2ℜ
(
MvLv

)
=

∫

Γ

2ℜ
(
Mv ∂nv

)
+
(
k2|v|2−|∇v|2

)
(x ·n)+

∫

Ω

(d−2−2α)|∇v|2 +(2α−d)k2|v|2,
(2.18)

where the expression ∇v in the integral on Γ is understood as ∇Γ v + n∂nv.

Proof of Lemma 2.15. Equations (2.17) and (2.18) hold as consequences of the divergence theorem
applied to the identities (2.13) and (2.15). Indeed, the divergence theorem

∫
Ω ∇ · F =

∫
Γ F · n is

valid when Ω is Lipschitz and F ∈ (C1(Ω))d [33, Theorem 3.34]. Therefore, (2.17) and (2.18) hold
for v ∈ D(Ω) := {U |Ω : U ∈ C∞

0 (Rd)}. By the density of D(Ω) in the space V [36, Appendix A],
(2.17) and (2.18) hold for v ∈ V .

2.1.2 Proof of Theorem 2.7

Outline The only ingredients for the proof are the integrated form of Green’s identity (2.17), the
Cauchy-Schwarz inequality, and the inequality (1.20). By Remark 2.6, the solution u of Problem
2.1 is in the space V ; therefore, by Lemma 2.15, (2.17) holds with v replaced by u. Using the
impedance boundary condition (2.1b) and the fact that Lu = −f − iεu in Ω, we obtain

(k2 + iε) ‖u‖2
L2(Ω) − ‖∇u‖2

L2(Ω) + (iηR − ηI) ‖u‖2
L2(Γ ) = −

∫

Ω

f u −
∫

Γ

g u. (2.19)

From here, the proof consists of the following three steps:
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1. Use the imaginary part of (2.19) to estimate ‖u‖2
L2(Ω) and ‖u‖2

L2(Γ ) by ‖f‖2
L2(Ω) and ‖g‖2

L2(Γ ).

2. Use the real part of (2.19) to estimate ‖∇u‖2
L2(Ω)+k2 ‖u‖2

L2(Ω) by ‖u‖2
L2(Ω), ‖u‖

2
L2(Γ ), ‖f‖

2
L2(Ω),

and ‖g‖2
L2(Γ ).

3. Put the estimates of Steps 1 and 2 together to give the result (2.4).

Step 1. Taking the imaginary part of (2.19) and using the Cauchy-Schwarz inequality, we obtain

ε ‖u‖2
L2(Ω) + ηR ‖u‖2

L2(Γ ) ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) + ‖g‖L2(Γ ) ‖u‖L2(Γ ) . (2.20)

(Note that this inequality establishes uniqueness of the interior impedance problem with absorption,
since if f and g are both zero then the inequality implies that u is zero in Ω.) Using the inequality
(1.20) on both terms on the right-hand side, we find that

(
ε − δ1

2

)
‖u‖2

L2(Ω) +

(
ηR − δ2

2

)
‖u‖2

L2(Γ ) ≤
1

2δ1
‖f‖2

L2(Ω) +
1

2δ2
‖g‖2

L2(Γ ) . (2.21)

Taking δ1 = ε and δ2 = ηR, we obtain

ε

2
‖u‖2

L2(Ω) +
ηR

2
‖u‖2

L2(Γ ) ≤
1

2ε
‖f‖2

L2(Ω) +
1

2ηR
‖g‖2

L2(Γ ) . (2.22)

Step 2. Taking the real part of (2.19) yields

−k2 ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω) + ηI ‖u‖2
L2(Γ ) = ℜ

∫

Ω

f u + ℜ
∫

Γ

g u,

and thus (since ηI ≥ 0)

‖∇u‖2
L2(Ω) ≤ k2 ‖u‖2

L2(Ω) + ‖f‖L2(Ω) ‖u‖L2(Ω) + ‖g‖L2(Γ ) ‖u‖L2(Γ ) .

Adding k2 ‖u‖2
L2(Ω) to both sides and then using the inequality (1.20) on the terms involving f

and g, we obtain

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤
(

2k2 +
δ1

2

)
‖u‖2

L2(Ω) +
δ2

2
‖u‖2

L2(Γ ) +
1

2

(
1

δ1
‖f‖2

L2(Ω) +
1

δ2
‖g‖2

L2(Γ )

)
.

(2.23)

Step 3. We choose δ1 = k2 in (2.23) and then use (2.22) to estimate ‖u‖2
L2(Ω) and ‖u‖2

L2(Γ ) in

terms of ‖f‖2
L2(Ω) and ‖g‖2

L2(Γ ) to get

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) .

(
k2

ε2
+

δ2

εηR
+

1

k2

)
‖f‖2

L2(Ω) +

(
k2

εηR
+

δ2

η2
R

+
1

δ2

)
‖g‖2

L2(Γ ) .

We then choose δ2 = ηR (to make 1/δ2 and δ2/η2
R equal) and obtain the bound (2.4).

2.1.3 Proof of Theorem 2.9

Outline. The proof consists of the following two steps:

1. Use the integrated Morawetz identity (2.18) to show that, given k0 > 0, there exist c and C
(independent of k, η, and ε and > 0) such that if ε ≤ ck then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤ C
[
(k2 + |η|2) ‖u‖2

L2(Γ ) + ‖f‖2
L2(Ω) + ‖g‖2

L2(Γ )

]
(2.24)

for all k ≥ k0.
2. Use the imaginary part of Green’s identity to remove the (k2 + |η|2) ‖u‖2

L2(Γ ) term from the

right-hand side of (2.24).

We first prove the bound in Step 2 and then prove the bound in Step 1.
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Step 2. In the proof of Theorem 2.7 we used the imaginary part of Green’s identity to obtain the
bound (2.22). We could use (2.22) to bound the (k2 + |η|2) ‖u‖2

L2(Γ ) term in (2.24) by ‖f‖2
L2(Ω)

and ‖g‖2
L2(Γ ), however the right-hand side of (2.22) blows up if ε → 0 and we want to be able to

include the case when ε = 0.
The bound (2.22) came from (2.21) with δ1 = ε and δ2 = ηR. If we instead keep δ1 arbitrary

we obtain

ηR

2
‖u‖2

L2(Γ ) + ε ‖u‖2
L2(Ω) ≤

1

2δ1
‖f‖2

L2(Ω) +
1

2ηR
‖g‖2

L2(Γ ) +
δ1

2
‖u‖2

L2(Ω) (2.25)

Dropping ε ‖u‖2
L2(Ω) from the left-hand side of (2.25) and then using the resulting inequality in

(2.24) we obtain

‖∇u‖2
L2(Ω) +

(
k2 − δ2C

k2 + |η|2
ηR

)
‖u‖2

L2(Ω) ≤ C

(
1 +

k2 + |η|2
δ2ηR

)
‖f‖2

L2(Ω)

+ C

(
1 +

k2 + |η|2
η2

R

)
‖g‖2

L2(Γ ) , (2.26)

for all k ≥ k0. If ηR ∼ k and |ηI | . k then

k2 + |η|2
ηR

≤ bk, for some b > 0, and
k2 + |η|2

(ηR)2
. 1.

Therefore, if we let δ2 = kθ (for some θ > 0) then the right-hand side of (2.26) is . ‖f‖2
L2(Ω) +

‖g‖2
L2(Γ ), which is the right-hand side of (2.7) (with the constant C in (2.7) different to the constant

C in (2.26)). The left-hand side of (2.26) is then

≥ ‖∇u‖2
L2(Ω) + k2 (1 − Cbθ) ‖u‖2

L2(Ω)

and so choosing θ less than 1/(Cb) gives the result (2.7).

Step 1. Remark 2.6 implies that u is in the space V defined by (2.16). Lemma 2.15 then implies
that the integrated identity (2.18) holds with v replaced by u. Recalling that ∇u on Γ is understood
as ∇Γ u + n∂nu, we find that the integral over Γ in (2.18) can be rewritten as

∫

Γ

2ℜ
(
(x · ∇Γ u + αu)∂nu

)
+
(
|∂nu|2 + k2|u|2 − |∇Γ u|2

)
(x · n). (2.27)

Therefore, using both (2.27) and that fact that Lu = −f − iεu, we can rewrite (2.18) as

∫

Ω

(2α + 2 − d)|∇u|2 + (d − 2α)k2|u|2 +

∫

Γ

|∇Γ u|2(x · n)

= 2ℜ
∫

Ω

Mu f − 2εℑ
∫

Ω

Muu +

∫

Γ

2ℜ
(
(x · ∇Γ u + αu)∂nu

)
+
(
|∂nu|2 + k2|u|2

)
(x · n).

(2.28)

We now let

δ− := ess inf
x∈Γ

(x · n), δ+ := ess sup
x∈Γ

(x · n), R := ess sup
x∈Γ

|x|,

and note that δ+ ≥ δ− > 0 since Ω is assumed to be star-shaped with respect to a ball (see Remark
1.3). Using both the definition of Mu and the Cauchy-Schwarz inequality on the right-hand side
of (2.28), and writing the integrals as norms, we obtain that

(2α + 2 − d) ‖∇u‖2
L2(Ω) + (d − 2α)k2 ‖u‖2

L2(Ω) + δ− ‖∇Γ u‖2
L2(Γ )

≤ 2R ‖∇u‖L2(Ω) ‖f‖L2(Ω) + 2α ‖u‖L2(Ω) ‖f‖L2(Ω) + 2εR ‖∇u‖L2(Ω) ‖u‖L2(Ω)

+ δ+

(
‖∂nu‖2

L2(Γ ) + k2 ‖u‖2
L2(Γ )

)
+ 2R ‖∇Γ u‖L2(Γ ) ‖∂nu‖L2(Γ ) + 2α ‖u‖L2(Γ ) ‖∂nu‖L2(Γ ) .
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(Note that the boundary condition (2.1b) gives us ∂nu on Γ in terms of u and g, but we choose not

to use this yet.) Next we let 2α = d−1 so that the coefficients of both ‖∇u‖2
L2(Ω) and ‖u‖2

L2(Ω) on

the left-hand side become equal to one. We now use (1.20) on each of the terms on the right-hand
side (with a different δ each time) to obtain
(

1 − Rδ3 −
εR

δ5

)
‖∇u‖2

L2(Ω) +

(
1 − (d − 1)δ4

2k2
− εRδ5

k2

)
k2 ‖u‖2

L2(Ω) + (δ− − Rδ6) ‖∇Γ u‖2
L2(Γ )

≤
(

R

δ3
+

d − 1

2δ4

)
‖f‖2

L2(Ω) +

(
δ+ +

R

δ6
+

d − 1

2δ7

)
‖∂nu‖2

L2(Γ ) +

(
δ+ +

(d − 1)δ7

2k2

)
k2 ‖u‖2

L2(Γ ) .

(2.29)

To prove the bound (2.24) we need to ensure that a) each bracket on the left-hand side is greater
than zero and doesn’t grow with k, and b) each bracket on the right-hand side does not grow with
k.

We choose δ7 = 1, δ6 = δ−/(2R) (so that the coefficient of ‖∇Γ u‖2
L2(Γ ) on the left-hand side

becomes δ−/2, which is > 0), δ4 = k2/(d−1), and δ3 = 1/(2R). With these choices, and neglecting

the term involving ‖∇Γ u‖2
L2(Γ ) on the left-hand side, we obtain from (2.29) the bound

(
1

2
− εR

δ5

)
‖∇u‖2

L2(Ω) +

(
1

2
− εRδ5

k2

)
k2 ‖u‖2

L2(Ω)

≤ C′

(
‖∂nu‖2

L2(Γ ) +

(
1 +

1

k2

)(
k2 ‖u‖2

L2(Γ ) + ‖f‖2
L2(Ω)

))
, (2.30)

for some C′ > 0 (independent of k, η and ε). The right-hand side of (2.30) is bounded above by

C′′

(
‖g‖2

L2(Γ ) +
(
1 + k2 + |η|2

)
‖u‖2

L2(Γ ) +

(
1 +

1

k2

)
‖f‖2

L2(Ω)

)

for some C′′ > 0 (again independent of k, η and ε), since the boundary condition (2.1b) and the
inequality (1.20) imply that

‖∂nu‖2
L2(Γ ) ≤ 2

(
|η|2 ‖u‖2

L2(Γ ) + ‖g‖2
L2(Γ )

)
.

Also, given any k0 > 0, there exists a C′′′ > 0 independent of k such that
(

1 +
1

k2

)
‖f‖2

L2(Ω) ≤ C′′′ ‖f‖2
L2(Ω) for all k ≥ k0.

Therefore, to establish (2.24) we only need to show that the coefficients of ‖∇u‖2
L2(Ω) and k2‖u‖2

L2(Ω)

on the left-hand side of (2.30) are bounded away from zero, independently of k. If ε = 0 this is
immediately true. If ε 6= 0 we choose δ5 = 4εR. The left-hand side of (2.30) then becomes

1

4
‖∇u‖2

L2(Ω) +

(
1

2
− 4R2ε2

k2

)
k2 ‖u‖2

L2(Ω) .

If ε/k ≤ 1/(4R) then this last expression is

≥ 1

4

(
‖∇u‖2

L2(Ω) + k2 ‖u‖2
L2(Ω)

)

and we are done.

Remark 2.16 The earlier proofs of the bound (2.7) when ε = 0 discussed in Remark 2.10 use
essentially the same method that we use here, except that to get (2.24) they apply the Rellich
(2.14) and Green (2.13) identities separately and then take the particular linear combination that
corresponds to the Morawetz identity (2.15) with 2α = d−1 (whereas we use the Morawetz identity
with 2α = d − 1 directly). (In addition, these earlier proofs only consider the case when Γ is
piecewise smooth, and not Lipschitz.)

In the next subsection we obtain the analogue of the bound of Theorem 2.9 for the truncated
sound-soft scattering problem (see Theorem 2.18). For the case ε = 0, this bound was obtained in
[25, Proposition 3.3] using essentially the same method as we do (but again using a combination
of the Rellich and Green identities that is equivalent to using the Morawetz identity).
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2.2 Bounds on the truncated sound-soft scattering problem

The following are analogues of Theorems 2.7 and 2.9 for Problem 2.4.

Theorem 2.17 (Bound for ε > 0 for Lipschitz ΩD and ΩR) Let u be the solution of Problem
2.4, and let η = ηR+iηI with ηI ≥ 0, ηR > 0. Then, given k0 > 0, there exists a C > 0, independent
of ε, k, ηR and ηI , such that

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤ C

[
k2

ε2

(
1 +

ε

k2
+
( ε

k2

)2
)
‖f‖2

L2(Ω) +
k2

εηR

(
1 +

ε

k2

)
‖g‖2

L2(Γ )

]

for all k ≥ k0, ηR > 0, and ε > 0.

Theorem 2.18 (Bound for ε/k sufficiently small when ΩR and ΩD are star-shaped) Let
u be the solution to Problem 2.4 and assume that ΩR is star-shaped with respect to a ball centred
at the origin and ΩD is star-shaped with respect to the origin, i.e.

ess inf
x∈ΓD

(x · nD) ≥ 0 and ess inf
x∈ΓR

(x · nR) > 0, (2.31)

where nD and nR are the unit normal vectors to ΩD and ΩR respectively (oriented as in Figure
2). If ηR ∼ k and |ηI | . k, then, given k0 > 0, there exist c and C (independent of k, η, and ε and
> 0) such that, if ε/k ≤ c for all k ≥ k0, then

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) ≤ C
[
‖f‖2

L2(Ω) + ‖g‖2
L2(Γ )

]

for all k ≥ k0.

Proof of Theorem 2.17. This follows the proof of Theorem 2.7 exactly. Indeed, the starting point
of Theorem 2.7 was (2.19) (the integrated form of Green’s identity with the PDE and boundary
conditions imposed on u), and this holds for the truncated sound-soft scattering problem with Γ
replaced by ΓR (since the integral over ΓD that arises when Green’s identity is applied in Ω is zero
as u = 0 on ΓD).

Proof of Theorem 2.18. This follows the proof of Theorem 2.9 exactly. Indeed, Step 2 is the same
since it depends on Green’s identity. For Step 1, we note that applying the integrated Morawetz
identity (2.18) in Ω yields (2.28) with Γ replaced by ΓR, and the additional term

∫
ΓD

(x ·nD)|∂nu|2
on the left-hand side. By (2.31), this additional term is non-negative, and the proof proceeds as
before.

3 Variational formulations and quasi-optimality

In §3.1 we prove results about the continuity and coercivity of aε(·, ·), and then we use these in
§3.2–§3.4 to obtain sufficient conditions for quasi-optimality of the Galerkin method applied to
aε(·, ·). In §3.1-3.4 we consider the interior impedance problem, and then in §3.5 we outline the
small modifications needed to extend the results to the truncated scattering problem.

3.1 Continuity and coercivity of aε(·, ·)

Recall from §1 the variational formulation of the shifted interior impedance problem (1.3) and its
Galerkin approximation (1.6). Define a norm on H1(Ω) by

‖v‖2
1,k,Ω := ‖∇v‖2

L2(Ω) + k2 ‖v‖2
L2(Ω) ; (3.1)

in what follows we always have k ≥ k0 for some k0 > 0 and thus ‖ · ‖1,k,Ω is indeed a norm and is
equivalent to the usual H1-norm.

Lemma 3.1 (Continuity and coercivity of aε(·, ·))
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(i) If |η| . k and ε . k2 then, given k0 > 0, there exists a Cc (independent of k, η, and ε) such
that ∣∣aε(u, v)

∣∣ ≤ Cc ‖u‖1,k,Ω ‖v‖1,k,Ω

for all k ≥ k0 and u, v ∈ H1(Ω).
(ii) If ηR and ηI are both ≥ 0 and 0 < ε . k2, then there exists a constant α > 0 (independent of

k, η, and ε) such that
∣∣aε(v, v)

∣∣ ≥ α
ε

k2
‖v‖2

1,k,Ω (3.2)

for all k > 0 and v ∈ H1(Ω).

Proof. (i) This follows from the Cauchy-Schwarz inequality and the multiplicative trace inequality
(1.19).
(ii) Given k > 0 and ε > 0, define p > 0 and q > 0 by

p2 :=
k2 +

√
k4 + ε2

2
and q2 :=

−k2 +
√

k4 + ε2

2
,

so that k2 + iε = (p + iq)2. The definition of p and the fact that ε . k2 mean that k ≤ p . k, and
the fact that 2qp = ε then implies that q ∼ ε/k. Now

aε(v, v) = ‖∇v‖2
L2(Ω) − (p + iq)2 ‖v‖2

L2(Ω) − iη ‖v‖2
L2(Γ ) ,

and so

(p − iq)aε(v, v) = (p − iq) ‖∇v‖2
L2(Ω) − (p + iq)(p2 + q2) ‖v‖2

L2(Ω) − i(p − iq)η ‖v‖2
L2(Γ ) . (3.3)

Therefore, taking the imaginary part of each side of (3.3), we have

ℑ
[
− (p − iq)aε(v, v)

]
= q

[
‖∇v‖2

L2(Ω) + (p2 + q2) ‖v‖2
L2(Ω)

]
+ (pηR + qηI)‖v‖2

L2(Γ ).

Now, defining Θ := −(p − iq)/|p− iq| = −(p − iq)/
√

p2 + q2, and using the fact that ηR and ηI

are both ≥ 0 we have

∣∣aε(v, v)
∣∣ =

∣∣Θaε(v, v)
∣∣ ≥ ℑ

[
Θaε(v, v)

]

≥ q√
p2 + q2

[
‖∇v‖2

L2(Ω) + (p2 + q2) ‖v‖2
L2(Ω)

]
.

The result (3.2) follows since p ∼ k, q ∼ ε/k, and ε . k2.

Remark 3.2 This “trick” of multiplying the sesquilinear form by the complex conjugate of the
wavenumber (in the proof above this was p − iq) is well known in, for example, the time-domain
boundary-integral-equation literature; see [22, Proposition 1].

Note that (with ε . k2) the bound (3.2) is sharp in its k- and ε-dependence. Indeed, if uj is a
Dirichlet eigenfunction of −∆ on Ω with eigenvalue λj , then

aε(uj , uj)

‖uj‖2
1,k,Ω

=
λj − (k2 + iε)

λj + k2
.

Therefore, if k = kj :=
√

λj then

aε(uj , uj)

‖uj‖2
1,kj ,Ω

=
−iε

2k2
j

∼ ε

k2
j

.
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3.2 Abstract conditions for quasi-optimality

To state the main result of this section, we need to introduce the solution operator of the adjoint
problem. Given f ∈ L2(Ω), define S∗

k,εf as the solution of the variational problem

aε(v, S∗
k,εf) = (v, f)L2(Ω) for all v ∈ H1(Ω). (3.4)

This is the variational formulation of the adjoint problem (2.3) with g = 0; i.e. if w = S∗
k,εf satisfies

(3.4) then w is a solution of the weak form of (2.3) with g = 0, and vice versa.

Lemma 3.3 (Quasi-optimality for aε(·, ·)) Assume that ε . k2 and |η| . k. Let Cc and α be
the constants in Lemma 3.1. Let uN denote the Galerkin solution defined by (1.6). Let

η(VN ) := sup
f∈L2(Ω)

inf
vN∈VN

‖S∗
k,εf − vN‖1,k,Ω

‖f‖L2(Ω)

. (3.5)

If
√
|k2 − ε|Cc η(VN ) ≤

√
α

2
(3.6)

then

‖u − uN‖1,k,Ω ≤ 2Cc

α
inf

vN∈VN

‖u − vN‖1,k,Ω . (3.7)

This result is proved below using an argument often attributed to Schatz [42] (for examples of
its use and further development see [18, §4] and the references therein). The only difference in our
use of this argument is that, instead of using the fact that aε(·, ·) satisfies a G̊arding inequality,
we use the fact that when ε = k2 it is coercive with constant independent of k. Note that η(VN )
in (3.5) is not related to the η in the impedance boundary condition (2.1b); we use this notation
to be consistent with the other uses of this argument in the literature.

Proof. We first prove the bound (3.7) under the assumption that uN exists. Choosing v = vN ∈ VN

in (1.3) and subtracting this from (1.6), we have Galerkin orthogonality:

aε(u − uN , vN ) = 0 for all vN ∈ VN . (3.8)

Coercivity (3.2) and the triangle inequality imply that, for any v ∈ H1(Ω),

α ‖v‖2
1,k,Ω ≤

∣∣ak2(v, v)
∣∣ ≤

∣∣aε(v, v) − i(k2 − ε) ‖v‖2
L2(Ω)

∣∣ ≤
∣∣aε(v, v)

∣∣+
∣∣k2 − ε

∣∣ ‖v‖2
L2(Ω) . (3.9)

We now apply this last inequality with v = eN := u − uN and use that fact that, by Galerkin
orthogonality, a(eN , eN) = a(eN , u − vN ) for any vN ∈ VN . This yields

α ‖eN‖2
1,k,Ω ≤

∣∣aε(eN , u − vN )
∣∣+
∣∣k2 − ε

∣∣ ‖eN‖2
L2(Ω) (3.10)

≤ Cc ‖eN‖1,k,Ω ‖u − vN‖1,k,Ω +
∣∣k2 − ε

∣∣ ‖eN‖2
L2(Ω) (3.11)

(where we have used the continuity of aε(·, ·) to obtain the second inequality). If we can show that

∣∣k2 − ε
∣∣ ‖eN‖2

L2(Ω) ≤
α

2
‖eN‖2

1,k,Ω (3.12)

then we obtain the result (3.7).
Now, using the definition of S∗

k,ε (3.4), Galerkin orthogonality (3.8), continuity of aε(·, ·), and
the definition of η(VN ) (3.5), we have

‖eN‖2
L2(Ω) = aε(eN , S∗

k,εeN) = aε(eN , S∗
k,εeN − vN ) ≤ Cc ‖eN‖1,k,Ω

(
η(VN ) ‖eN‖L2(Ω)

)
,

for any vN ∈ VN . Therefore

‖eN‖L2(Ω) ≤ Cc η(VN ) ‖eN‖1,k,Ω , (3.13)

and the condition (3.6) is sufficient to ensure that (3.12) holds.
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Up to now, we have assumed that uN (the solution of the variational problem (1.6)) exists.
The fact that uN exists can be established using [32, Theorem 3.9], but here we follow the simpler
approach found in, e.g., [4, Theorem 5.7.6]. Since (1.6) is a system of N equations with N unknowns,
existence for all right-hand sides is equivalent to uniqueness. Therefore, we only need to show that
if F = 0 and N is such that the condition (3.6) holds, then (1.6) only has the trivial solution
uN = 0. Seeking a contradiction, suppose that aε(uN , vN ) = 0 for all vN ∈ VN for some uN 6= 0.
Remark 2.2 implies that u = 0, and then (3.7) implies that uN = 0 when N is such that (3.6)
holds. Therefore, the solution to (1.6) exists and is unique when N satisfies (3.7).

Remark 3.4 (Using coercivity for ε = γk2, for some γ > 0, instead of for ε = k2.) In the
proof of Lemma 3.3 we used the coercivity of ak2(·, ·). Instead, we could have used the coercivity
of aγk2(·, ·), with γ any positive constant. If we had done this, then the mesh threshold for quasi-
optimality would be

√
|γk2 − ε|Cc η(VN ) ≤

√
γα

2
(3.14)

and the constant of quasi-optimality in (3.7) would be 2Cc/(γα).

3.3 Quasi-optimality: smooth domains and convex polygons

In this subsection we consider the case when Ω is either a C1,1 2- or 3-d domain that is star-shaped
with respect to a ball or a convex polygon. We also assume that VN has the property that, for all
w ∈ H2(Ω),

inf
vN∈VN

‖w − vN‖1,k,Ω . h ‖w‖H2(Ω) + hk ‖w‖H1(Ω) ; (3.15)

this is true, for example, for continuous piecewise-polynomial elements on a triangular mesh by
properties of the quasi-interpolant given in [43, Theorem 4.1].

We now use Lemma 3.3 to prove the following result.

Lemma 3.5 (Quasi-optimality for aε(·, ·) for smooth domains and convex polygons)

Suppose that the variational problem (1.3) is solved using the Galerkin method with VN ⊂ H1(Ω).
Assume that ε . k2, ηR ∼ k, and ηI . k. Then, given k0 > 0, there exists C1 > 0 (with C1

independent of h, k, and ε) such that if k ≥ k0 and

hk
√
|k2 − ε| ≤ C1 (3.16)

then (3.7) holds.

Proof. Given f ∈ L2(Ω), let w := S∗
k,εf . By Remark 2.5, given k0 > 0, ‖w‖H1(Ω) . ‖f‖L2(Ω) for all

k ≥ k0. Moreover, Lemma 2.12 then implies that ‖w‖H2(Ω) . k‖f‖L2(Ω) for all k ≥ k0. Combining
these bounds with (3.15) yields

inf
vN∈VN

‖w − vN‖1,k,Ω . hk ‖f‖L2(Ω) .

Therefore, from the definition of η(VN ),

√
|k2 − ε|Cc η(VN ) ≤ Cchk

√
|k2 − ε|,

and the result follows from Lemma 3.3.

Remark 3.6 For arbitrary curved C1,1 domains it is not always possible to fit the domain boundary
exactly with polynomial elements, and some analysis of non-conforming error is then necessary;
since this is very standard, we do not give it here.
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3.4 Quasi-optimality: non-smooth domains

In obtaining Lemma 3.5 from Lemma 3.3 we used a bound on the H2-norm of the solution of the
adjoint problem to estimate η(VN ) and get a mesh-threshold for quasi-optimality. We now consider
domains in which the solution to the adjoint problem is not in H2(Ω). In this case we can still
estimate η(VN ) (and thus get conditions for quasi-optimality) under assumptions on the solution
and the mesh that we now explain.

Assumption 3.7 Let Ω be a bounded Lipschitz polyhedron in Rd (d = 2, 3).

1. Let w = S∗
k,εf and let Csol(k, ε) be such that

‖w‖1,k,Ω . Csol(k, ε) ‖f‖L2(Ω) (3.17)

for all f ∈ L2(Ω) and for all 0 ≤ ε . k2. Assume that there exists a weight function Φ ∈ C(Ω)
such that, for any f ∈ L2(Ω),

sup
|α|=2

‖ΦDαw‖L2(Ω) . k Csol(k, ε) ‖f‖L2(Ω) . (3.18)

2. With Φ as in Part 1, assume that if v ∈ H1(Ω) and supα=2 ‖ΦDαv‖L2(Ω) < ∞ then there exists
a shape-regular simplicial mesh sequence so that the corresponding finite element space VN has
dimension N , has largest element diameter (1/N)1/d, and satisfies

inf
vN∈VN

{(
1

N

)1/d

|v − vN |H1(Ω) + ‖v − vN‖L2(Ω)

}
.

(
1

N

)2/d

sup
|α|=2

‖ΦDαv‖L2(Ω) . (3.19)

Remark 3.8 Part 2 of Assumption 3.7 holds by results in [1], and Part 1 of Assumption 3.7 holds
when Ω is a polygon in R2 and ε = 0 by [18, Theorem 3.2] (and we expect similar arguments to
apply when 0 < ε . k2). We now discuss both these sets of results when Ω is a polygon. The
result [18, Theorem 3.2] proves that there exists a weight function Φ ∈ C(Ω) such that the soluton
u = S∗

k,0f of (2.3) with f ∈ L2(Ω), g = 0, and ε = 0 has a decomposition u = uH2 + uA, where

‖uH2‖H2(Ω) . Csol(k, 0) ‖f‖L2(Ω) , (3.20)
∑

|α|=2

‖ΦDαuA‖L2(Ω) . k Csol(k, 0) ‖f‖L2(Ω) . (3.21)

The weight function Φ can be taken to be one at convex corners, but at a non-convex corner
Φ(x) ∼ rβ as r → 0 for x in a neighbourhood of a corner point x0 with exterior angle ω, where
r := |x − x0| and β > 1 − π/ω; see [18, Equation (24) and Lemma 3.11] (this decay of the weight
function compensates for singularities in the second derivatives of uA). The subsequent verification
of (3.19) can be obtained from several references, e.g. [1] and the references therein. Indeed, the
existence of a suitably refined shape-regular mesh and corresponding vN ∈ VN satisfying

|v − vN |H1(Ω) .

(
1

N

)1/d

sup
|α|=2

‖ΦDαv‖L2(Ω) (3.22)

follows from [1, Theorems 3.2 and 3.3] and particularly the estimate [1, Equation (3.19)]. Note that
[1] uses very different notation to ours; the weighted norm on the right-hand side of [1, Equation
(3.19)] coincides with that on the right-hand side of our equation (3.19), and H0 in [1] equals
π/ω in our notation (the statement that H0 = π/(2ω0) on [1, Page 68] is a typo). The required
complexity of the mesh follows from the discussion in [1, Remark 3.1] and the shape-regularity is
[1, Condition (d) on Page 71]. The estimate on ‖v − vN‖L2(Ω) in (3.19) is not proved explicitly in
[1] but follows using similar arguments.

Remark 3.9 (How does Csol(k, ε) depend on k and ε?) By combining Theorems 2.7 and 2.9
(and using Remark 2.5) we see that if Ω is Lipschitz and star-shaped with respect to a ball, 0 ≤
ε . k2, ηR ∼ k, and 0 < ηI . k, then (3.17) holds with Csol(k, ε) ∼ 1; in what follows we only
consider this situation.
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The following is the analogue of Lemma 3.5 for non-smooth domains.

Lemma 3.10 (Quasi-optimality for aε(·, ·) for non-smooth domains) Suppose that Ω is such
that Assumption 3.7 holds with Csol(k, ε) ∼ 1, and suppose that the variational problem (1.3) is
solved using the Galerkin method in the space VN . If ε . k2, ηR ∼ k, and ηI . k then, given
k0 > 0, there exists a C1 > 0 (independent of N, k, and ε) such that, if k ≥ k0 and

N−1/dk
√
|k2 − ε| ≤ C1, (3.23)

then (3.7) holds.

Proof. By Lemma 3.3 we only need to estimate η(VN ) and ensure that (3.6) holds. With w = S∗
kf ,

Assumption 3.7 implies that there exists a vN ∈ VN such that

|w − vN |H1(Ω) .

(
1

N

)1/d

k ‖f‖L2(Ω) and ‖w − vN‖L2(Ω) .

(
1

N

)2/d

k ‖f‖L2(Ω) ,

from which it follows that

‖w − vN‖1,k,Ω .

(
1

N

)1/d

k

[
1 +

(
1

N

)1/d

k

]
‖f‖L2(Ω) .

Therefore,

√
|k2 − ε| η(VN ) .

(
1

N

)1/d

k
√
|k2 − ε|

[
1 +

(
1

N

)1/d

k

]
,

and this implies that, given k0 > 0, there exists a C1 > 0 such that the condition (3.23) is sufficient
to ensure that (3.6) holds.

3.5 The truncated sound-soft scattering problem with absorption

The variational formulation of Problem 2.4 is almost identical to that of Problem 2.1 except that
the Hilbert space is now V = {v ∈ H1(Ω) : v = 0 on ΓD}, and the integrals over Γ in aε(·, ·) and
F (·) defined in (1.4) and (1.5) respectively are replaced by integrals over ΓR. Lemma 3.1 (continuity
and coercivity of aε(·, ·)) holds as before. Lemma 3.5 holds if Ω is C1,1 and satisfies the geometric
assumptions in Theorem 2.18. Similarly, if Assumption 3.7 is satisfied with Ω = ΩR \ΩD and ΩR

and ΩD are as in Theorem 2.18, then Lemma 3.10 holds.

4 Proofs of Theorem 1.4 and its analogue for non-quasi-uniform meshes

In §4.1 we consider the interior impedance problem, and in §4.2 we consider the truncated sound-
soft scattering problem.

4.1 Results about the interior impedance problem

4.1.1 Smooth domains and quasi-uniform meshes (i.e. Proof of Theorem 1.4)

As discussed in §1.3, we prove Theorem 1.4 by obtaining bounds on ‖A−1
ε M‖2 and ‖A−1

ε N‖2.

Lemma 4.1 (Bounding ‖A−1
ε M‖2 and ‖A−1

ε N‖2) Under the same conditions as in Theorem
1.4, given k0 > 0, there exist C1, C2, C3 > 0 (independent of h, k, and ε but depending on k0) such
that if hk

√
|k2 − ε| ≤ C1 then

(i)
∥∥A−1

ε M
∥∥

2
≤ C2

k
and (ii)

∥∥A−1
ε N

∥∥
2
≤ C3

h1/2k
. (4.1)
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Proof of Lemma 4.1. Given vN ∈ VN , let v denote the vector of the nodal values of vN . A standard
scaling argument for the mass matrix M yields

‖vN‖2
L2(Ω) = (Mv,v)2 ∼ hd ‖v‖2

2 . (4.2)

Therefore,
hdk2 ‖v‖2

2 ∼ k2 ‖vN‖2
L2(Ω) . ‖vN‖2

1,k,Ω . (4.3)

We first prove the bound (i) in (4.1) (i.e. the bound on ‖A−1
ε M‖2). Given f ∈ CN , we create

a variational problem whose Galerkin discretisation leads to the equation Aεũ = Mf . Indeed, let
f̃ :=

∑
j fjφj and note that f̃ ∈ L2(Ω). Define ũ to be the solution of the variational problem

aε(ũ, v) = (f̃ , v)L2(Ω) for all v ∈ H1(Ω), (4.4)

let ũN be the solution of the finite element approximation of (4.4), i.e.,

aε(ũN , vN ) = (f̃ , vN )L2(Ω) for all vN ∈ VN , (4.5)

and let ũ be the vector of nodal values of ũN . The definition of f̃ then implies that (4.5) is
equivalent to Aεũ = Mf , and so to obtain a bound on ‖A−1

ε M‖2 we need to bound ‖ũ‖2 in terms
of ‖f‖2. Note that the hypotheses imply that the bound on the solution operator (2.8) holds (by
Corollary 2.11), and also that if hk

√
|k2 − ε| ≤ C1 then quasi-optimality (3.7) holds (by Lemma

3.5). Starting with (4.3) we then have

hd/2k ‖ũ‖2 . ‖ũN‖1,k,Ω ≤ ‖ũ − ũN‖1,k,Ω + ‖ũ‖1,k,Ω

. ‖ũ‖1,k,Ω + ‖ũ‖1,k,Ω (by quasi-optimality),

. ‖f̃‖L2(Ω) (using the bound on the solution operator). (4.6)

Finally, (4.2) implies that ‖f̃‖L2(Ω) ∼ hd/2‖f‖2, and using this in (4.6) yields ‖ũ‖2 . k−1‖f‖2,
which implies the bound (i) in (4.1).

To prove the bound (ii) in (4.1), given g ∈ CN we create a variational problem whose Galerkin
discretisation leads to the equation Aεũ = Ng. Indeed, let

g̃ :=
∑

j : xj∈Γ

gjφj ,

where xj is the jth node of the mesh (note that g̃ ∈ L2(Γ )). Define ũ to be the solution of the
variational problem

aε(ũ, v) = (g̃, v)L2(Γ ) for all v ∈ H1(Ω), (4.7)

let ũN be the solution of

aε(ũN , vN ) = (g̃, vN )L2(Γ ) for all vN ∈ VN , (4.8)

and let ũ be the vector of nodal values of ũN . Similar to before, Aεũ = Ng, and then, as in (4.6),
hd/2k‖ũ‖2 . ‖g̃‖L2(Γ ). Imitating the proof of (4.2) we find that ‖g̃‖L2(Γ ) ∼ h(d−1)/2‖g‖2, and then

combining these last two inequalities we obtain ‖ũ‖2 . h−1/2k−1‖g‖2, implying (ii) in (4.1).

Proof of Theorem 1.4 using Lemma 4.1. When η = k the bound (1.13) follows immediately from
(1.16) using the bound on ‖A−1

ε M‖2 in (4.1). When η =
√

k2 + iε it is straightforward to show
that |η − k| . ε/k, and then (1.13) follows from inserting both the bounds in (4.1) into (1.16) and
using the hypothesis that hk2 ≥ C.

Proof of Lemma 1.6. If in the proof of Lemma 4.1 we use the bound (2.5) instead of the bound
(2.8) then we obtain

∥∥A−1
ε M

∥∥
2

.
1

ε
and

∥∥A−1
ε N

∥∥
2

.
1

ε1/2kh1/2
. (4.9)

Repeating the proof of Theorem 1.4 but using (4.9) instead of (4.1) (and recalling the hypotheses
that ε . k2 and hk2 ≥ C), we obtain (1.15).
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Remark 4.2 (Stability as opposed to quasi-optimality) Inspecting the proof of Lemma 4.1
we see that all it really requires is that the Galerkin solutions to the variational problems (4.4) and
(4.7) exist and satisfy

k ‖ũN‖L2(Ω) . ‖f̃‖L2(Ω) and k ‖ũN‖L2(Ω) . ‖g̃‖L2(Γ ) (4.10)

respectively. To obtain (4.10) we used quasi-optimality (from Lemma 3.5) and the bound on the
solution operator (from Corollary 2.11). For the standard variational formulation of the Helmholtz
equation (1.3) (with ε = 0), when VN ⊂ H1(Ω) consists of piecewise-linear polynomials, existence
and uniqueness of the Galerkin solution uN and the bound (4.10) (but not quasi-optimality) were
established under the mesh threshold hk3/2 . 1 in [50, Theorem 6.1]. This result was proved by
establishing the corresponding result for a class of interior penalty methods, and then taking the
limit as the penalty parameter tends to zero (and relying on the fact that the stability bound in
Theorem 2.9 holds when ε = 0). If this result could be extended to the problem with absorption then
we could establish the bounds (4.1) under the mesh threshold hk3/2 . 1.

The condition hk3/2 . 1 has appeared in other investigations of fixed-order finite element
methods for the Helmholtz equation. In particular, Ihlenburg and Babuška [28], [27, Chapter 4]
proved that in 1–d this condition is sufficient to keep the relative error in both the H1-semi-norm
and the L2-norm bounded independently of k (but is not sufficient for the method to be quasi-
optimal); see [19, §1.2.2, Page 9] for a review of both this and other related work.

4.1.2 Non-smooth domains and shape-regular meshes

We now consider non-smooth domains satisfying Assumption 3.7. Let T be any mesh in the se-
quence of meshes in Part 2 of Assumption 3.7, and let τ denote a typical simplex in T . For each
node xi of the mesh T , introduce a representative mesh diameter hi which can be chosen to be
the diameter of any of the simplices τ that touch xi. It is a property of shape-regular meshes that
(with the hidden constants independent of the mesh) hτ ∼ hi for all τ that touch node xi. Then
let D be the diagonal matrix with diagonal entries Dii = hd

i . Furthermore, let DΓ be the diagonal
matrix with (DΓ )ii = hd−1

i if xi ∈ Γ and (DΓ )ii = 0 otherwise.
The following result follows from standard scaling arguments using shape-regularity.

Lemma 4.3 For all x ∈ CN ,

(i) (Mx,x)2 ∼ (Dx,x)2, and (ii) (Nx,x)2 ∼ (DΓ x,x)2.

The next theorem is the analogue of Theorem 1.4 for non-smooth domains.

Theorem 4.4 (Sufficient conditions for A−1
ε to be a good preconditioner when Ω is

non-smooth) Suppose that Ω is Lipschitz and star-shaped with respect to a ball, and suppose
further that Assumption 3.7 is satisfied. Suppose that both the interior impedance problem and its
shifted counterpart are solved using the Galerkin method with VN corresponding to a mesh satisfying
Assumption 3.7. Define hΓ := minp∈Γ hp. Assume that ε . k2 and either η = k or η =

√
k2 + iε.

Then, given k0 > 0 and C > 0, there exist C1 and C2 (independent of N, k, and ε) such that if
k ≥ k0, hΓ k2 ≥ C, and

N−1/dk
√
|k2 − ε| ≤ C1 (4.11)

then ∥∥∥I− D1/2A−1
ε AD−1/2

∥∥∥
2
≤ C2

ε

k
.

Therefore (recalling Corollary 1.8), after a simple diagonal scaling on the left with D1/2 and
on the right with D−1/2, equations involving the matrix A−1

ε A can be solved with GMRES in a
k-independent number of iterations when ε/k is sufficiently small.

Proof of Theorem 4.4. Similar to (1.16), we write

I − D1/2A−1
ε AD−1/2 = D1/2(I−A−1

ε A)D−1/2 = D1/2A−1
ε (Aε − A)D−1/2

= −iεD1/2A−1
ε MD−1/2 − i(η − k)D1/2A−1

ε ND−1/2.
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The proof then consists of showing that

∥∥D1/2A−1
ε MD−1/2

∥∥
2

.
1

k
and

∥∥D1/2A−1
ε ND−1/2

∥∥
2

.
1

h
1/2
Γ k

, (4.12)

following the proof of the analogous bounds (4.1) in the smooth case.

Given f ∈ CN , define f̃ , and ũ as in the first part of the proof of Lemma 4.1. Then the nodal
values ũ of ũN satisfy the linear system Aεũ = Mf . Moreover, using Lemma 4.3

k
∥∥D1/2ũ

∥∥
2

= k (Dũ, ũ)
1/2
2 ∼ k (Mũ, ũ)

1/2
2 = k ‖ũN‖L2(Ω) ≤ ‖ũN‖1,k,Ω

≤ ‖ũ − ũN‖1,k,Ω + ‖ũ‖1,k,Ω . (4.13)

By quasi-optimality (Lemma 3.10), the bound on the solution of the continuous problem (Corollary

2.11), the definition of f̃ , and Part (i) of Lemma 4.3 we have

k
∥∥D1/2ũ

∥∥
2

. ‖ũ‖1,k,Ω . ‖f̃‖L2(Ω) = (Mf , f)
1/2
2 ∼ (Df , f)

1/2
2 ∼

∥∥D1/2f
∥∥

2
.

Remembering that Aεũ = Mf , we have

∥∥D1/2A−1
ε Mf

∥∥
2

.
1

k

∥∥D1/2f
∥∥

2
,

and since f was arbitrary, this implies the first bound in (4.12).
Given g ∈ C

N , we define g̃ and ũ as in the second part of the proof of Lemma 4.1; thus
Aεũ = Ng. The inequalities in (4.13) hold as before, and then (using quasi-optimality and the
bound on the solution of the continuous problem) we have k‖D1/2ũ‖2 . ‖g̃‖L2(Γ ). By Part (ii) of

Lemma 4.3, ‖g̃‖L2(Γ ) = (Ng,g)
1/2
2 ∼ (DΓ g,g)

1/2
2 = ‖D1/2

Γ g‖2, so

k
∥∥∥D1/2A−1

ε Ng
∥∥∥

2
.
∥∥∥D1/2

Γ g
∥∥∥

2
.

Since g was arbitrary this implies that

k
∥∥∥D1/2A−1

ε ND−1/2g
∥∥∥

2
.
∥∥∥D1/2

Γ D−1/2g
∥∥∥

2
. (4.14)

Now, the definitions of D, DΓ , and hΓ imply that
∥∥∥D1/2

Γ D−1/2g
∥∥∥

2
≤ max

p∈Γ

(
h(d−1)/2

p h−d/2
p

)
‖g‖2 = max

p∈Γ

(
h−1/2

p

)
‖g‖2 = h

−1/2
Γ ‖g‖2 ,

and using this in (4.14) we find the second bound in (4.12).

4.2 Results about the truncated sound-soft scattering problem

Repeating the proof of Lemma 4.1, but now using the bounds on the continuous problem in
Theorems 2.17 and 2.18 and the results in §3.5, we obtain the following result.

Theorem 4.5 (Sufficient conditions for A−1
ε to be a good preconditioner for the trun-

cated sound-soft scattering problem) Suppose that ΩD and ΩR are both C1,1, ΩD is star-
shaped with respect the origin, and ΩR is star-shaped with respect to a ball centred at the origin.
Suppose that the Galerkin discretisations of both the truncated sound-soft scattering problem and
its shifted counterpart are formed with the finite dimensional subspace consisting of piecewise poly-
nomials on a quasi-uniform mesh. If ε . k2 and either η = k or η =

√
k2 + iε, then, given k0 > 0

and C > 0, there exist C1 and C2 (independent of h, k, and ε) such that if hk
√
|k2 − ε| ≤ C1 and

hk2 ≥ C then ∥∥I− A−1
ε A

∥∥
2
≤ C2

ε

k
(4.15)

for all k ≥ k0.

Recalling Corollary 1.8, we see that equations involving the matrix A−1
ε A can then be solved

with GMRES in a k-independent number of iterations when ε/k is sufficiently small.
In the non-smooth case, if Ω satisfies Assumption 3.7 (along with the geometric conditions in

Theorem 4.5) then the analogue of Theorem 4.4 holds and, after a simple diagonal scaling on the
left with D1/2 and on the right with D−1/2, problems involving the matrix A−1

ε A can be solved
with GMRES in a k-independent number of iterations when ε/k is sufficiently small.
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5 Numerical experiments

In this section we display the results of five numerical experiments. The first two experiments
concern the interior impedance problem (Problem 2.1), the next two concern the truncated sound-
soft scattering problem (Problem 2.4), and the final experiment concerns the Helmholtz equation
in an inhomogeneous medium.

Recall from Theorem 1.7 that sufficient conditions for the number of GMRES iterations,
nGMRES, needed solve the equation

A−1
ε Au = A−1

ε f (5.1)

to be independent of k are

(i) that

d := dist(0, W (A−1
ε A)) (5.2)

is bounded away from the origin, independently of k, and
(ii) that ‖A−1

ε A‖2 is bounded above, independently of k.

Theorem 1.4 shows that these two conditions are satisfied when (for the interior impedance prob-
lem) Ω is star-shaped with respect to a ball and ε/k is sufficiently small. Furthermore, Lemma 1.6
shows that (ii) is satisfied if ε . k2 (if Ω is still star-shaped with respect to a ball). Since these
results indicate that (i) is a more restrictive condition on ε than (ii), in the experiments below we
do not compute ‖A−1

ε A‖2, and we instead concentrate on exploring the behaviour of d.

In all five experiments we compute d, and in all but the first one we compute nGMRES. For the
computation of nGMRES, the vector f on the right-hand side of (5.1) is taken to be the vector of
ones, the initial guess is taken to be zero, and the stopping criterion is the reduction of the initial
residual by six orders of magnitude.

All meshes start with an initial mesh, possibly locally refined, but then the meshes are refined
uniformly by dividing triangles into four smaller ones, possibly several times over. Finally some
mesh smoothing is applied, which modifies the elements slightly. The maximum mesh diameter
h is a key indicator of mesh density. However, with hmin denoting the diameter of the smallest
element, some meshes have rather large ratio h/hmin, in which case the effect of diagonal scaling
is also investigated (cf. Theorem 4.4). For mesh refinement as k increases, we explore two choices:
(i) hk ∼ 1 (i.e. a fixed number of grid points per wavelength) and (ii) h ∼ k−3/2, where the hidden
constants are specified below. Although neither of these choices are covered by the theory, recall
that there is some prospect of extending the theory to cover the choice h ∼ k−3/2; see Remark
4.2. Furthermore, Table 1 shows almost identical results arising from the choices h ∼ k−3/2 and
h ∼ k−2. We study seven choices for ε, namely ε = k/4, k/2, k, 2k, 4k, k3/2, and k2.

Example 5.1 In this first example we study the finite-difference approximation of the interior
impedance problem (with the 5-point Laplacian), on the unit square on a uniform n × n grid
(so h = 1/n), where either (i) n = 2k (so that the number of grid points per wavelength is
2k(2π/k) = 4π ≈ 12.57) or (ii) n =

⌈
k3/2

⌉
(so that the number of grid points per wavelength is

approximately 2πk1/2). The values of d obtained for these two choices of n are given in Tables
2 and 3 respectively. We observe that as long as ε . k, the value of d remains approximately

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5 0.9288 0.8626 0.7450 0.5633 0.3441 0.5289 0.2778
10 0.9288 0.8641 0.7520 0.5808 0.3701 0.4434 0.1384
20 0.9234 0.8550 0.7384 0.5650 0.3581 0.3256 0.0512
40 0.9202 0.8492 0.7289 0.5519 0.3438 0.2194 0.0142
80 0.9181 0.8455 0.7226 0.5426 0.3338 0.1380 0.0054
160 0.9175 0.8442 0.7201 0.5386 0.3288 0.0842 0.0028

Table 2 The values of d for Example 5.1 when n = 2k.

constant as k increases. However, as soon as ε grows faster than k, d tends to zero.
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k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5 0.9297 0.8642 0.7477 0.5670 0.3478 0.5326 0.2812
10 0.9307 0.8677 0.7579 0.5888 0.3743 0.4482 0.1391
20 0.9252 0.8582 0.7436 0.5720 0.3652 0.3326 0.0516
40 0.9221 0.8525 0.7342 0.5593 0.3514 0.2256 0.0150
80 0.9199 0.8485 0.7276 0.5494 0.3406 0.1422 0.0057

Table 3 The values of d for Example 5.1 when n =
˚

k3/2
ˇ

.
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Fig. 3 Meshes for scattering problem of Example 5.3

Example 5.2 Here we study the linear finite-element approximation of the interior impedance
problem on a uniform triangular n × n grid on the unit square, with the same two regimes for h
as in Example 5.1. Tables 4 and 5 give the values of d and (in parentheses) nGMRES. The values
of d are similar to those in Example 5.1. The number of iterations, nGMRES, remains constant as
k increases in all the cases when ε is proportional to k, but grows in all other cases; this is in line
with Theorem 1.5.

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9328(4) 0.8714(5) 0.7641(6) 0.5971(7) 0.3861(9) 0.4594(8) 0.1466(13)
20 0.9272(4) 0.8618(5) 0.7493(6) 0.5797(8) 0.3729(10) 0.3413(11) 0.0538(25)
40 0.9246(4) 0.8569(5) 0.7411(6) 0.5675(8) 0.3590(11) 0.2311(13) 0.0156(47)
80 0.9230(4) 0.8540(5) 0.7360(6) 0.5610(7) 0.3525(10) 0.1477(16) 0.0039(84)
160 0.9223(4) 0.8525(5) 0.7336(6) 0.5547(7) 0.3439(10) 0.0870(19) 0.0030(148)

Table 4 The values of d (and in parentheses nGMRES) for Example 5.2 when n = 2k.

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9323(4) 0.8706(5) 0.7627(6) 0.5943(7) 0.3812(9) 0.4550(8) 0.1432(13)
20 0.9260(4) 0.8595(5) 0.7458(6) 0.5749(8) 0.3704(11) 0.3367(11) 0.0525(24)
40 0.9226(4) 0.8535(5) 0.7358(6) 0.5609(8) 0.3529(11) 0.2275(14) 0.0150(48)
80 0.9201(4) 0.8490(5) 0.7283(6) 0.5504(8) 0.3417(10) 0.1443(16) 0.0056(86)

Table 5 The values of d (and in parentheses nGMRES) for Example 5.2 when n =
˚

k3/2
ˇ

.

Example 5.3 In this example we study the influence of local mesh refinement. We solve the
truncated sound-soft scattering problem (Problem 2.4) when the domain is the region between a
unit square and a square obstacle of side length 1/2 placed symmetrically inside; see Figure 3. In
order to deal with irregularity near reentrant corners we perform local refinement to obtain an
initial mesh with 288 nodes. The ratio h/hmin in this mesh is about 160. We use this mesh for
computations with the wave number k = 10 and then perform one uniform refinement of this mesh
for each doubling of k; thus we are working essentially with a quasi-uniform sequence but with a
rather high mesh ratio. After three refinements and smoothing h/hmin is about 240. The mesh for
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k = 20 is depicted in Figure 3 (left). We also perform computations on the uniform mesh depicted
in Figure 3 (right), which contains initially 240 nodes, and is shown without refinement.

Tables 6 and 7 show the computed values of d (and nGMRES) without and then with diagonal
scaling (note that a 0 in the table indicates that the numerical range contains the origin).

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9595(3) 0.9214(4) 0.8519(4) 0.7346(5) 0.5614(6) 0.6259(6) 0.2845(8)
20 0.9464(4) 0.8960(4) 0.8041(5) 0.6487(6) 0.4181(8) 0.3749(8) 0(15)
40 0.9308(3) 0.8655(4) 0.7452(5) 0.5383(6) 0.2228(8) 0(10) 0(30)
80 0.9096(3) 0.8236(4) 0.6632(5) 0.3828(6) 0(8) 0(12) 0(54)
160 0.8790(3) 0.7636(4) 0.5480(5) 0.1702(6) 0(8) 0(14) 0(95)

Table 6 The values of d (and in parentheses nGMRES) for Example 5.3 without diagonal scaling.

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9612(3) 0.9247(3) 0.8579(4) 0.7450(5) 0.5792(6) 0.6407(5) 0.3255(8)
20 0.9528(4) 0.9089(4) 0.8298(5) 0.6995(6) 0.5165(8) 0.4840(8) 0.1042(14)
40 0.9450(4) 0.8942(4) 0.8035(5) 0.6582(6) 0.4600(8) 0.3224(11) 0.0258(31)
80 0.9433(4) 0.8909(4) 0.7973(5) 0.6466(7) 0.4443(9) 0.2119(13) 0.0024(60)
160 0.9420(4) 0.8885(4) 0.7931(5) 0.6405(7) 0.4380(9) 0.1337(16) 0(116)

Table 7 The values of d (and in parentheses nGMRES) for Example 5.3 with diagonal scaling.

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9624(3) 0.9272(4) 0.8630(4) 0.7550(5) 0.5964(6) 0.6554(6) 0.3457(8)
20 0.9491(4) 0.9021(4) 0.8179(5) 0.6818(7) 0.4953(8) 0.4627(8) 0.1059(17)
40 0.9401(4) 0.8852(4) 0.7881(5) 0.6345(7) 0.4337(9) 0.2972(11) 0.0230(35)
80 0.9378(4) 0.8810(5) 0.7810(5) 0.6231(7) 0.4200(9) 0.1973(14) 0.0061(69)
160 0.9371(4) 0.8794(4) 0.7780(5) 0.6186(7) 0.4139(9) 0.1236(17) 0.0014(121)

Table 8 The values of d (and in parentheses nGMRES) for Example 5.3 with a uniform mesh.

Whereas diagonal scaling produces values of d that behave similarly to those for the uniform
mesh (as, in some sense, predicted by the theory), without diagonal scaling d decreases as ε
increases, and this even happens when ε ∼ k. It is interesting to note that the values of nGMRES

are not substantially altered by the presence of the diagonal scaling, despite the fact that without
the diagonal scaling the numerical range often contains the origin. For comparison, we show in
Table 8 the results obtained on a uniform mesh sequence, with the initial mesh illustrated in
Figure 3 (right), having 240 nodes for the case k = 10. The values of d and nGMRES in this case
are similar to those in the case of diagonal scaling (in Table 7).

Example 5.4 Our next example involves a non-star-shaped scatterer, which is not covered by
the theory. This domain is depicted in Figure 4 (top left pane). The outer boundary is a square of
size 2L×2L. The obstacle is a square of size 2R×2R placed symmetrically inside, with an 2a×2a
square removed from one side. The configuration is symmetric about the centre vertical line. For
the experiments we use L = 6, R = 3 and a = 1. We solve the truncated sound soft scattering
problem (Problem 2.4), with an incident plane wave coming from the bottom left corner of the
picture, with the direction of propagation at 45 degrees with the positive x−axis.

The scatterer in this example is trapping, since there exist closed paths of rays in its exterior
(see, e.g., [6, Definition 5.4] for the definition of trapping and nontrapping). In such a domain we
cannot expect the solution operator to be bounded independently of k, as Theorem 2.18 proves
is the case for star-shaped scatterers. Indeed, when k = mπ/a for m ∈ Z there exist quasimodes
(in some sense, approximate eigenvalues of the operator), and these show that if the bound on the
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Fig. 4 Initial mesh (top left) and three converged solutions for Example 5.4, corresponding to the last three lines
in Table 9.

solution operator

‖∇u‖2
L2(Ω) + k2 ‖u‖2

L2(Ω) . C(k)2
[
‖f‖2

L2(Ω) + ‖g‖2
L2(Γ )

]

holds, then C(k) must grow at least linearly with k; see [6, Equation 5.38].
Tables 9 and 10 give the values of d and nGMRES for meshes obtained by uniform refinement

of the initial mesh depicted in Figure 4, with h ∼ k−1 as k is increased. The corresponding rows
of Tables 9 and 10 use the same meshes, so that in Table 10 the waves are considerably less well-
resolved. The resulting total wave (incident plus scattered) for several choices of k is depicted in
Figure 4 (top right and bottom panes) for the well-resolved case corresponding to Table 9. The
symbol (>) indicates that GMRES did not converge in fewer than 1000 iterations. It is interesting
to compare rows 3-5 of Table 9, with rows 1-3 of Table 10, since these are problems with the same
values of k. We are therefore solving the same physical problem with the same preconditioner, but
in the second table we are largely underresolved, while in the first one the resolution is substantially
higher (while still being at a fixed number of points per wave length). We see that the preconditioner
works much better when the discretization is finer, which is natural since the theory in the rest of
the paper is based on continuous (as opposed to discrete) arguments.

Comparing Table 9 with Tables 6–8, we see that the behaviour of d and nGMRES for the trapping
domain is quite different to the behaviour of d and nGMRES for the square. Indeed, whereas 0 is
never in the numerical range for the square, it is for the trapping domain for the larger values of
ε. Furthermore, whereas for the square nGMRES is fairly constant (as k increases) when ε ∼ k, for
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the trapping domain nGMRES unequivocally grows for some cases when ε ∼ k, e.g. ε = k, 2k, and
4k, (although for ε = k/4 the number of iterations is still constant for the trapping domain in the
well-resolved case).

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5π/8 0.3902(8) 0.1932(12) 0.0624 (17) 0(27) 0 (41) 0.0227 (21) 0 (26)
10π/8 0.4385 (8) 0.2211 (12) 0.0612 (18) 0 (29) 0 (48) 0 (29) 0 (47)
20π/8 0.3878 (9) 0.1764 (13) 0.0319 (19) 0 (32) 0 (55) 0(41) 0 (95)
40π/8 0.3069 (9) 0.1137 (13) 0 (21) 0 (34) 0 (61) 0 (60) 0 (198)
80π/8 0.2478 (9) 0.0762 (14) 0 (22) 0 (37) 0 (66) 0 (89) 0 (418)

Table 9 The values of d (and in parentheses nGMRES) for Example 5.4 with n ∼ k

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5π/2 0.1610 (15) 0.0798 (21) 0.0246 (32) 0 (54) 0 (91) 0(70) 0 (123)
10π/2 0.1199 (20) 0.0374 (32) 0.0227 (53) 0 (94) 0(177) 0(176) 0 (475)
20π/2 0 (35) 0 (57) 0 (100) 0 (185) 0 (355) 0 (491) (>)
40π/2 0.0266 (48) 0 (86) 0 (160) 0 (306) 0 (594) 0 (>) 0 (>)
80π/2 0.0197 (75) 0 (140) 0 (267) 0 (515) 0 (>) 0 (> ) 0 (> )

Table 10 The values of d (and in parentheses nGMRES) for Example 5.4 with n ∼ k and a different range of k
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Fig. 5 Inhomogeneous medium example on the left (chicken in a microwave) with an initial mesh of 597 nodes for
k = 10. Solution on the right for k = 40

Example 5.5 Our final experiment involves an inhomogeneous medium, which is also not covered
by the theory. Let Ω be the rectangular domain shown in Figure 5 on the left, which represents
a 2d cross section of a model of a microwave oven with a chicken in it. We consider the interior
Helmholtz problem

∆u + (k2/c2)u = 0 in Ω,
∂nu − iku = g on the right boundary,

u = 0 on the remaining boundaries,

with a renormalised wave speed of c = 1 in air, and c = 1/
√

5 in the chicken. The source on the
right is as in a classical microwave oven, and modeled by a Robin condition with g = 1. This is a
synthetic problem, since the frequency in a microwave oven is given, and we vary it here only for
illustrative purposes. The ratio between the two values of c is roughly what one expects physically,
and we choose k = 10, 20, 40 as in the earlier experiments (with this parameter now corresponding
to the frequency).

Table 11 shows the values of d and nGMRES, both for the microwave with the chicken in,
and also for an empty microwave (corresponding to c = 1 everywhere). We clearly see that the
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k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

microwave oven with chicken
10 0.9423(5) 0.8769(6) 0.7352(7) 0.4671(8) 0.1323(10) 0.2387(9) 0(14)
20 0.2725(6) 0.0910(8) 0(10) 0(13) 0(18) 0(19) 0(40)
40 0(7) 0(9) 0(13) 0(18) 0(27) 0(37) 0(132)

empty microwave oven
10 0.9656(3) 0.9309(4) 0.8621(4) 0.7333(5) 0.5308(6) 0.6062(6) 0.2402(7)
20 0.9141(4) 0.8365(5) 0.7019(6) 0.4956(7) 0.2386(9) 0.1974(9) 0(18)
40 0.8477(4) 0.7268(5) 0.5477(7) 0.3299(9) 0.1249(13) 0.0182(17) 0(53)

Table 11 Chicken in a microwave problem, and also for comparison the corresponding empty microwave oven, but
using the same mesh

inhomogeneous medium causes difficulties for the preconditioner, and at k = 40 the numerical
range contains zero for every choice of ε considered. The number of iterations, nGMRES, grows with
k in all cases, but this growth gets faster as ε increases. The preconditioner works much better in
the empty microwave oven, although in this case d decreases with k even when ε ∼ k; this decrease
is probably caused by the fact that we used the same irregular mesh as in the inhomogeneous case.
Despite this decrease in d, the number of iterations remain roughly constant as k increases when
ε = k/4 and ε = k/2.

6 Concluding remarks

The results of this paper show that the shifted Laplacian is a good preconditioner for finite-element
discretisations of the Helmholtz equation if ε/k is sufficiently small.

The following theorem shows that this is somehow expected, since the requirement “ε/k is
sufficiently small” naturally appears when one considers how well the solution of the problem
with absorption approximates the solution of the problem without absorption (independently of
any discretisation). We focus on Problem 2.1 (the interior impedance problem), but note that
analogous results hold for Problem 2.4 (the truncated sound-soft scattering problem).

Theorem 6.1 (Approximating u by uε) Let Ω be a Lipschitz domain that is star-shaped with
respect to a ball (see Definition 1.2). Given f ∈ L2(Ω) and g ∈ L2(Γ ), let u be the solution of
Problem 2.1 with ε = 0 and η = k (i.e. u satisfies (1.1)) and let uε be the solution of Problem 2.1
with ε 6= 0 and η = k (i.e. u satisfies (1.2) with η = k).

If ε . k2 then, given k0 > 0, there exists C1 (independent of k and ε) such that

‖u − uε‖1,k,Ω ≤ C1
ε

k

(
‖f‖L2(Ω) + ‖g‖L2(Γ )

)
(6.1)

for all k ≥ k0. Furthermore, given k0 > 0 there exist C2 and C3 (independent of k and ε) such
that if ε ≤ C2k then

‖u − uε‖L2(Ω)

‖u‖L2(Ω)

≤ C3
ε

k
(6.2)

for all k ≥ k0.

Therefore, if ε/k is sufficiently small then both the relative L2-error in approximating u by uε

and the error relative to the data are small.
Note that the principle of limited absorption states that, with k fixed, uε → u as ε → 0 (for a

proof of this result for the exterior Dirichlet problem see [48, Chapter 9, Theorem 1.3]). In contrast,
here we consider fixing ε as a function of k and then approximating u by uε for arbitrarily large k.

Proof of Theorem 6.1. By subtracting (1.2a) from (1.1a) and (1.2b) from (1.1b) we have that

(∆ + k2)(u − uε) = iεuε in Ω and ∂n(u − uε) − ik(u − uε) = 0 on Γ.

By using the bound (2.8) with ε = 0 on u − uε, we have that, given k0 > 0,

‖u − uε‖1,k,Ω . ε ‖uε‖L2(Ω) (6.3)
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for all k ≥ k0. The bound (2.8) applied to uε then implies that if ε . k2 then

ε ‖uε‖L2(Ω) .
ε

k

(
‖f‖L2(Ω) + ‖g‖L2(Γ )

)
,

and then using this in (6.3) we obtain (6.1).
Using the triangle inequality ‖uε‖L2(Ω) ≤ ‖u− uε‖L2(Ω) + ‖u‖L2(Ω) in (6.3), we find that there

exist C2 and C3 such that if ε ≤ C2k then

‖u − uε‖1,k,Ω ≤ C3 ε ‖u‖L2(Ω) ,

which implies the result (6.2).

Remark 6.2 (The choice of η) In Theorem 6.1 we considered the case that η = k, i.e. the
impedance parameter in the shifted problem is that in the unshifted problem. If η =

√
k2 + iε then

it is straightforward to show that (6.1) holds, but we have not been able to prove that (6.2) holds
in this case.

Remark 6.3 (The case k . ε . k2) If k . ε . k2 then one can obtain a bound analogous to
(6.1), but one cannot obtain a bound analogous to (6.2) (at least, not with the results in the rest of
this paper). Indeed, if k . ε . k2 then we can apply the bound (2.5) (instead of the bound (2.8))
to u − uε and obtain that

‖u − uε‖1,k,Ω . ε

(
k

ε

)
‖uε‖L2(Ω) . (6.4)

Since uε itself satisfies the bound (2.5), we then have that

‖u − uε‖1,k,Ω .

(
k

ε
‖f‖L2(Ω) +

(
k

ε

)1/2

‖g‖L2(Γ )

)
,

which is analogous to (6.1). If we seek to prove an analogous bound to (6.2), however, we find from
(6.4) that

‖u − uε‖1,k,Ω . k ‖u − uε‖L2(Ω) + k ‖u‖L2(Ω) . (6.5)

One cannot get a bound on the relative L2-error from (6.5), unless the omitted constant is < 1.
(In principle we could check if this is ever the case, but doing so would be difficult.)
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32. M. Löhndorf and J. M. Melenk. Wavenumber-explicit hp-BEM for high frequency scattering. SIAM Journal

on Numerical Analysis, 49(6):2340–2363, 2011.
33. W. C. H. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, 2000.
34. J. M. Melenk. On generalized finite element methods. PhD thesis, The University of Maryland, 1995.
35. A. Moiola. Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis, Seminar for
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